JPS5826671B2 - Teiden Atsudaio - Donoseizouhouhou - Google Patents

Teiden Atsudaio - Donoseizouhouhou

Info

Publication number
JPS5826671B2
JPS5826671B2 JP11924775A JP11924775A JPS5826671B2 JP S5826671 B2 JPS5826671 B2 JP S5826671B2 JP 11924775 A JP11924775 A JP 11924775A JP 11924775 A JP11924775 A JP 11924775A JP S5826671 B2 JPS5826671 B2 JP S5826671B2
Authority
JP
Japan
Prior art keywords
type
diffusion
layer
silicon substrate
guard ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11924775A
Other languages
Japanese (ja)
Other versions
JPS5243383A (en
Inventor
正武 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP11924775A priority Critical patent/JPS5826671B2/en
Publication of JPS5243383A publication Critical patent/JPS5243383A/en
Publication of JPS5826671B2 publication Critical patent/JPS5826671B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は定電圧ダイオードの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a constant voltage diode.

従来の定電圧ダイオードの製造方法としては、所定の抵
抗率をもったN型シリコン基板上にアルミニウム線又は
球等を合金させP型導電型の領域をつくり、PN接合を
形成させる合金法、或は拡散法やエピタキシャル法でP
N接合を形成する方法がある。
Conventional methods for manufacturing constant voltage diodes include an alloying method in which a P-type conductivity type region is created by alloying aluminum wires or spheres on an N-type silicon substrate with a predetermined resistivity, and a PN junction is formed. is P by diffusion method or epitaxial method.
There is a method of forming an N junction.

しかし合金法に於いて、AIでは均一なPN接合面が得
られに<<、局部的な降伏を起しやすいことや、Siと
AlSi合金層との熱膨張係数の差により、PN接合近
傍のところで亀裂を生じやすく、その為逆電流が大きく
、又、降伏電圧のバラツキが大であるという欠点を有し
ている。
However, in the alloy method, it is difficult to obtain a uniform PN junction surface with AI, and local breakdown tends to occur easily, and due to the difference in thermal expansion coefficient between Si and AlSi alloy layers, However, it has the disadvantage that cracks are likely to occur, resulting in a large reverse current and large variations in breakdown voltage.

他方、拡散法では合金法よりも優れたPN接合は得られ
るが、拡散の性質上、PN接合近傍の不純物の濃度勾配
を合金法のように急峻にすることが出来ず、降伏電圧で
約6V以下のものを作ることはきわめて困難である。
On the other hand, with the diffusion method, a better PN junction can be obtained than with the alloy method, but due to the nature of diffusion, the concentration gradient of impurities near the PN junction cannot be made as steep as the alloy method, and the breakdown voltage is approximately 6V. It is extremely difficult to make the following.

しかるに、本発明は合金法によるよりもPN接合部に欠
陥の少ない均一なものが得られ、更に拡散では得られな
い低降伏電圧のものまで得られる定電圧ダイオードの製
造方法を提供するものである。
However, the present invention provides a method for manufacturing a constant voltage diode that can produce a uniform PN junction with fewer defects than by the alloy method, and can even have a low breakdown voltage that cannot be obtained by diffusion. .

次に本発明の一実施例を図面により詳細に説明する。Next, one embodiment of the present invention will be described in detail with reference to the drawings.

先づ第1図に本発明方法により作られた定電圧ダイオー
ドのペレット構造の一例を示す。
First, FIG. 1 shows an example of a pellet structure of a constant voltage diode manufactured by the method of the present invention.

第1図に於いて、1は低抵抗率のN型シリコン基板、2
は酸化膜、3はシリコン基板と反対導電型のP型ガード
リング拡散層、4はガードリング拡散層の一部を露出せ
しめた拡散窓、5は拡散窓及び拡散窓の外周部の酸化膜
を被覆するように被着せしめたP+型非晶質または多結
晶シリコン層、6はN型シリコン基板1、中に形成され
たPN主接合、7はP+層5に被着せしめた金属電極、
8は金属電極7を被覆するように設けられた金属突出部
である。
In Figure 1, 1 is a low resistivity N-type silicon substrate, 2
3 is an oxide film, 3 is a P-type guard ring diffusion layer of a conductivity type opposite to that of the silicon substrate, 4 is a diffusion window that exposes a part of the guard ring diffusion layer, and 5 is a diffusion window and an oxide film on the outer periphery of the diffusion window. a P+ type amorphous or polycrystalline silicon layer deposited to cover the N-type silicon substrate 1; 7 a metal electrode deposited on the P+ layer 5;
Reference numeral 8 denotes a metal protrusion provided to cover the metal electrode 7.

第2図は第1図に示したペレット構造の製造工程を示し
ている。
FIG. 2 shows the manufacturing process of the pellet structure shown in FIG.

第2図に於いて、N型シリコン基板1に通常の熱酸化法
によって酸化膜2を形成せしめ、該酸化膜2にフォトエ
ツチング法により環状の第1の拡散窓2aを設ける。
In FIG. 2, an oxide film 2 is formed on an N-type silicon substrate 1 by a normal thermal oxidation method, and a first annular diffusion window 2a is provided in the oxide film 2 by a photoetching method.

該拡散窓2aから高濃度のホウ素を所定の深さまで拡散
し、P型ガードリング拡散層3を形成せしめる(第2図
a)。
Highly concentrated boron is diffused to a predetermined depth through the diffusion window 2a to form a P-type guard ring diffusion layer 3 (FIG. 2a).

上記ウェハにフォトレジスト膜を被着し、選択エツチン
グによりP型ガードリング拡散層3の一部を露出せしめ
た第2の拡散窓4を形成する(第2図b)。
A photoresist film is deposited on the wafer and selectively etched to form a second diffusion window 4 exposing a part of the P-type guard ring diffusion layer 3 (FIG. 2b).

次に上記シリコン基板1を気相成長装置に設置し900
℃以下の温度に加熱し、周知の気相成長方法によって拡
散窓4及び酸化膜2の全面が被覆されるようにP+型非
晶質または多結晶シリコン層5を例えば1〜3ミクロン
の膜厚に被着せしめる。
Next, the silicon substrate 1 is placed in a vapor phase growth apparatus 900.
The P+ type amorphous or polycrystalline silicon layer 5 is grown to a thickness of, for example, 1 to 3 microns by heating to a temperature of 0.degree. Cover it with.

この時P+型非晶質または多結晶シリコン層5の被着と
同時にN型シリコン基板1中に拡散層の浅いPN主接合
6が形成される(第2図C)。
At this time, simultaneously with the deposition of the P+ type amorphous or polycrystalline silicon layer 5, a shallow PN main junction 6 with a diffused layer is formed in the N type silicon substrate 1 (FIG. 2C).

PN主接合6の不純物の濃度勾配は非常に急峻で、しか
も均一なPN接合面が得られる。
The concentration gradient of impurities in the main PN junction 6 is very steep, and a uniform PN junction surface can be obtained.

次に上記ウェハーのP+型非晶質または多結晶シリコン
層5の面にフォトレジスト膜を被着し、拡散窓4、内と
その外周酸化膜2上のP+型非晶質または多結晶シリコ
ン層5を残存せしめ、他の被着膜は混酸系のエツチング
液により選択的に除去される。
Next, a photoresist film is deposited on the surface of the P+ type amorphous or polycrystalline silicon layer 5 of the wafer, and a P+ type amorphous or polycrystalline silicon layer is formed inside the diffusion window 4 and on the oxide film 2 on its outer periphery. 5 remains, and the other deposited films are selectively removed by a mixed acid etching solution.

拡散窓4、内及びその外周部を残し、それ以外の部分の
被着物を除去する際に、非常に大切な事は、拡散窓4、
の外周の酸化膜2上に残存するP+型非晶質または多結
晶シリコン層5がPN主接合6の保護膜及び電極として
の効果をもつ為、少なくともP型ガードリング拡散層3
の外径よりも十分に大きく設けることが必要である。
It is very important to leave the inside of the diffusion window 4 and its outer periphery and remove the deposits from the other parts.
Since the P+ type amorphous or polycrystalline silicon layer 5 remaining on the oxide film 2 on the outer periphery of the P+ type amorphous or polycrystalline silicon layer 5 has an effect as a protective film and an electrode for the PN main junction 6, at least the P type guard ring diffusion layer 3
It is necessary to provide a diameter sufficiently larger than the outer diameter of the outer diameter.

次いで、拡散窓4、内及びその外周酸化膜2上に残存す
るP+型非晶質または多結晶シリコン層5の表面に電極
用金属(例えばAu、Ag等)を蒸着し、金属電極7を
形成せしめる(第2図d)。
Next, an electrode metal (for example, Au, Ag, etc.) is vapor-deposited on the surface of the P+ type amorphous or polycrystalline silicon layer 5 remaining inside the diffusion window 4 and on the oxide film 2 on its outer periphery to form a metal electrode 7. (Figure 2 d).

ここで、深いP型ガードリング拡散層3と浅いPN主接
合6をもつプレーナ型定電圧ダイオードが得られる。
Here, a planar type constant voltage diode having a deep P-type guard ring diffusion layer 3 and a shallow PN main junction 6 is obtained.

この定電圧ダイオードに於いて、拡散窓4、内に形成さ
れた非常に浅い拡散層をもつPN主接合6の降伏電圧は
、P型ガードリング部の降伏電圧よりも低く、降伏はN
型シリコン基板1の内部にだけ生じる為、酸化膜2下の
電界が弱められ、接合表面の影響を受けにくいすぐれた
電気的特性が得られる。
In this constant voltage diode, the breakdown voltage of the PN main junction 6, which has a very shallow diffusion layer formed within the diffusion window 4, is lower than that of the P-type guard ring, and the breakdown voltage is lower than that of the P-type guard ring.
Since it occurs only inside the mold silicon substrate 1, the electric field under the oxide film 2 is weakened, and excellent electrical characteristics that are less susceptible to the effects of the bonding surface can be obtained.

定電圧ダイオードの降伏電圧値を決定する因子は、N型
シリコン基板1の抵抗率及びP+型非晶質または多結晶
シリコン層5の被着温度であることは言うまでもない。
It goes without saying that the factors that determine the breakdown voltage value of the constant voltage diode are the resistivity of the N-type silicon substrate 1 and the deposition temperature of the P+ type amorphous or polycrystalline silicon layer 5.

又、P+型非晶質または多結晶シリコン層5の被着後の
熱処理(例えば1000℃以上の熱酸化及び不純物拡散
等)は降伏電圧を高める因子となる為本発明の目的とす
る低降伏電圧の定電圧ダイオードの製造にとっては好ま
しくない。
In addition, heat treatment after deposition of the P+ type amorphous or polycrystalline silicon layer 5 (for example, thermal oxidation at 1000° C. or higher and impurity diffusion) increases the breakdown voltage, which is the purpose of the present invention. This is not preferable for the production of constant voltage diodes.

よって本発明方法に於いては非晶質または多結晶シリコ
ン層の被着後は、熱処理等を施してはならない。
Therefore, in the method of the present invention, heat treatment or the like must not be performed after the amorphous or polycrystalline silicon layer is deposited.

以上の実施例は、シリコン基板にN型、ガードリング拡
散層及び非晶質または多結晶シリコン層にP+層を設け
たものについて説明したが、これがP型、N+層のもの
でも本発明が適用出来ることは言うまでもない。
The above embodiments have been described in which a silicon substrate is N-type, a guard ring diffusion layer is provided, and an amorphous or polycrystalline silicon layer is provided with a P+ layer, but the present invention is also applicable to a P-type or N+ layer. It goes without saying that it is possible.

以上に説明したように、本発明により製造された定電圧
ダイオードは、ガードリング構造をもつプレーナ型定電
圧ダイオードであり、不純物を含んだ非晶質または多結
晶シリコン層の被着温度が900℃以下の低温である為
、今まで拡散法では得られなかった非常に急峻な不純物
濃度勾配が形成され、よって低降伏電圧(6V〜IV)
が得られる。
As explained above, the constant voltage diode manufactured according to the present invention is a planar type constant voltage diode with a guard ring structure, and the deposition temperature of the amorphous or polycrystalline silicon layer containing impurities is 900°C. Because the temperature is below 100 volts, a very steep impurity concentration gradient that could not be obtained by diffusion methods is formed, resulting in a low breakdown voltage (6V to IV).
is obtained.

又、合金法により製造された定電圧ダイオードより逆電
流が小さく、シかも立上り特性が鋭い電気特性が得られ
、その上に降伏電圧のバラツキが小さい為に製造歩留は
増加し、特性の安定した信頼性の高い定電圧ダイオード
の量産が容易であり、従って製造原価も大巾に低減され
るという効果が得られる。
In addition, compared to constant voltage diodes manufactured by the alloy method, the reverse current is smaller and electrical characteristics with sharper rise characteristics can be obtained.Furthermore, the variation in breakdown voltage is small, so manufacturing yields are increased and the characteristics are stable. It is easy to mass-produce highly reliable constant voltage diodes, and the manufacturing cost can therefore be greatly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により作られた定電圧ダイオードのペレ
ットの一実施例を示す断面図、第2図は第1図に示すペ
レットの製造工程を示す断面図である。 図中、1はN型シリコン基板、2は酸化膜、2aは第1
の拡散窓、3はP型ガードリング拡散層、4は第2の拡
散窓、5はP+型非晶質または多結晶シリコン層、6は
PN主接合、7は金属電極、8は金属突出部を示す。
FIG. 1 is a sectional view showing one embodiment of a pellet of a constant voltage diode made according to the present invention, and FIG. 2 is a sectional view showing a manufacturing process of the pellet shown in FIG. 1. In the figure, 1 is an N-type silicon substrate, 2 is an oxide film, and 2a is a first silicon substrate.
3 is a P-type guard ring diffusion layer, 4 is a second diffusion window, 5 is a P+ type amorphous or polycrystalline silicon layer, 6 is a PN main junction, 7 is a metal electrode, and 8 is a metal protrusion. shows.

Claims (1)

【特許請求の範囲】[Claims] 1 P型又はN型のどちらか一方の導電型のシリコン基
板上にこの基板と反対導電型の環状のガードリング拡散
層を設け、該ガードリング拡散層の一部を露出せしめた
絶縁膜の拡散窓を形成し、該拡散窓と該絶縁膜とを被覆
する非晶質または多結晶シリコン層を被着せしめて前記
シリコン基板中にPN接合を形成することを特徴とする
定電圧ダイオードの製造方法。
1. An annular guard ring diffusion layer of the opposite conductivity type is provided on a silicon substrate of either P type or N type conductivity type, and a part of the guard ring diffusion layer is exposed for diffusion of an insulating film. A method for manufacturing a constant voltage diode, comprising forming a window and depositing an amorphous or polycrystalline silicon layer covering the diffusion window and the insulating film to form a PN junction in the silicon substrate. .
JP11924775A 1975-10-02 1975-10-02 Teiden Atsudaio - Donoseizouhouhou Expired JPS5826671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11924775A JPS5826671B2 (en) 1975-10-02 1975-10-02 Teiden Atsudaio - Donoseizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11924775A JPS5826671B2 (en) 1975-10-02 1975-10-02 Teiden Atsudaio - Donoseizouhouhou

Publications (2)

Publication Number Publication Date
JPS5243383A JPS5243383A (en) 1977-04-05
JPS5826671B2 true JPS5826671B2 (en) 1983-06-04

Family

ID=14756594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11924775A Expired JPS5826671B2 (en) 1975-10-02 1975-10-02 Teiden Atsudaio - Donoseizouhouhou

Country Status (1)

Country Link
JP (1) JPS5826671B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125875A (en) * 1982-01-22 1983-07-27 Mitsubishi Electric Corp Constant voltage diode
JPH0691267B2 (en) * 1984-06-06 1994-11-14 ローム株式会社 Method for manufacturing semiconductor device
JPH0691266B2 (en) * 1984-06-06 1994-11-14 ローム株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS5243383A (en) 1977-04-05

Similar Documents

Publication Publication Date Title
US3189973A (en) Method of fabricating a semiconductor device
US4349394A (en) Method of making a zener diode utilizing gas-phase epitaxial deposition
US3601888A (en) Semiconductor fabrication technique and devices formed thereby utilizing a doped metal conductor
JPH051623B2 (en)
US3356543A (en) Method of decreasing the minority carrier lifetime by diffusion
JPS6252963A (en) Manufacture of bipolar transistor
US4171997A (en) Method of producing polycrystalline silicon components, particularly solar elements
US3791882A (en) Method of manufacturing semiconductor devices utilizing simultaneous deposition of monocrystalline and polycrystalline regions
GB1356710A (en) Semiconductor resistor
JPS5826671B2 (en) Teiden Atsudaio - Donoseizouhouhou
JPH0927489A (en) Semiconductor substrate and method of manufacture
US3698077A (en) Method of producing a planar-transistor
US4189826A (en) Silicon charge-handling device employing SiC electrodes
JP2816684B2 (en) Manufacturing method of multiple diodes
US3769563A (en) High speed, high voltage transistor
JPS5852843A (en) Manufacture of semiconductor integrated circuit device
US3448354A (en) Semiconductor device having increased resistance to second breakdown
US3771028A (en) High gain, low saturation transistor
JPS593851B2 (en) Dielectric separation method
JPS6174378A (en) Manufacture of photosensor by simultaneous formation of shallow junction and bsf under infrated rays
US3493442A (en) High voltage semiconductor device
JPS6298721A (en) Zn solid-state diffusing method for iii-v compound semiconductor
JP3620344B2 (en) Schottky barrier diode and manufacturing method thereof
JP3018608B2 (en) Constant voltage diode and its manufacturing method
JPS5938730B2 (en) Manufacturing method of semiconductor device