JPS5826381Y2 - Ultrasonic flaw detection equipment - Google Patents

Ultrasonic flaw detection equipment

Info

Publication number
JPS5826381Y2
JPS5826381Y2 JP1978144461U JP14446178U JPS5826381Y2 JP S5826381 Y2 JPS5826381 Y2 JP S5826381Y2 JP 1978144461 U JP1978144461 U JP 1978144461U JP 14446178 U JP14446178 U JP 14446178U JP S5826381 Y2 JPS5826381 Y2 JP S5826381Y2
Authority
JP
Japan
Prior art keywords
ultrasonic
flaw detection
probe
reflector
detection equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978144461U
Other languages
Japanese (ja)
Other versions
JPS5560568U (en
Inventor
嘉郎 羽深
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP1978144461U priority Critical patent/JPS5826381Y2/en
Publication of JPS5560568U publication Critical patent/JPS5560568U/ja
Application granted granted Critical
Publication of JPS5826381Y2 publication Critical patent/JPS5826381Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 この考案は主として薄板を超音波で探傷する装置の改良
に関する。
[Detailed Description of the Invention] This invention mainly relates to the improvement of an apparatus for detecting flaws in thin plates using ultrasonic waves.

薄鋼板内のラミネーションの超音波探傷は従来第1図に
示すように超音波探触子1と反射体3を液体の中に設置
しその反射面30と探触子1の間を被検材2を通過せし
めて、被検材中にラミネーションの如き欠陥4があると
超音波は、ラミネーション等の欠陥部分で反射、あるい
は散乱して、反射面30へ到達するものが減少する。
Conventionally, in ultrasonic flaw detection of laminations in thin steel plates, an ultrasonic probe 1 and a reflector 3 are placed in a liquid as shown in Fig. 2, and if there is a defect 4 such as a lamination in the material to be inspected, the ultrasonic wave is reflected or scattered at the defective portion such as the lamination, and the number of ultrasonic waves that reach the reflecting surface 30 is reduced.

上記探触子1で受ける超音波を時系列で示すと第2図の
如(なる。
The ultrasonic waves received by the probe 1 are shown in chronological order as shown in FIG.

すなわち送信パルスTのあと被検材の表面からの反射波
S1と、被検材を透過して反射面30からの反射波Rと
、被検材間を2回往復した波s2とがある。
That is, after the transmitted pulse T, there is a reflected wave S1 from the surface of the test material, a reflected wave R that passes through the test material and comes from the reflective surface 30, and a wave s2 that has traveled back and forth between the test materials twice.

普通、反射波S1と82のほぼ中間に、反射波Rが来る
ように、探触子、被検材、反射板を配置し、R波の減少
から、欠陥の存在を検知することができる。
Normally, the probe, the test material, and the reflector are arranged so that the reflected wave R comes approximately midway between the reflected waves S1 and 82, and the presence of a defect can be detected from the decrease in the R wave.

しかるに本方式では、超音波は被検材上では第3図に示
すように、探触子の面積と同等以上に拡がっている。
However, in this method, as shown in FIG. 3, the ultrasonic waves are spread over the material to be examined over an area equal to or greater than the area of the probe.

依存している検出可能な欠陥の大きさは、被検材上の、
超音波のビーム断面積5、例えば径10Tranの探触
子を用いた場合の検出可能欠陥は、直径2Wrrn程度
であるのでこの方式では、欠陥の検出能力があまり良く
ない。
The size of the detectable defect depends on the
When using a probe with an ultrasonic beam cross-sectional area of 5, for example a diameter of 10 Tran, the detectable defect is about 2 Wrrn in diameter, so this method does not have very good defect detection ability.

この考案は、このような探傷装置の検出能力を向上せし
めるもので、以下この考案の一実施例を第4図及び第5
図に従って詳述する。
This invention improves the detection ability of such a flaw detection device, and an embodiment of this invention is shown in Figs. 4 and 5 below.
The details will be explained according to the figures.

第4図において被検材2の面上あるいは板厚の中心に線
状の焦点8をむすぶように円筒形のレンズ(ここでは凹
レンズ)1を取付けた探触子1を配置する。
In FIG. 4, a probe 1 with a cylindrical lens (here, a concave lens) 1 is placed so as to connect a linear focal point 8 to the surface of the material 2 to be tested or to the center of its thickness.

また、被検材2に対して探触子6と反対側に透過して来
た透過波6を反射し再び元の経路をたどって探触子1へ
至らしめる反射面32をもつ反射体3を配置する。
Also, a reflector 3 has a reflecting surface 32 that reflects the transmitted wave 6 that has passed through the test material 2 to the opposite side of the probe 6 and retraces the original path to reach the probe 1. Place.

このような反射面32は円筒面であり、その曲率の中心
を被検材2上の線状の焦点8に合致せしめることにより
上記の動きをなすことはよく知られている事実である。
It is a well-known fact that the reflecting surface 32 is a cylindrical surface, and that the above movement is achieved by aligning the center of its curvature with the linear focal point 8 on the specimen 2.

上記探触子と被検材の距離11と被検材と反射面の距離
12の比は略々t+”、12二2:1として透過したR
波が探触子と被検材の間を往復した81.82波の中間
に出るように配する。
The ratio of the distance 11 between the probe and the test material and the distance 12 between the test material and the reflecting surface is approximately t+'', which is 1222:1 and the transmitted R
The wave is arranged so that it appears in the middle of the 81.82 waves that have traveled back and forth between the probe and the test material.

以上のように配された円筒レンズをつげた探触子と反射
面の組合せによると被検材中の小さな欠陥に対しても、
超音波が焦申しているので、R波の減衰が大きい。
The combination of the probe with the cylindrical lens and the reflective surface arranged as described above can detect even small defects in the material to be inspected.
Since the ultrasonic waves are intense, the attenuation of R waves is large.

又、被検材の移動方向に垂直方向には線状に長(延びて
いるので1個の探触子で広い幅を探傷することが可能で
ある、などの効果を有している。
In addition, since it extends linearly in the direction perpendicular to the moving direction of the test material, it has the effect that it is possible to detect flaws over a wide width with one probe.

又円筒形の反射面は信号波である透過波を効率よく探触
子にもどすばかりでなく、超音波の経路が往復とも同一
経路をとるので平面の反射面30とくらべて受信する信
号量が大きい。
In addition, the cylindrical reflecting surface not only efficiently returns transmitted waves, which are signal waves, to the probe, but also allows the ultrasonic waves to take the same route both ways, so the amount of signals received is reduced compared to the flat reflecting surface 30. big.

第5図に示すように受信可能部分Aは平面の反射面を用
いたときの受信可能部分Bより大きく得られる信号量が
大きいので信号対雑音比が大きくなる。
As shown in FIG. 5, the signal amount obtained in the receivable portion A is larger than that in the receivable portion B when a flat reflective surface is used, so that the signal-to-noise ratio is increased.

以上述べたようにこの考案によれば、 (1)被検材上に被検材の移動方向と垂直な方向に線上
に超音波を収束せしめることにより欠陥検出能を向上さ
せ、かつ有効ビーム幅を広くとり、(2)円筒状の反射
面を用いることにより透過波(信号波)を効率よく受信
せしめてS/N比を向上させることを可能とした検出能
の高い超音波探傷装置を提供することができる。
As described above, according to this invention, (1) defect detection ability is improved by converging ultrasonic waves on a line perpendicular to the direction of movement of the inspected material, and the effective beam width is (2) Provides an ultrasonic flaw detection device with high detection ability that uses a cylindrical reflecting surface to efficiently receive transmitted waves (signal waves) and improve the S/N ratio. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波探傷装置の説明図、第2図は第1
図に示したものの信号の時系列の図、第3図は従来方式
の被検材面上のビームの断面を示す図、第4図はこの考
案の一実施例を示す図、第5図は反射面(平面と円筒面
)の信号量に対する効果を示す図である。 図において1は探触子、2は被検材、3は反射体、30
は平面の反射面、32は円筒状の反射面、4は欠陥、5
は超音波ビームの断面、6は透過ビーム、γは円筒レン
ズ、8はこの考案による集収された超音波ビーム断面で
ある。 なお図中同一あるいは相当部分には同一符号を付して示
しである。
Figure 1 is an explanatory diagram of a conventional ultrasonic flaw detection device, and Figure 2 is an explanatory diagram of a conventional ultrasonic flaw detection device.
Fig. 3 is a diagram showing the cross section of the beam on the surface of the material to be inspected using the conventional method, Fig. 4 is a diagram showing an embodiment of this invention, and Fig. 5 is a diagram showing the time series of the signals shown in the figure. FIG. 3 is a diagram showing the effect of reflective surfaces (a flat surface and a cylindrical surface) on the signal amount. In the figure, 1 is a probe, 2 is a test material, 3 is a reflector, and 30
is a flat reflective surface, 32 is a cylindrical reflective surface, 4 is a defect, and 5
is the cross section of the ultrasound beam, 6 is the transmitted beam, γ is the cylindrical lens, and 8 is the collected ultrasound beam cross section according to this invention. In the drawings, the same or corresponding parts are designated by the same reference numerals.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 超音波を集束させるレンズを有する超音波探触子と、上
記超音波探触子から発生する超音波を反射させる反射体
な、被検材を間にして互いに対向させてなる超音波探傷
装置において、上記レンズと反射体とをそれぞれの超音
波の集束する点が、線焦点をなすように形成するととも
に、上記レンズ及び反射体の線焦点をほぼ一致させるよ
うにしたことを特徴とする超音波探傷装置。
In an ultrasonic flaw detection device comprising an ultrasonic probe having a lens that focuses ultrasonic waves, and a reflector that reflects the ultrasonic waves generated from the ultrasonic probe, which are opposed to each other with a test material in between. , an ultrasonic wave characterized by forming the lens and the reflector so that the points on which the ultrasonic waves are focused form a line focus, and the line focuses of the lens and the reflector substantially coincide with each other; Flaw detection equipment.
JP1978144461U 1978-10-20 1978-10-20 Ultrasonic flaw detection equipment Expired JPS5826381Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978144461U JPS5826381Y2 (en) 1978-10-20 1978-10-20 Ultrasonic flaw detection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978144461U JPS5826381Y2 (en) 1978-10-20 1978-10-20 Ultrasonic flaw detection equipment

Publications (2)

Publication Number Publication Date
JPS5560568U JPS5560568U (en) 1980-04-24
JPS5826381Y2 true JPS5826381Y2 (en) 1983-06-07

Family

ID=29123099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978144461U Expired JPS5826381Y2 (en) 1978-10-20 1978-10-20 Ultrasonic flaw detection equipment

Country Status (1)

Country Link
JP (1) JPS5826381Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211975A (en) * 1975-07-18 1977-01-29 Mitsubishi Heavy Ind Ltd Supersonic flaw detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211975A (en) * 1975-07-18 1977-01-29 Mitsubishi Heavy Ind Ltd Supersonic flaw detector

Also Published As

Publication number Publication date
JPS5560568U (en) 1980-04-24

Similar Documents

Publication Publication Date Title
US4435984A (en) Ultrasonic multiple-beam technique for detecting cracks in bimetallic or coarse-grained materials
Dixon et al. A laser–EMAT system for ultrasonic weld inspection
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
JPH0136584B2 (en)
US4760737A (en) Procedure for flaw detection in cast stainless steel
Kupperman et al. Ultrasonic NDE of cast stainless steel
JPS60235054A (en) Ultrasonic inspection method and device for bolt
JPS5826381Y2 (en) Ultrasonic flaw detection equipment
Salim et al. Visualization and modal analysis of guided waves from a defect in a pipe
KR101767422B1 (en) Seperable Ultrasonic Transducer with Enhanced Space Resolution
US4380929A (en) Method and apparatus for ultrasonic detection of near-surface discontinuities
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
US4253337A (en) Ultrasonic nondestructive testing method
JP3612849B2 (en) C-scan ultrasonic flaw detection method and apparatus
JP2002323481A (en) Ultrasonic flaw detection method and device
Chang et al. Development of non-contact air coupled ultrasonic testing system for reinforced concrete structure
KR970028545A (en) Hybrid transducer device
JPH07253414A (en) Method and apparatus for ultrasonic flaw detection
JP3298085B2 (en) Ultrasonic flaw detection method and device
SU1167493A1 (en) Method of ultrasonic inspection of articles
Edalati et al. Defects evaluation in lamb wave testing of thin plates
JPH0545346A (en) Ultrasonic probe
JPH07325070A (en) Ultrasonic method for measuring depth of defect
Baby et al. Sizing of cracks embedded in sub-cladding using the ultrasonic synthetic aperture focusing technique (SAFT)
JPS6066159A (en) Electronic scanning type transverse wave diagonal angle probe and non-destructive inspecting method using said probe