JPS582635A - Device for measuring water quality - Google Patents
Device for measuring water qualityInfo
- Publication number
- JPS582635A JPS582635A JP10090781A JP10090781A JPS582635A JP S582635 A JPS582635 A JP S582635A JP 10090781 A JP10090781 A JP 10090781A JP 10090781 A JP10090781 A JP 10090781A JP S582635 A JPS582635 A JP S582635A
- Authority
- JP
- Japan
- Prior art keywords
- water
- light
- test
- water quality
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 238000004062 sedimentation Methods 0.000 claims abstract description 24
- 238000012360 testing method Methods 0.000 claims description 30
- 238000005259 measurement Methods 0.000 claims description 10
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 239000004575 stone Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 4
- 238000007689 inspection Methods 0.000 abstract 1
- 239000010802 sludge Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 238000005375 photometry Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/04—Investigating sedimentation of particle suspensions
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は水処理等において使用される水質測定装置、
特に検水中の懸濁物の性状の測定および処理効果の予測
を可能にする水質測定装置に関するものである。[Detailed Description of the Invention] This invention relates to a water quality measuring device used in water treatment, etc.
In particular, the present invention relates to a water quality measuring device that makes it possible to measure the properties of suspended matter in sample water and predict treatment effects.
汚水の活性汚泥処理を行う場合などにおいて、濁度計、
汚泥濃度計、MLSS計または汚泥界面検知計として水
中の懸濁物の濃度を検出する装置が使用されている。こ
のような水質測定装置としては、検水を導入した検水管
に光を照射して受光部で透過光または散乱光を測光し、
水中の懸濁物の濃度を測定するものがある。従来、この
種の装置として、検水管にピストンを設け、検水管の壁
面を摺動させて、壁面の清掃を行うとともに、検水を導
入するようにしたものがあるが、いずれも検水を導入し
た当初の一時点における懸濁物濃度しか測定できなかっ
た。When performing activated sludge treatment of wastewater, turbidity meters,
Devices that detect the concentration of suspended matter in water are used as sludge concentration meters, MLSS meters, or sludge interface detectors. Such a water quality measuring device irradiates light onto a water test tube into which test water is introduced, and measures the transmitted light or scattered light at the light receiving part.
There are devices that measure the concentration of suspended matter in water. Conventionally, there is a device of this kind that has a piston installed in the water test tube, which slides on the wall of the water test tube to clean the wall and introduce test water, but in both cases, the test water is introduced. It was only possible to measure the concentration of suspended matter at one point in time when it was first introduced.
この発明は以上のような従来装置に改善を加え、ピスト
ンにより導入する検水のしはルを一定にし、かつ経時的
に測光して沈降速度分布を演算する装置を設けることに
より、懸濁物の性状の泪1]定カニ可能となり、これに
より処理効果の予測“可會しとなる水質測定装置を提供
することを目的としてい、乙。This invention improves the conventional device as described above, makes the flow of water introduced by the piston constant, and provides a device that measures light over time to calculate the sedimentation velocity distribution. The purpose of the present invention is to provide a water quality measuring device that enables constant measurement of the properties of the water, thereby making it possible to predict the treatment effect.
この発明は検水管と、この検水管に所定のレベルまで検
水を導入するピストンと、前記検水管に導入される検水
に乱流を形成する手段と、前言己検水管に光を照射する
光源と、この光源に対応して設けられ、かつ経時的に測
光する受光部と、この受光部からの測定信号により沈降
速度分布を演算する演算装置とを備えた水質測定装置で
ある。This invention includes a water test tube, a piston for introducing test water into the test water tube to a predetermined level, a means for forming turbulent flow in the test water introduced into the test water pipe, and a method for irradiating light onto the water test tube. This water quality measuring device includes a light source, a light receiving section that is provided corresponding to the light source and measures light over time, and an arithmetic device that calculates a sedimentation velocity distribution based on a measurement signal from the light receiving section.
以下、この発明を図面により説明する。第1図はこの発
明の一実施例による水質11111定装置を示す垂直断
面図である。図面において、1は円筒状に形成された本
体で、内壁1aの内*++に、スは−サ2をはさんで透
明ガラスからなる検水管6カ;取付ねじ4により取付け
られている。内壁iaKは同じ高さAに中心が位置する
ように貫通子15a、5bが設けられ、これらの貫通孔
5’a、5bを通して対向する位置に光源6および受光
部775;設けられてい乙。光源6としてはランプ、受
光部7としてはフォトセルなどが使用できる。Hereinafter, this invention will be explained with reference to the drawings. FIG. 1 is a vertical sectional view showing a water quality determination device according to an embodiment of the present invention. In the drawings, reference numeral 1 denotes a cylindrical main body, and 6 water test tubes made of transparent glass are attached to the *++ inner wall 1a with a spacer 2 in between; and mounting screws 4. Penetrators 15a and 5b are provided on the inner wall iaK so that their centers are located at the same height A, and a light source 6 and a light receiving portion 775 are provided at opposing positions through these through holes 5'a and 5b. A lamp can be used as the light source 6, and a photocell can be used as the light receiving section 7.
検水管乙には上部からピストン8が上下動可能に挿入さ
れており、その先端部周縁にワイパーシール9が形成さ
れ、検水管乙の内面を摺動してシールおよび清掃を行う
ようになっている。ピストン8の先端Bは上昇位置にお
いて、Aから一定距離りとなるように設定される。また
検水管6の下端は開放されて検水導入路10に連絡し、
この検水導入路10には乱流形成手段としてのガイドベ
ーン11が設けられている。ガイ、#、、l−711は
検水導入路10を通過する検水に旋回流に近い乱流を与
えるように短冊状板にひねりを与えたものを複数枚直径
方向に架設して構成されている。A piston 8 is inserted into the test tube O from the top so that it can move up and down, and a wiper seal 9 is formed around the tip of the piston, and the wiper seal 9 is designed to slide on the inner surface of the test tube O for sealing and cleaning. There is. The tip B of the piston 8 is set at a certain distance from A in the raised position. In addition, the lower end of the test water pipe 6 is opened and connected to the test water introduction path 10,
This test water introduction path 10 is provided with a guide vane 11 as a turbulence forming means. Guy, #, 1-711 is constructed by installing a plurality of twisted rectangular plates in the diametrical direction so as to give a turbulent flow similar to a swirling flow to the sample water passing through the sample water introduction path 10. ing.
受光部7は経時的に測光するように構成され、その測定
信号はA / D変換増幅装置12に与えられるように
接続されている。16は演算装置であって、A/D変換
変換増量装置12の信号およびクロック発生装置14か
らのクロック信号により沈降速度分布を演算するように
構成されている。The light receiving section 7 is configured to perform photometry over time, and is connected so that the measurement signal is given to an A/D conversion amplifier 12. Reference numeral 16 denotes a calculation device, which is configured to calculate the sedimentation velocity distribution based on the signal from the A/D conversion/increase device 12 and the clock signal from the clock generator 14.
15は光源6、A / D変換増幅装置12、演算装置
16、およびクロック発生装置14に給電する電源装置
である。Reference numeral 15 denotes a power supply device that supplies power to the light source 6, the A/D conversion amplifier device 12, the arithmetic device 16, and the clock generator 14.
以上のように構成された水質測定装置は、活性汚泥処理
装置等に連絡するサンプリングボックス等に本体1の下
端を挿入し、あるいは給泥配管等を下端に接続して水質
の測定を行う。測定に際して、ピストン8を検水管6の
下端(貫通孔5a、5bよりも下)まで下げると、検水
管6の内面は清掃され、付着物が除去される。次いでピ
ストン8を引上げると、検水はガイドベーン11を通っ
て乱流となり、懸濁物は均一に分散した状態で検水管3
内に導入される。このときピストン8の下端B6−j
Aより所定距離りの位置で停止する。The water quality measuring device configured as described above measures water quality by inserting the lower end of the main body 1 into a sampling box or the like connected to an activated sludge treatment device or the like, or by connecting a sludge supply pipe or the like to the lower end. During measurement, when the piston 8 is lowered to the lower end of the water test tube 6 (below the through holes 5a, 5b), the inner surface of the water test tube 6 is cleaned and deposits are removed. Next, when the piston 8 is pulled up, the sample water passes through the guide vane 11 and becomes a turbulent flow, and the suspended matter flows into the sample water pipe 3 in a uniformly dispersed state.
be introduced within. At this time, the lower end B6-j of the piston 8
It stops at a position a predetermined distance from A.
ピストン8が停止し、検水の吸引が終了した時点toに
おいて、初期の懸濁物濃度COを測定する。At the time point to when the piston 8 stops and suction of the sample water ends, the initial suspended solids concentration CO is measured.
濃度の測定は光源6から貫通孔5aを通して光が照射さ
れ、透過光または散乱光が貫通孔5bを通して受光部7
において測光され、その測定信号がA/D変換増幅装置
12においてA/D変換および増幅される。A/D変換
増幅装置12からの信号は演算装置16において、あら
かじめ作成された透光量と懸濁物濃度の関係を示す検量
線により懸濁物濃度が演算され、記憶される。このよう
にして検出される濃度は従来装置において検出されてい
た汚泥濃度等に対応する。To measure the concentration, light is irradiated from the light source 6 through the through hole 5a, and transmitted light or scattered light is transmitted through the through hole 5b to the light receiving section 7.
The measured signal is A/D converted and amplified in the A/D conversion amplifier 12. The signal from the A/D conversion amplifier 12 is used in the arithmetic unit 16 to calculate the concentration of suspended matter using a calibration curve prepared in advance showing the relationship between the amount of transmitted light and the concentration of suspended matter, and is stored. The concentration detected in this manner corresponds to the sludge concentration etc. detected in conventional devices.
つづいてクロック発生装置14からのクロック信号によ
り、所定の時間間隔で1. 、12を時点の懸濁物濃度
Ctを同様にして測定、演算し、L己憶する。この間ピ
ストン8は上方に固定されているので、検水管6内では
時間経過とともに懸濁物は沈降する。以上のCtの測定
は検水管己中の懸濁物の沈降がほぼ完了するまで実施さ
れる。Subsequently, the clock signal from the clock generator 14 causes 1. , 12 are measured and calculated in the same manner as the suspension concentration Ct at the time point, and L is stored in memory. During this time, the piston 8 is fixed upward, so that the suspended matter settles within the sample tube 6 over time. The above Ct measurement is carried out until the sedimentation of the suspended matter in the sample tube is almost completed.
以上のような測定、演算と並行して、あるいはその終了
後に、演算装置16において、沈降速度(v=L/l
)および濃度比(Ct / Co )の演算が行われ、
第2図の曲線aに示す累積通過速度の演算が行われ、記
憶される。第2図の曲線aは累積通過速度曲線で横軸に
v (m / h )すなわち沈降速度をとり、縦軸に
濃度比ct / Coをとっており、この曲線aは沈降
速度に対する累積通過量を表わしている。そして曲線a
から、単位V量ごとのCL / Coの差から曲線aの
変化量を演算して、第2図の曲線すに示す沈降速度分布
が演算される。In parallel with or after the above measurements and calculations, the calculation device 16 calculates the sedimentation velocity (v=L/l
) and concentration ratio (Ct/Co) are calculated,
The cumulative passing speed shown by curve a in FIG. 2 is calculated and stored. Curve a in Figure 2 is a cumulative passing velocity curve, with the horizontal axis representing v (m/h), or sedimentation velocity, and the vertical axis representing the concentration ratio ct/Co. It represents. and curve a
From this, the amount of change in curve a is calculated from the difference in CL/Co for each unit V amount, and the sedimentation velocity distribution shown in the curve in FIG. 2 is calculated.
第2図の曲ibは沈降速度分布曲線であり、横軸に沈降
速度V、縦軸に重量比をとり、沈降速度■に対応する懸
濁物の重量比を示している。Curve ib in FIG. 2 is a sedimentation velocity distribution curve, where the horizontal axis is the sedimentation velocity V and the vertical axis is the weight ratio, showing the weight ratio of the suspended material corresponding to the sedimentation velocity (■).
なお以上の演算の経過において、説明を明確にするため
、曲線a、bを示したが、曲線は現実に作成する必要に
なく、単にデータとして処理されればよい。また沈降速
度分布全演算するために累積通過速度を演算する場合に
ついて説明したが、他の数値の演算を経由して沈降速度
分布を算出してもよい。壕だ累積通過速度を演算する場
合でも、各Ctの現実の濃度を算出する必要はなく、C
t/C。In the process of the above calculations, curves a and b are shown for clarity of explanation, but the curves do not need to be actually created and may simply be processed as data. Furthermore, although a case has been described in which the cumulative passing velocity is calculated in order to calculate the entire sedimentation velocity distribution, the sedimentation velocity distribution may be calculated through calculation of other numerical values. Even when calculating the cumulative passage speed through a trench, there is no need to calculate the actual concentration of each Ct.
t/C.
の相対的な増減比を算出してもよい。The relative increase/decrease ratio may be calculated.
以上のような操作はピストン8のストロークをリミット
スイッチ(図示省略)で制御し、クロック発生装置14
のt信号のタイミングを開始することにより行われる。The above operations are performed by controlling the stroke of the piston 8 with a limit switch (not shown) and by controlling the clock generator 14.
This is done by starting the timing of the t signal.
以上によって得られる沈降速度分布は検水中のの沈降速
度ごとの分布割合を示している。従って検水中の懸濁物
の沈降しやすいもの、沈降しにくいものの比率が解り、
沈降分離装置における面積負荷を演算し、また処理量と
の関係から処理水中の懸濁物濃度を演算によシ予測する
ことができる。The sedimentation velocity distribution obtained from the above shows the distribution ratio for each sedimentation velocity in the water being tested. Therefore, the ratio of suspended matter in the sample water that settles easily and that that does not settle easily can be determined.
The areal load in the sedimentation separator can be calculated, and the concentration of suspended solids in the treated water can be predicted from the relationship with the throughput.
このため、このような演算結果により、沈降分離装置に
おける面積負荷を変更して、被処理水の水質に適合した
処理を行うことができる。Therefore, based on such a calculation result, it is possible to change the area load in the sedimentation separator to perform treatment that matches the quality of the water to be treated.
活性汚泥処理等の水処理において、従来は単に汚泥等の
検水の懸濁物濃度を検出することにより。In water treatment such as activated sludge treatment, conventional methods simply detect the concentration of suspended matter such as sludge in sample water.
フィードバック制御をしていたが、このような制御では
適正な処理を行うことはできない。これに対して本発明
の水質測定装置では沈降速度分布が測定できるから、単
に懸濁物の量だけでなく、沈降性に関する性状が測定で
きることになり、このような測定結果によシ処理結果を
予測し、これによりその性状に合った条件を設定して適
正な処理を行うことができ、フィードフォワード制御に
より処理効率を高めることができる。Feedback control was used, but proper processing cannot be performed with such control. On the other hand, since the water quality measuring device of the present invention can measure the sedimentation velocity distribution, it is possible to measure not only the amount of suspended matter but also the properties related to sedimentation, and the results of treatment can be determined based on such measurement results. By making predictions, it is possible to set conditions that match the properties of the material and perform appropriate processing, and feedforward control can improve processing efficiency.
なお1以上の実施例は水中投入型の構造としたため、サ
ンプリングボックスに投入して使用するようになってい
るが、給泥管等に直接接続できるようにジヨイントを設
けてもよく、また直接活性汚泥槽等に投入して使用でき
るように、弁を有する投入管を設けてもよい。また乱流
を形成する手段としてはガイドに−711に限定されず
、スクリュー等の手段でもよく、また弁を設けることに
よってその機能を行わせることもできる。さらに本発明
は活性汚泥処理装置における汚泥に限らず、他の検水の
水質測定にも適用可能である。Note that one or more embodiments have a submerged structure, so they are used by putting them into a sampling box, but a joint may be provided so that they can be directly connected to a slurry supply pipe, etc. A charging pipe with a valve may be provided so that it can be used by charging it into a sludge tank or the like. Furthermore, the means for creating turbulent flow is not limited to the -711 guide, and means such as a screw may also be used, and a valve may be provided to perform this function. Furthermore, the present invention is applicable not only to the measurement of sludge in activated sludge treatment equipment but also to the measurement of water quality of other samples.
以上のとおり1本発明によれば、ピストンによる検水の
導入レベルを一定にし、かつ経時的に測光して沈降速度
分布を演算するようにしたので、検水中の懸濁物の沈降
性等の性状が測定でき、こノ1vこより処理効果が予測
でき、このため被処理水の性状に合った処理をフィード
フォワーV制御により行うことができる。このほか検水
の初期および経時的な濃度も測定可能であり、多目的の
用途に使用可能である。As described above, according to the present invention, the introduction level of the test water by the piston is kept constant, and the settling velocity distribution is calculated by photometry over time, so that the sedimentation rate of suspended matter in the test water can be calculated. The properties can be measured and the treatment effect can be predicted from this 1V, so that the treatment that matches the properties of the water to be treated can be performed by feedforward V control. In addition, it is also possible to measure the initial concentration and the concentration over time of the sample water, and it can be used for a variety of purposes.
第1図はこの発明の一実施例を示す垂直断面図、第2図
は累積通過速度曲線および沈降速度分布曲線を示すグラ
フである。
3・・検水管、6 光源、7 受光部、8・ピストン、
9 、ワイパーシール、1トガイドベーン代理人 弁理
士 柳 原 成FIG. 1 is a vertical sectional view showing an embodiment of the present invention, and FIG. 2 is a graph showing a cumulative passing velocity curve and a sedimentation velocity distribution curve. 3. Water test tube, 6. Light source, 7. Light receiving section, 8. Piston,
9.Wiper seal, 1.To guide vane Agent: Sei Yanagihara, patent attorney
Claims (1)
導入するピストンと、前記検水管に導入される検水に乱
流を形成する手段と、前記検水管に光を照射する光源と
、この光源に対応して設けられ、かつ経時的に測光する
受光部と、この受光部からの測定信号により沈降速度分
布を演算する演算装置とを備えた水質測定装置 (2)乱流を形成する手段はガイドベーンである特許請
求の範囲第1項記載の水質測定装置+3+ q’ストン
は検水管の内壁に沿って摺動し、ワイ・S−機能を有す
る特許請求の範囲第1項捷たは第2項記載の水質測定装
置 1.4)演算装置は累積通過速度曲線から沈降速度分布
を演算するものである特許請求の範囲第1項ないし第6
項のいずれかに記載の水質測定装置[Scope of Claims] (1) A water test tube, a piston for introducing test water into the test water pipe to a predetermined level, a means for forming turbulent flow in the test water introduced into the test water pipe, and the test water pipe. A water quality measuring device comprising: a light source that irradiates light; a light receiving section that is provided corresponding to the light source and measures light over time; and a calculation device that calculates sedimentation velocity distribution based on measurement signals from the light receiving section. (2) The water quality measuring device according to claim 1, in which the means for forming a turbulent flow is a guide vane.The water quality measuring device +3+ q'stone slides along the inner wall of the water test tube, and the patent has a Y-S- function. 1.4) The calculation device calculates the sedimentation velocity distribution from the cumulative passage velocity curve.Claims 1 to 6
Water quality measuring device described in any of the paragraphs
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10090781A JPS582635A (en) | 1981-06-29 | 1981-06-29 | Device for measuring water quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10090781A JPS582635A (en) | 1981-06-29 | 1981-06-29 | Device for measuring water quality |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS582635A true JPS582635A (en) | 1983-01-08 |
Family
ID=14286404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10090781A Pending JPS582635A (en) | 1981-06-29 | 1981-06-29 | Device for measuring water quality |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS582635A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102137A (en) * | 1985-10-30 | 1987-05-12 | Mitsubishi Nuclear Fuel Co Ltd | Instrument for measuring settling speed of slurry |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5214074A (en) * | 1975-06-24 | 1977-02-02 | Agency Of Ind Science & Technol | Method and device to automatically measure the indicator of amount of activated sludge |
-
1981
- 1981-06-29 JP JP10090781A patent/JPS582635A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5214074A (en) * | 1975-06-24 | 1977-02-02 | Agency Of Ind Science & Technol | Method and device to automatically measure the indicator of amount of activated sludge |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102137A (en) * | 1985-10-30 | 1987-05-12 | Mitsubishi Nuclear Fuel Co Ltd | Instrument for measuring settling speed of slurry |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207147973U (en) | Heavy metal in water enrichment and measurement apparatus based on LIBS | |
CN102798585B (en) | Large-size temperature-controllable automatic stirring sedimentation compaction test device and test method thereof | |
CN104251900B (en) | A kind of slurries quality measurement supervising device and measuring and monitoring method | |
CN111811977B (en) | Runoff sediment content and flow measurement device and measurement method | |
US3812966A (en) | Settling rate tester | |
Sato et al. | Laboratory study on sand suspension due to breaking waves | |
CN107574786A (en) | Xenobiotic pollutants is simulated to sediment incipient motion and the experimental provision and method of settlement influence | |
US5723093A (en) | Apparatus for the continuous sampling and analysis of a liquid effluent | |
JPS582635A (en) | Device for measuring water quality | |
JP5488632B2 (en) | X-ray fluorescence analyzer | |
Guymer et al. | Longitudinal dispersion due to surcharged manhole | |
CN109596181A (en) | On-line continuous Weighing type ore pulp multiparameter measurement and control device and method | |
CN201072407Y (en) | On-line detecting instrument for minute oil-hydrocarbon in water | |
CN201322729Y (en) | Automatically controlled mash grade analyzer | |
CN114323120B (en) | Sludge discharge amount measuring method, control method, treatment system, equipment and medium | |
CN207619916U (en) | Simulate experimental provision of the xenobiotic pollutants to sediment incipient motion and settlement influence | |
CN215375115U (en) | System for online measurement of ozone generation rate and ozone generation sensitivity | |
CN211528143U (en) | Coal slime flocculation sedimentation test on-line tester | |
Black | Procedures for sampling and measuring industrial wastes | |
CN208536934U (en) | A kind of drainage type ultrasonic instrument | |
TWI788958B (en) | Method for measuring turbidity of liquid | |
RU2132049C1 (en) | Water analyzer | |
CN116559250B (en) | Online detection device and method for chloride ions of desulfurization slurry of thermal power plant | |
RU2201290C1 (en) | Device for complex automatic monitoring of parameters of fluid technological medium flow | |
SE446033B (en) | PROCEDURE FOR LEAK SHOCKING ON A WIRE NET |