JPS5826240B2 - Goseijyuushisen Ioriyoshitaspicano Shindoban - Google Patents

Goseijyuushisen Ioriyoshitaspicano Shindoban

Info

Publication number
JPS5826240B2
JPS5826240B2 JP2736473A JP2736473A JPS5826240B2 JP S5826240 B2 JPS5826240 B2 JP S5826240B2 JP 2736473 A JP2736473 A JP 2736473A JP 2736473 A JP2736473 A JP 2736473A JP S5826240 B2 JPS5826240 B2 JP S5826240B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
diaphragm
polypropylene
speaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2736473A
Other languages
Japanese (ja)
Other versions
JPS49115538A (en
Inventor
英夫 南条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gakki Co Ltd
Original Assignee
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gakki Co Ltd filed Critical Nippon Gakki Co Ltd
Priority to JP2736473A priority Critical patent/JPS5826240B2/en
Publication of JPS49115538A publication Critical patent/JPS49115538A/ja
Publication of JPS5826240B2 publication Critical patent/JPS5826240B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】 この発明はスピーカの振動板に係り、更に詳述すればポ
リプロビレ/繊維を利用したスピーカの振動板に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a speaker diaphragm, and more specifically, to a speaker diaphragm using polypropylene/fiber.

スピーカの振動板としては、質量が小さくかつヤング率
が大きいこと(すなわち比ヤング率が大きいこと)、お
よび内部損失が適度に大きいことが要求され、さらには
曲げ剛性も大きい方がより良好な振動特性を得ることが
できる。
A speaker diaphragm is required to have a small mass, a large Young's modulus (that is, a large specific Young's modulus), and a moderately large internal loss.Furthermore, the larger the bending rigidity, the better the vibration. characteristics can be obtained.

従来から多用されているスピーカ用振動板では材質が天
然繊維、例えばマツ、麻などの植物繊維とか、あるいは
羊毛などの動物性繊維であるが、これら天然繊維等をコ
ーン紙に成形する場合には、例えば、繊維抄紙後ある程
度水分を含んでいる状態で加熱金型によりプレス成形と
同時に乾燥させてしまういわゆるプレス紙コーンと、抄
紙脱水後プレスしないでそのまま乾燥成形させたいわゆ
るノンプレス紙コーン等があり、これらの各方法により
形成されたコーン紙のヤング率E1比ヤング率E/p、
内部損失tanδは大体表1のようになる。
The materials used in conventional speaker diaphragms are natural fibers, such as plant fibers such as pine and hemp, or animal fibers such as wool, but when forming these natural fibers into cone paper, For example, there are so-called pressed paper cones, which are dried at the same time as press-forming with a heated mold while still containing some moisture after fiber paper is made, and so-called non-press paper cones, which are dry-formed without being pressed after paper dehydration. Young's modulus E1 ratio Young's modulus E/p of cone paper formed by each of these methods,
The internal loss tan δ is approximately as shown in Table 1.

これから明らかなように、プレス紙コーンでは比ヤング
率E/pは比較的大きいが内部損失tanδが小さく、
逆にノンプレス紙コーンでは内部損失tanδは大きい
が比ヤング率E/pは小さい。
As is clear from this, the specific Young's modulus E/p is relatively large in the pressed paper cone, but the internal loss tan δ is small;
Conversely, in the case of a non-pressed paper cone, the internal loss tan δ is large, but the specific Young's modulus E/p is small.

したがって、これら天然繊維のみを用いた場合にはいず
れの成形法によっても、大きい比ヤング率と大きい内部
損失の双方を実現させることは、相当困難であり、最終
的に得られる特性値には限界があり、所望の良好な周波
数特性を得ることは、極めて困難であった。
Therefore, when only these natural fibers are used, it is quite difficult to achieve both a large specific Young's modulus and a large internal loss using any molding method, and there is a limit to the final characteristic values that can be obtained. Therefore, it has been extremely difficult to obtain desired good frequency characteristics.

第1図に示す特性は、プレス紙コーンの一例、すなわち
天然繊維NUKP(針葉樹末ざらしクラフトパルプ)6
0%、カポック40%を混練したものを0.5kg/c
wtのプレス圧で加圧し板状としたものを素材とし直径
20crrLのウーファ−の振動板として用いたもので
、この場合には、2000Hz以上の高域において山A
谷B間のレベル差の絶対値が25dBと大きく、このた
め再生されるスピーカ音が歪みやその他の諸種の支障を
生ずる原因となって、例えば聴いた感じとして騒がしい
音、疲れ易い音等の音質、音色を呈する等好ましくない
結果となる。
The characteristics shown in FIG.
0.5kg/c of kneaded 0% and 40% kapok
The material is made of a plate-shaped material that has been pressed with a press pressure of
The absolute value of the level difference between valleys B is as large as 25 dB, which causes distortion and other problems in the reproduced speaker sound, resulting in poor sound quality such as noisy or tiring sound. , resulting in unfavorable results such as a timbre.

また内部損失tanδの点からみても第2図の点線曲線
で示すようにかなり小さい値であって、共振鋭度Qが大
きくなっているため上記各種の聴感上のへい害を生じる
一因となっていた。
Also, from the point of view of the internal loss tan δ, as shown by the dotted line curve in Figure 2, the value is quite small, and the resonance sharpness Q is large, which is one of the causes of the various auditory disturbances mentioned above. was.

なお、第3図にスピーカ用振動板に用いる天然繊維の一
例としてマニラ麻の顕微鏡写真を示す。
Incidentally, FIG. 3 shows a microscopic photograph of Manila hemp as an example of natural fiber used in a speaker diaphragm.

また、スピーカの振動板を従来の合成樹脂繊維(例えば
、ポリエチレン、ポリエチレンテレフタレート、ポリプ
ロピレン等)のみで構成した場合には、これら合成樹脂
繊維の断面が円形もしくはそれに近く、微視的に見れば
軸方向に真直であり、かつ表面が滑らかである等の性質
を持っているため、総合的に見れば、繊維間の絡み合い
が極めて少なく、従って曲げ剛さD(ヤング率をE、断
面二次モーメントをIとするとD=E −Iである。
In addition, when the diaphragm of a speaker is constructed only from conventional synthetic resin fibers (for example, polyethylene, polyethylene terephthalate, polypropylene, etc.), the cross section of these synthetic resin fibers is circular or close to it, and when viewed microscopically, it is axial. Because it has properties such as being straight in the direction and having a smooth surface, overall there is very little entanglement between the fibers, so the bending stiffness D (Young's modulus is E, the moment of inertia of area is Letting I, D=E −I.

)の強い振動板材ができず、この結果、入力信号周波数
に追従した運動が行なえず高調波歪が発生しやすく、ま
た分割振動を起す周波数領域が下がってくる等の原因と
なっている。
), and as a result, it is not possible to perform motion that follows the input signal frequency, causing harmonic distortion to occur easily, and the frequency range in which split vibration occurs to be lowered.

さらにまた、前述したように繊維の表面が滑らかなので
、繊維間の摩擦抵抗が小さくなって分割振動領域におい
ては周波数特性上の山谷のレベル差が顕著になる。
Furthermore, as mentioned above, since the surface of the fibers is smooth, the frictional resistance between the fibers is small, and the level difference between peaks and troughs in the frequency characteristics becomes noticeable in the divided vibration region.

しかしながら、これら合成樹脂繊維は、一般的にみて充
分満足できる大きさの比ヤング率E/と内部損失tan
δを有しているため、上述した天然繊維とうまく組み合
わせて用いれば、プレスコーン、ノンプレスコーンのい
ずれとしても、天然繊維のみのコーンが有している相反
する特性値をうまく補償し得て、特性上充分満足し得る
比ヤング率E/p、内部損失tanδを具備するスピー
カの振動板を実現することが期待できる。
However, these synthetic resin fibers generally have a sufficiently satisfactory specific Young's modulus E/ and internal loss tan.
Since it has δ, if it is used in combination with the natural fibers mentioned above, it can successfully compensate for the conflicting characteristic values of a corn made only of natural fibers, whether it is a pressed corn or a non-pressed corn. It is expected that a speaker diaphragm having a specific Young's modulus E/p and an internal loss tan δ that are sufficiently satisfactory in terms of characteristics can be realized.

ただし、合成樹脂繊維を単純に天然繊維と混合抄造した
としても、次のような不都合があり、良好な特性を有す
るスピーカの振動板は得られない。
However, even if synthetic resin fibers are simply mixed with natural fibers to form a paper, there are the following disadvantages, and a speaker diaphragm with good characteristics cannot be obtained.

すなわち、天然繊維の場合には、通常の加工工程中にあ
る程度は表面の分岐化がなされているが、合成樹脂繊維
は元来、表面が極めて滑らかであり、かつその断面も円
形もしくはそれに近い形状であり、表面上には分岐枝繊
維片はほとんど存在しない。
In other words, in the case of natural fibers, the surface is branched to some extent during the normal processing process, but synthetic resin fibers originally have extremely smooth surfaces, and their cross sections are circular or close to it. , and there are almost no branched fiber pieces on the surface.

したがって、合成樹脂繊維の表面積は小さく、天然繊維
との結合面積も小さい。
Therefore, the surface area of synthetic resin fibers is small, and the bonding area with natural fibers is also small.

しかも肉繊維が極めて接近した状態におかれることもな
く、これらの結合力は弱く振動板全体としても弱く、そ
れほど良好な比ヤング率E/p、内部損失tanδを実
現し得ない。
Furthermore, the meat fibers are not placed in a very close state, and the bonding force between them is weak, and the diaphragm as a whole is also weak, and it is not possible to realize a very good specific Young's modulus E/p and internal loss tan δ.

この発明は、前述した天然繊維、合成樹脂繊維のみ、あ
るいはこれらの単なる混合により作られた振動板が有し
ていた従来の欠点を解決し、かつその比ヤング率E/p
、内部損失tanδおよび曲げ剛性りがより良好なスピ
ーカの振動板を提供するものであり、その特徴とすると
ころは、断面形状および表面粗さが不規則である主繊維
の表面に多数の分岐枝繊維が形成されたポリプロピレン
繊維と、天然繊維とを混合抄造したことにある。
This invention solves the drawbacks of the conventional diaphragms made of only natural fibers, synthetic resin fibers, or a simple mixture of these, and improves the specific Young's modulus E/p.
, provides a speaker diaphragm with better internal loss tan δ and bending rigidity, and is characterized by a large number of branched branches on the surface of the main fiber, which has an irregular cross-sectional shape and surface roughness. The fiber is made by mixing polypropylene fiber and natural fiber.

以下、この発明の一実施例に基づいて詳細に説明する。Hereinafter, a detailed description will be given based on one embodiment of the present invention.

この発明のスピーカの振動板は、合成樹脂繊維としてポ
リプロピレンを素材とし、このポリプロピレン樹脂に伸
張力を加え、結晶方向を揃えて薄膜状となし、この薄膜
状に形成されたポリプロピレン樹脂膜を、不規則に粗さ
れた直線状の刃で削り取ることにより、主繊維の断面形
状および表面粗さが不規則で、かつこの主繊維の表面に
多数の分岐枝状繊維片が形成され、さらにはその結晶が
軸方向に真直でないポリプロピレン繊維を形成し、この
ポリプロピレン繊維に、天然繊維の一つであるNUKP
を、例えば NUKP 60% ポリプロピレン 40% の割合で混練し、これにポリビニールアルコールあるい
は薄い縮合樹脂液等粘着性のある水溶性物質を補助的に
使用して抄造し、0.5kg /cr?を程度のプレス
圧で加圧しプレスコーンの振動板を作る。
The speaker diaphragm of the present invention is made of polypropylene as a synthetic resin fiber. A stretching force is applied to this polypropylene resin to align the crystal directions to form a thin film. By scraping with a regularly roughened linear blade, the cross-sectional shape and surface roughness of the main fiber are irregular, and many branched fiber pieces are formed on the surface of the main fiber, and the crystals are forms polypropylene fibers that are not straight in the axial direction, and this polypropylene fiber is coated with NUKP, which is a natural fiber.
For example, 60% NUKP and 40% polypropylene are kneaded, and then a sticky water-soluble substance such as polyvinyl alcohol or a thin condensed resin liquid is used as an auxiliary to form a paper sheet of 0.5 kg/cr? Press with a certain amount of press pressure to make a press cone diaphragm.

第4図は、この発明の振動板に用いるポリプロビレ/繊
維を示すもので、図中3a〜3cは主繊維2に形成され
た分岐枝状繊維片である。
FIG. 4 shows polypropylene/fibers used in the diaphragm of the present invention, and 3a to 3c in the figure are branched fiber pieces formed on the main fiber 2.

このように、合成樹脂繊維としてポリプロビレ/繊維を
用い、かつこのポリプロピレン繊維に上述したような加
工工程を施したうえで、天然繊維と混合抄造することに
より、次のようなスピーカの振動板としての効果が得ら
れる。
In this way, by using polypropylene fibers as synthetic resin fibers, subjecting the polypropylene fibers to the processing steps described above, and then mixing them with natural fibers, the following types of speaker diaphragms can be produced. Effects can be obtained.

まず、ポリプロピレンは、他の一般的な合成樹脂、例え
ば表2に示したポリエチレン、ポリエチレンテレフタレ
ート等と比較すると、比ヤング率E/pは1.65 X
1010i/ 8ee2程度と充分な値であり、内部
損失tanδは0.091と極めて大きく、いずれも良
好である。
First, polypropylene has a specific Young's modulus E/p of 1.65
This is a sufficient value of about 1010i/8ee2, and the internal loss tan δ is extremely large at 0.091, both of which are good.

またその密度もは※※とんどの合成樹脂の中で最も小さ
くかつ延伸性に極めて優れているので、天然繊維と混合
抄造して得られる振動板全体の比ヤング率E/2、内部
損失tanδ も良好になるとともに、繊維の加工性も
良好となる。
In addition, its density is the smallest among most synthetic resins and has excellent stretchability, so the specific Young's modulus of the entire diaphragm obtained by mixing it with natural fibers, E/2, and internal loss tanδ. In addition, the processability of the fibers also improves.

また、このポリプロビレ/繊維は、その主繊維の断面形
状および表面粗さを不規則になし、かつこの主繊維の表
面上に多数の分岐枝状繊維片を形成したので、ポリプロ
ピレン繊維の見かげ上の体積を大きく構成でき天然繊維
との結合面積が増大し、しかも両繊維を極めて接近した
状態において絡み合わせることができ両繊維の結合を強
固になし振動板全体としても比ヤング率E/p等を向上
させることができるし、またこのように作られた振動板
全体は、低密度で嵩高にできるので、いいかえれば同じ
質量の振動板を得る場合にはその振動板の厚さtを大き
くし得るので、この振動板の厚さtの3乗に比例する断
面2次モーメン)I(形状に基因し、その形状の強度を
決定する要素の1つ)と、ヤング率Eとの積であられさ
れるところの曲げ剛性りも当然大きくすることができ、
もってこのような振動板は分割振動が生じにくくなり、
高い周波数領域まで良好なピストン運動を行なわせ得る
ことになる。
In addition, this polypropylene/fiber has an irregular cross-sectional shape and surface roughness of its main fiber, and a large number of branched fiber pieces are formed on the surface of the main fiber, so that the appearance of polypropylene fiber is The volume of the diaphragm can be increased, the bonding area with natural fibers can be increased, and both fibers can be intertwined in a very close state, making the bond between both fibers strong and improving the specific Young's modulus, E/p, etc. of the diaphragm as a whole. In addition, the entire diaphragm made in this way can be made bulky with low density, so in other words, to obtain a diaphragm with the same mass, the thickness t of the diaphragm must be increased. Therefore, it is the product of I (the second moment of area, which is proportional to the cube of the thickness t of the diaphragm) (which is based on the shape and is one of the factors that determines the strength of that shape), and Young's modulus E. Of course, the bending stiffness can also be increased,
As a result, such a diaphragm is less likely to cause split vibration,
Good piston movement can be achieved up to a high frequency range.

そして、このようにして形成されたスピーカの振動板の
特性を実測してみると、まず、内部損失tanδについ
ては、第2図に実線曲線で示すように、従来(同図中に
点線曲線で示す)に比較して大きくなっており、ダンピ
ング特性が良好となっていることがわかる。
When we actually measured the characteristics of the diaphragm of the speaker formed in this way, we found that the internal loss tan δ was as shown by the solid line curve in Figure 2, compared to the conventional one (the dotted line curve in the figure). It can be seen that the damping characteristics are better than those shown in Figure 1).

これは、ポリプロピレン繊維自体の内部損失tanδが
前述したように0.091と極めて大きく、かつこのポ
リプロビレ/繊維の主繊維2に形成された分岐枝状繊維
片3a〜3cにより繊維間の絡み合いが密になり繊維間
摩擦抵抗が大きくなることに基因する。
This is because the internal loss tan δ of the polypropylene fiber itself is extremely large at 0.091 as mentioned above, and the entanglement between the fibers is dense due to the branched fiber pieces 3a to 3c formed in the main fiber 2 of this polypropylene/fiber. This is due to the fact that the frictional resistance between fibers increases.

次に、周波数特性については、第5図に示すように従来
(第1図に示す)に比較してピストン運動の周波数範囲
が拡がっており、山谷間のレベルの極端な変化は使用帯
域内には現われなくなっている。
Next, regarding the frequency characteristics, as shown in Figure 5, the frequency range of the piston movement has expanded compared to the conventional one (shown in Figure 1), and extreme changes in the level between peaks and valleys are within the usage band. no longer appears.

これは、上述したように内部損失tanδが適度に増加
してダンピング特性が向上し、かつ振動板自体の曲げ剛
性りが大きくなったため、振動板全体として分割振動が
生じにくくなったことに基因する。
This is because, as mentioned above, the internal loss tan δ has increased moderately, improving the damping characteristics, and the bending rigidity of the diaphragm itself has increased, making it difficult for the diaphragm as a whole to cause split vibration. .

また、実験によればこの発明の振動板は引張強度が大き
いため振動板紙(コーン紙)破裂強度が大きく大入力に
耐えられると云う優れた特性も有している。
Further, according to experiments, the diaphragm of the present invention has excellent properties such as high tensile strength, high diaphragm paper (cone paper) bursting strength, and the ability to withstand large inputs.

なお、上述した実施例においては、ポリプロピレン繊維
の主繊維の断面形状および表面粗さを不規則とし、かつ
この主繊維の表面上に多数の分岐枝状繊維片を形成する
ために、伸張力を加えて結晶方向を揃えた薄膜状のポリ
プロピレン繊維を、不規則に粗された直線状の刃で削り
取ったものを示したが、これとは別に、一方向に伸張し
たポリプロピレンフィルムを伸張方向に対して直角に切
断して帯状物となしたものを集めて、さらに機械的に長
時間もみほぐすことによってもその表面上が機械的摩擦
あるいは摩耗で不規則化され、かつ分岐枝状繊維片も形
成されてくるので同様の効果を得ることができる。
In addition, in the above-mentioned example, in order to make the cross-sectional shape and surface roughness of the main fiber of the polypropylene fiber irregular, and to form a large number of branched fiber pieces on the surface of the main fiber, a stretching force was applied. In addition, we have shown a thin film of polypropylene fibers with the crystal orientation aligned, scraped off with an irregularly roughened linear blade. By collecting the strips cut at right angles and then mechanically kneading them for a long time, the surface becomes irregular due to mechanical friction or abrasion, and branched fiber pieces are also formed. The same effect can be obtained.

以上述べたようにこの発明のスピーカの振動板は、断面
形状および表面粗さが不規則である主繊維の表面に多数
の分岐枝繊維が形成されたポリプロピレン繊維と、天然
繊維とを混合抄造したので、比ヤング率E/pが充分な
大きさを有し内部損失tanδ も大きく、かつ曲げ剛
性も大きいスピーカの振動板を実現でき、ダンピング特
性およびピストン運動の周波数範囲が高域側まで拡がっ
た良好なスピーカ振動板となし得るとともに、さらには
引張力も増し、破裂強度が大きくなり大入力レベルに耐
えられ、音色音質の良いスピーカ振動板が得られる効果
を有する。
As described above, the speaker diaphragm of the present invention is made by mixing polypropylene fibers, in which a large number of branched fibers are formed on the surface of a main fiber with an irregular cross-sectional shape and surface roughness, and natural fibers. Therefore, it was possible to create a speaker diaphragm with a sufficiently large specific Young's modulus E/p, a large internal loss tanδ, and a large bending rigidity, and the damping characteristics and frequency range of piston motion were expanded to the high frequency side. Not only can it be made into a good speaker diaphragm, but it also has the effect of increasing tensile strength, increasing bursting strength, being able to withstand large input levels, and obtaining a speaker diaphragm with good tone quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の天然繊維のみを主体としたスピーカ振動
板を用いたスピーカの特性曲線図、第2図は従来および
この発明によるスピーカの振動板の内部損失tanδの
周波数特性図、第3図は天然繊維の一例を示す顕微鏡写
真図、第4図はこの発明に用いられるポリプロビレ/繊
維を示す顕微鏡写真図、第5図はこの発明によるスピー
カの振動板を用いたスピーカの特性曲線図である。 1・・・・・・天然繊維、2・・・・・・ポリプロピレ
ン繊維の主繊維、3a〜3c・・・・・・ポリプロピレ
ン繊維の分岐枝状繊維片。
Fig. 1 is a characteristic curve diagram of a speaker using a conventional speaker diaphragm made mainly of natural fibers, Fig. 2 is a frequency characteristic diagram of internal loss tan δ of the diaphragm of a conventional speaker and a speaker according to the present invention, and Fig. 3 4 is a microscopic photograph showing an example of natural fiber, FIG. 4 is a microscopic photograph showing polypropylene/fiber used in the present invention, and FIG. 5 is a characteristic curve diagram of a speaker using the speaker diaphragm according to the present invention. . 1... Natural fibers, 2... Main fibers of polypropylene fibers, 3a to 3c... Branched fiber pieces of polypropylene fibers.

Claims (1)

【特許請求の範囲】 1 断面形状および表面粗さが不規則である主繊維の表
面に多数の分岐枝繊維が形成されたポリプロピレン繊維
と、天然繊維とを混合抄造したことを特徴とするスピー
カの振動板。 ※
[Claims] 1. A speaker characterized in that a polypropylene fiber having an irregular cross-sectional shape and surface roughness, in which a large number of branched fibers are formed on the surface of the main fiber, and a natural fiber are mixed and made. diaphragm. *
JP2736473A 1973-03-07 1973-03-07 Goseijyuushisen Ioriyoshitaspicano Shindoban Expired JPS5826240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2736473A JPS5826240B2 (en) 1973-03-07 1973-03-07 Goseijyuushisen Ioriyoshitaspicano Shindoban

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2736473A JPS5826240B2 (en) 1973-03-07 1973-03-07 Goseijyuushisen Ioriyoshitaspicano Shindoban

Publications (2)

Publication Number Publication Date
JPS49115538A JPS49115538A (en) 1974-11-05
JPS5826240B2 true JPS5826240B2 (en) 1983-06-01

Family

ID=12218984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2736473A Expired JPS5826240B2 (en) 1973-03-07 1973-03-07 Goseijyuushisen Ioriyoshitaspicano Shindoban

Country Status (1)

Country Link
JP (1) JPS5826240B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657394A (en) * 1979-10-17 1981-05-19 Pioneer Electronic Corp Diaphragm for acoustic apparatus

Also Published As

Publication number Publication date
JPS49115538A (en) 1974-11-05

Similar Documents

Publication Publication Date Title
US3935924A (en) Vibratory material of paper pulp and carbon fibers
GB2037122A (en) Speaker diaphragm and method of preparation of the same
EP1450580B1 (en) Manufacturing methods of Speaker Diaphragms
US8428283B2 (en) Manufacturing method of paper making part for loudspeaker, paper making part for loudspeaker, diaphragm for loudspeaker, sub cone for loudspeaker, dust cap for loudspeaker and loudspeaker
JPS5826240B2 (en) Goseijyuushisen Ioriyoshitaspicano Shindoban
US4026384A (en) Reconstituted mica acoustic diaphragm
JPH0410800A (en) Diaphragm for electroacoustic transducer
US5581053A (en) Diaphragm of electroacoustic transducer and method of manufacturing the same
JP3606492B2 (en) Diaphragm for electroacoustic transducer
JP3882766B2 (en) Manufacturing method of speaker diaphragm
JP3942056B2 (en) Method for manufacturing diaphragm for electroacoustic transducer
JPS60130299A (en) Oscillating member of speaker
JPS5822000B2 (en) Cone-shaped honeycomb diaphragm
JPS5828960B2 (en) Diaphragm for speakers
JPS58131895A (en) Diaphragm for loudspeaker
JPS63215292A (en) Diaphragm for speaker
JPS5892195A (en) Diaphragm for electroacoustic transducer
JPS6359639B2 (en)
JPH05328487A (en) Speaker diaphragm and its production
JPS6356759B2 (en)
US5380960A (en) Process for the preparation of films or diaphragms for acoustic applications
JPS58159094A (en) Diaphragm for electroacoustic transducer
JPH05115095A (en) Damper for speaker
KR100187000B1 (en) Diaphragm for speaker
JPS6224800A (en) Diaphragm for speaker