JPS5826006A - Manufacture of composite metallic compound - Google Patents

Manufacture of composite metallic compound

Info

Publication number
JPS5826006A
JPS5826006A JP56123347A JP12334781A JPS5826006A JP S5826006 A JPS5826006 A JP S5826006A JP 56123347 A JP56123347 A JP 56123347A JP 12334781 A JP12334781 A JP 12334781A JP S5826006 A JPS5826006 A JP S5826006A
Authority
JP
Japan
Prior art keywords
decomposition product
decomposition
metal
alkoxide
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56123347A
Other languages
Japanese (ja)
Other versions
JPH0247407B2 (en
Inventor
Kunihiro Miyazaki
宮崎 国弘
Yutaka Suhara
須原 豊
Hirokuni Furuya
古屋 広邦
Eiji Ando
栄治 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP56123347A priority Critical patent/JPS5826006A/en
Publication of JPS5826006A publication Critical patent/JPS5826006A/en
Publication of JPH0247407B2 publication Critical patent/JPH0247407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • C01F7/36Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts from organic aluminium salts

Abstract

PURPOSE:To obtain a brittle-like composite decomposition product easy to pulverize in a simple stage by adding a metallic salt to an alkoxide of other metal, preparing a viscous melt of a low grade polymer, and thermally decomposing the melt. CONSTITUTION:To a single metallic alkoxide of Al or the like or a composite metallic alkoxide is added >=1 kind of salt of other metal such as ZrCl4 using a solvent or the like. By heating them, the solvent is removed, and polymn. is allowed to proceed to prepare a viscous melt of a low-grade metallic alkoxide polymer. By further heating the melt, thermal decomposition is caused to form a brittle-like decomposition product by volume increase. The product is optionally held under reduced pressure. The product is amorphous, and by pulverizing and roasting it, fine powder of a high purity crystalline composite oxide such as alumina-zirconia is obtd.

Description

【発明の詳細な説明】 本発明は複合金属酸化物微粉末、特に組成、組織が均一
な微粉末の新しい製法に関する。詳しくは、金属アル;
キシドに複合化を目的とする異種金属の塩を添加し、ア
ルコキシドを重合して低重合体の粘稠な融液とし、次い
でこれを熱分解し、生成したカルメラ状の複合分解生成
物を粉砕、焙焼することによって、前記複合金属酸化物
微粉末を簡単に且つ能率よく製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new method for producing composite metal oxide fine powder, particularly fine powder having a uniform composition and structure. For details, see Metal Al;
A salt of a different metal for the purpose of compounding is added to the oxide, the alkoxide is polymerized to form a viscous melt of a low polymer, which is then thermally decomposed, and the resulting carmela-like complex decomposition product is crushed. , relates to a method for simply and efficiently producing the composite metal oxide fine powder by roasting.

近年、金属アルコキシドを用いて複合金属化合粉末を製
造する方法は、従来、一般に行なわれている金属酸化物
や金属塩を物理的に混合し焙焼するか、あるいは溶融し
て粉砕する方法に比較して、 (a)  高純度のものが得られる。
In recent years, methods for producing composite metal compound powders using metal alkoxides have been developed compared to the conventional methods of physically mixing and roasting metal oxides and metal salts, or melting and pulverizing them. (a) A product of high purity is obtained.

伽)f、FRWIメメl均質性の高いものが得られる。佽) f, FRWI Memel A product with high homogeneity can be obtained.

(C)  粒径と粒子形状が均一に制御されたものが得
られる。
(C) Particles with uniformly controlled particle size and particle shape can be obtained.

(イ)反応性の大きいものが得られる。(a) A product with high reactivity can be obtained.

など多くの利点を有することから、特に電子工業用を初
めとして各種複合組成セラミックスの粉末1料製造法と
して注目されている。
Because of its many advantages, it is attracting attention as a powder one-component production method for various composite composition ceramics, particularly for the electronic industry.

この金属アルコキシドを用いる複合金属酸化物粉末の製
造法としては、 ■ 二種以上の金属を含む複合金属アルコキシドの加水
分解法、 (2)金属アルコキシドを異種金属の水酸化物などを含
む水溶液に滴下する加水分解法、 (3)前記複合金属アルコキシドの火炎噴霧法、などが
公知である。
Methods for producing composite metal oxide powder using this metal alkoxide include: (1) Hydrolysis method of composite metal alkoxide containing two or more metals; (2) dropping metal alkoxide into an aqueous solution containing hydroxides of different metals; (3) A method of flame spraying the composite metal alkoxide, and the like are known.

上記方法のうち(1)、(2)はいずれも加水分解法で
あるが、(1)の場合は複合金属アルコキシドを純水で
加水分解し、偉)の場合は一般に単一金属アルコキシド
を、複合化を目的とする異種金属の水酸化物などの水溶
液で加水分解するという点が異なシ、以降得られた複合
金属酸化物、あるいはその水和物のスラリーを乾燥し焙
焼する点は同じである。
Of the above methods, (1) and (2) are both hydrolysis methods, but in the case of (1), the complex metal alkoxide is hydrolyzed with pure water, and in the case of method (3), the single metal alkoxide is generally The difference is that the hydroxides of dissimilar metals for the purpose of compounding are hydrolyzed in an aqueous solution, and the slurry of the obtained composite metal oxides or their hydrates is dried and roasted. It is.

しかし、これらの加水分解法は次の如き欠点を有してい
る。
However, these hydrolysis methods have the following drawbacks.

すなわち、上記方法は多くの工程を要し、操作が複雑で
あり、更に得られるスラリー中の粒子が微小なために1
スラリーから乾燥する場合に、通常の方法では粒子が凝
集してカチカチに固化してしまう。これを避けるため、
凍結乾燥又は有機溶媒で洗浄した後の乾燥など特殊な乾
燥方法を要し、工程を一層雑化すると共に多大の労力と
費用が必要となる。
That is, the above method requires many steps and is complicated to operate, and furthermore, because the particles in the resulting slurry are minute,
When drying a slurry, the particles tend to aggregate and solidify using conventional methods. To avoid this,
A special drying method such as freeze drying or drying after washing with an organic solvent is required, which further complicates the process and requires a great deal of labor and cost.

また(3)に配した火炎噴霧法は、アルコール等の可燃
性溶媒に溶解した複合金属アルコキシドの溶液を噴霧化
して加熱、燃焼させる方法であるが次のような欠点を有
する。
The flame atomization method described in (3) is a method in which a solution of a composite metal alkoxide dissolved in a flammable solvent such as alcohol is atomized, heated, and burned, but it has the following drawbacks.

すなわち、上記方法は得られる粉末が一般に固い凝集を
した球状粒子となるために反応性が劣シ、更に、大規模
な捕集設備を必要とすることや、可燃性溶媒を使用する
ことから経済的でなく、又純度保持のためには、高度の
技術と高価な設備を必要とする。
In other words, the above-mentioned method generally has poor reactivity because the powder obtained is tightly aggregated spherical particles, and is also uneconomical because it requires large-scale collection equipment and uses a flammable solvent. In addition, high technology and expensive equipment are required to maintain purity.

本発明は、上記アルコキシド法の利点を有し、しかも公
知の方法の諸欠点を有しない新規な製造法を提供するこ
とを目的とするもので、その特徴とする所は、異種金属
の塩を添加した金緘アルコキシド低重合体の粘稠な融液
を熱分解するという簡単な工程で、粉砕容易なカルメラ
状の複合分解生成物を得ることにある。
The purpose of the present invention is to provide a new production method that has the advantages of the alkoxide method described above and does not have the disadvantages of known methods. The object of the present invention is to obtain a carmela-like complex decomposition product that is easily pulverized by a simple process of thermally decomposing a viscous melt of added quince alkoxide low polymer.

本発明者等は、ある種の金属アルコキシドが加熱重合さ
せると粘性が増大し、特に分解直前には粘度が著しく増
大するため、熱分解を起させると発生するガスの離脱が
内離となって急速に発泡しつつ分解が進行すること、及
び、この時、予め目的とする異種金属の塩を添加してお
くと多くの場合本来単独では分解する筈のない温度領域
でも同時分解が起ることを見出した。これにより分解生
成物は組成、組織の均一な複合組成となり、且つ、着し
ぐ膨張していわゆるカルメラ状となって非常に壊れ易く
なるため、軽く粉砕するだけで微粉末とすることができ
る。上記分解生成物は、一般に非晶質あるいは結晶性が
悪いので、所定の温度で焙焼して結晶性の資金金属酸化
物微粉末とする。
The present inventors have discovered that when certain metal alkoxides are heated and polymerized, their viscosity increases, and especially immediately before decomposition, the viscosity increases significantly. Decomposition progresses with rapid foaming, and in many cases, simultaneous decomposition occurs even in temperature ranges where it would not decompose on its own if a salt of the desired dissimilar metal is added in advance. I found out. As a result, the decomposition product becomes a composite composition with a uniform composition and structure, and also swells upon arrival and becomes so-called carmela-like, which makes it very fragile, so that it can be made into a fine powder by simply pulverizing it. Since the above decomposition products are generally amorphous or have poor crystallinity, they are roasted at a predetermined temperature to form crystalline metal oxide fine powder.

本発明の方法は、金属アルコキシドと金属塩の同時分解
が均一に起るということで組成、組織の均一な複合金属
酸化愉微粉末を製造するのに有効である。又本発明の方
法は、主成分に他の微量成分娑添加Tる場合、均質に添
加する方法としても分散させて添加することが有効であ
る。最も好ましくは、アルコキシドや有機溶媒に溶解す
ることであシ、この意味では一般に塩酸塩、硝酸塩など
が好ましい。
The method of the present invention is effective in producing a composite metal oxidation fine powder with a uniform composition and structure because the simultaneous decomposition of metal alkoxide and metal salt occurs uniformly. Further, in the method of the present invention, when other minor components are added to the main component, it is effective to add them homogeneously or in a dispersed manner. Most preferably, it is dissolved in an alkoxide or an organic solvent, and in this sense, hydrochlorides, nitrates, etc. are generally preferred.

次に、本発明をアルミナ(At203)−ジルコニア(
Zr02)による複合系を例として具体的に説明する。
Next, the present invention was developed using alumina (At203)-zirconia (
A composite system based on Zr02) will be specifically explained as an example.

まず、所定量の塩化ジルコニウム(他の塩を用いてもよ
いが、これはアルコールに溶解するためアルコキシドへ
の均一分散に都合がよい)をイソプロピルアルコールに
加え、完全に溶解させる。
First, a predetermined amount of zirconium chloride (other salts may be used, but since they are soluble in alcohol, it is convenient for uniform dispersion in the alkoxide) is added to isopropyl alcohol and completely dissolved.

力お、塩化ジルコニウムは、一般にジルコニウムのアル
コキシドを合成する原料として用いられることから、こ
れをそのまま用いることは、アルオニウムとジルコニウ
ムの複合アルコキシドを用いるよシ有利なことが明かで
ある。
Since zirconium chloride is generally used as a raw material for synthesizing zirconium alkoxide, it is clear that using it as it is is more advantageous than using a composite alkoxide of aluonium and zirconium.

次に、この塩化ジルコニウムを溶解したアルコール溶液
を所定量のアルミニウムイソプロポキシドに添加し、塩
化アルミニウムとインプロポキシドの溶解したfiJM
アルコール溶液とする。この1KIJtlr系外に排出
する。この際、窒素ガスなどをキャリアーとして用いる
と排出速度が速くなって効率的である。アルコールを排
出し終えたら、そのtまさらに加熱をつづけ融点以上(
反応を速くするには高温程好ましく、最も好ましいのは
沸点)に加熱し重合を進行させる。この際、アルミニウ
ムイソプロポキシドの蒸気としての損失を避けるために
冷却器を設けて還流させるのが望ましい。
Next, this alcoholic solution in which zirconium chloride was dissolved was added to a predetermined amount of aluminum isopropoxide, and fiJM in which aluminum chloride and impropoxide were dissolved was added.
Make an alcohol solution. This 1KIJtlr is discharged from the system. At this time, if nitrogen gas or the like is used as a carrier, the discharge rate becomes faster and it is more efficient. Once the alcohol has been discharged, continue heating until it reaches above the melting point (
In order to speed up the reaction, higher temperatures are preferable, and the most preferable temperature is boiling point) to advance polymerization. At this time, it is desirable to provide a cooler to reflux the aluminum isopropoxide in order to avoid loss of the aluminum isopropoxide as vapor.

その後、所定の温度(反応を速くするには高温程好まし
く、最も好ましくは沸点で、この温度は組成によって変
化する)で一定時間保持を続けると急速にアルミニウム
イソプロポキシドの分解が開始し、ガス発生と共に著し
く粘性が増大して短時間の内に上記カルメラ状分解物が
生成する。この際、同時に塩化ジルコニウムも塩素ガス
を放出して分解が進行するため、前記カルメラ状分解生
成物は複合組成となる。
After that, if the aluminum isopropoxide is kept at a predetermined temperature for a certain period of time (higher temperatures are preferred to speed up the reaction, most preferably the boiling point, but this temperature varies depending on the composition), the decomposition of aluminum isopropoxide begins rapidly, and the gas As it occurs, the viscosity increases significantly and the carmela-like decomposition product is produced within a short period of time. At this time, zirconium chloride also releases chlorine gas and decomposition progresses, so the carmela-like decomposition product has a complex composition.

塩化ジルコニウムは300℃以上で昇華する性質を有し
ているが、この温度よシは2かに低い温度例えば酸化物
換算でzr□zが170%となる組成のものでは、23
0℃近傍)で分解するということは特徴的現象である。
Zirconium chloride has the property of sublimating at temperatures above 300°C, but at temperatures two times lower than this temperature, for example, with a composition in which zr□z is 170% in terms of oxide,
The fact that it decomposes at temperatures around 0°C is a characteristic phenomenon.

また、アルミニウムインプロポキシドは、単独の場合よ
シもはるかに安定性が悪くなって、分解温度が低下する
とともに分解開始壕での時間がはホ//弘〜//jに短
縮される点も特徴である。
In addition, aluminum impropoxide is much less stable than when used alone, and as the decomposition temperature decreases, the time in the decomposition trench is shortened. is also a feature.

この現象はマグネシウム塩添加の場合に一層顕著である
が、これに関しては、後述する実施例において詳しく説
明する。なお、カルメラ状分解物が生成したら未分解物
を少なくシ、燃焼時の減量を少なくする目的で一定時間
保持するのが望ましい。
This phenomenon is more remarkable when magnesium salt is added, and this will be explained in detail in the examples below. Note that once carmela-like decomposition products are produced, it is desirable to hold them for a certain period of time in order to reduce the amount of undecomposed products and reduce the weight loss during combustion.

特に減圧下で行なうと効率的である。このようにして得
られた分解生成物は非晶質であり、所定の粒度まで粉砕
した後、所定温度で焙焼して結晶性のアルミナ−ジルコ
ニア系複合酸化物微粉末を得ることができる。
It is particularly efficient to carry out under reduced pressure. The decomposition product thus obtained is amorphous, and after being crushed to a predetermined particle size, it can be roasted at a predetermined temperature to obtain a crystalline alumina-zirconia complex oxide fine powder.

ととるで、ジルコニアは通常/100℃以上では結晶構
造が単斜晶形(monoclinic)から正方晶形(
tetragonal)へ転移し、徐冷してん200℃
以下にすると単斜晶形に復元する。しかし、本発明で得
られた分解生成物は、ノコ00″S以上で焙焼し、室温
まで徐冷しても正方晶形が残存している特徴がある。
Therefore, the crystal structure of zirconia normally changes from monoclinic to tetragonal (at temperatures above 100°C).
tetragonal) and slowly cooled to 200°C.
When the following conditions are used, the monoclinic form is restored. However, the decomposition product obtained in the present invention is characterized in that the tetragonal crystal remains even after being roasted at a temperature of 00''S or higher and slowly cooled to room temperature.

次に本発明を実施例によってさらに詳しく説明する。Next, the present invention will be explained in more detail by way of examples.

実施例 ノ アルミナ−ジルコニア系において ■ ZrO2含有量5重量%を目的とした場合、塩化ジ
ルコニラA (ZrC24) 3.rgt−z。
Example In the noalumina-zirconia system, ■ When aiming for a ZrO2 content of 5% by weight, zirconia chloride A (ZrC24) 3. rgt-z.

dのイソプロピルアルコールに加温溶解し、予めアルミ
ニウムイソプロポキシド/j2.0gを入れた還流冷却
器を付した内容積/lのガラス容器に移した。還流冷却
器を水冷しながら、前記容器を60℃まで加熱保持し、
アルミニウムイソプロポキシドと塩化ジルコニウムが完
全に溶解したアルコール溶液とした。次いで、還流冷却
器をノコθ℃に制御し、容器温度をインプロピルアルコ
ール溶液の沸点(約r、2〜f4℃> tで上昇させる
と共に、系内にioOwl/−の速度で窒素ガスを流し
てイソプロピルアルコールを系外に排出した。イソプロ
ピルアルコールを排出し終った後窒素ガスを止め、j℃
/−の速度で昇温し、沸点(コjY℃)で保持を続けて
重合を進行させた。この除虫ずるガスは、系外に自然流
出させた。約/、jt時間後に塩素ガスを含む急激なガ
ス発生と、粘度上昇を伴なった分解が開始し、当初の約
3倍の体積に膨張したカルメラ状分解生成物が得られた
。次に、温度を200℃に下げ、排気しながら減圧下で
約72時間保持し、最終的に約6倍の体積膨張をした純
白なカルメラ状分解生成物μコ、2 gを得た。
The mixture was heated and dissolved in isopropyl alcohol (d), and transferred to a glass container with an internal volume/l equipped with a reflux condenser and containing 2.0 g of aluminum isopropoxide/j in advance. While cooling the reflux condenser with water, the container is heated and maintained at 60 ° C.,
An alcohol solution was prepared in which aluminum isopropoxide and zirconium chloride were completely dissolved. Next, the reflux condenser was controlled to θ°C, and the temperature of the container was raised to the boiling point of the inpropyl alcohol solution (approximately r, 2 to 4°C > t, while nitrogen gas was flowed into the system at a rate of ioOwl/-. The isopropyl alcohol was discharged out of the system. After the isopropyl alcohol was discharged, the nitrogen gas was stopped, and the temperature was
The temperature was raised at a rate of /- and maintained at the boiling point (JY°C) to proceed with polymerization. This insect repellent gas was allowed to naturally flow out of the system. After approximately /, jt hours, decomposition started with rapid generation of gas containing chlorine gas and increase in viscosity, and a carmela-like decomposition product expanded to about three times its original volume was obtained. Next, the temperature was lowered to 200° C., and the mixture was maintained under reduced pressure for about 72 hours while being evacuated, to finally obtain 2 g of pure white carmela-like decomposition product μ, which had expanded about 6 times in volume.

この分解生成物は、四分法でサンプリングした後100
℃で焙焼したものを化学分析し、当初の目的の通pZr
02をj重量慢含有する均一な組成であることを確認し
た。次に、ウレタンゴム内張シのボットミルで軽く粉砕
した後、l00℃そ焙焼を行なって純白な微粉末とし、
前記分析用サンプルと伴せてJ r、Ogを得た。
This decomposition product was collected at 100% after sampling in quadrants.
Chemical analysis of the roasted material at ℃ revealed that pZr
It was confirmed that the composition was uniform and contained a large amount of 02. Next, it was lightly ground in a urethane rubber-lined bot mill, and then roasted at 100°C to produce a pure white fine powder.
Together with the sample for analysis, Jr, Og was obtained.

この場合、塩素ガスの発生は殆んど認められなかった。In this case, almost no generation of chlorine gas was observed.

この100℃で焙焼した微粉末はX線回折によシ非晶質
であることが確認された。そこで、i4!oo℃で焙焼
、徐冷し、X線回折を行なった結果、結晶質のα−At
2QBと正方晶形のzr02が検出された。
The fine powder roasted at 100°C was confirmed to be amorphous by X-ray diffraction. So, i4! As a result of roasting and slow cooling at oo℃ and X-ray diffraction, crystalline α-At
2QB and tetragonal zr02 were detected.

(2)ZrQz含有量IO重量%を目的とした場合!θ
dのイソグロビルアルコールニ塩化ジルコニウム7jg
を溶解した溶液と、アルミニウムイソグロボキシド/ 
4I4t、Ogを用いて、実施例t−a)と同様の操作
によって沸点(21μ℃)で重合を進行させた。約1時
間後に分解が開始し、当初の約3倍の体積に膨張したカ
ルメラ状分解生成物を得た。次いで温度をコoo℃に下
げ、排気しながら減圧下で約ノコ時間保持して、最終的
に約を倍の体積に膨張をした極く僅かに黄色〜茶色に着
色したカルメラ状分解生成物弘へ/gを得た。
(2) When aiming at ZrQz content IO weight%! θ
d isoglobil alcohol zirconium dichloride 7jg
and aluminum isogloboxoxide/
Using 4I4t, Og, polymerization was carried out at the boiling point (21 μC) in the same manner as in Example t-a). Decomposition started after about 1 hour, and a carmela-like decomposition product expanded to about three times its original volume was obtained. The temperature was then lowered to 0°C, and the mixture was kept under reduced pressure for about 1 hour while being evacuated, and finally the carmela-like decomposition product, which had expanded to about twice its volume and was colored very slightly yellow to brown, was produced. to/g was obtained.

作で分析を行ない、当初の目的通り、z r O2を7
0重量%含有する均一な組成であることを確認した。又
、実施例/−(1)と同様にして粉砕した後、roo℃
で焙焼をして殆んど純白の粉末とし、X線回折を行なっ
た結果、殆んどが非晶質であった。そこで、/4(□o
℃で焙焼、徐冷した所、結晶質のα−A120s及び正
方晶形と単斜晶形のZr02(両者の量比は約7:乃が
検出された。
As originally intended, z r O2 was
It was confirmed that the composition was uniform and contained 0% by weight. In addition, after pulverizing in the same manner as in Example/-(1),
The powder was roasted to give an almost pure white powder, and X-ray diffraction revealed that most of it was amorphous. Therefore, /4(□o
When roasted at ℃ and slowly cooled, crystalline α-A120s and tetragonal and monoclinic Zr02 (the quantitative ratio of the two was about 7:0) were detected.

(3)Zr□g含有t、2jffifq6を目的とした
場合100m1のイソプロピルアルコールに塩化ジルコ
ニウムlり、ogを溶解した溶液と、アルミニウムイソ
プロポキシドノコ□、ogを用いて、実施例ノーα)と
同様の操作によって沸点(23μ℃)で重合を進行させ
た。約aO分後に分解が開始し、当初の約3倍の体積に
膨張したカルメラ状分解生成物を得た。次いで、温度を
2□0℃に下げ、排気しながら、減圧下で約72時間保
持し、最終的に約を倍の体積に膨張し、完全な褐色に着
色したカルメラ状分解生成物μへ〇gを得た。
(3) When aiming at Zr□g-containing t, 2jffifq6, using a solution of zirconium chloride and og dissolved in 100 ml of isopropyl alcohol, and aluminum isopropoxide saw □, og, Example No. α) and Polymerization was allowed to proceed at the boiling point (23 μC) by the same operation. Decomposition started after about aO minutes, and a carmela-like decomposition product expanded to about three times its original volume was obtained. Then, the temperature was lowered to 2□0°C and kept under reduced pressure for about 72 hours while evacuation, and finally expanded to about twice the volume and turned into a completely brown-colored carmela-like decomposition product μ. I got g.

この分解生成物は実施例/−(1)と同様の操作で分析
を行ない、当初の目的通シZro2を25重量%含有す
る均一な組成であることを確認した。又、実施例/−(
1)と同様粉砕後、roo’c。
This decomposition product was analyzed in the same manner as in Example 1-(1), and it was confirmed that it had a uniform composition containing 25% by weight of Zro2, which met the original objective. Also, Example/-(
After crushing as in 1), roo'c.

で焙焼をして極〈僅か黄色の白色粉末とし、X線回折を
行なった結果、極く僅かの結晶性の悪い正方晶形のZr
O2のみが検出された。そこで7≠00℃で焙焼、徐冷
した所、結晶質のα−At203及び正方晶形と単斜晶
形のZrO2(両者の量比は約2:l)が検出された。
As a result of roasting it to a very slightly yellow white powder and performing X-ray diffraction, it was found that a very small amount of tetragonal Zr with poor crystallinity was found.
Only O2 was detected. Then, when the material was roasted at 7≠00°C and slowly cooled, crystalline α-At203 and tetragonal and monoclinic ZrO2 (the ratio of both amounts was about 2:l) were detected.

(4)ZrOz含有iao重量%を目的とした場合10
0dlのイソプロピルアルコールに塩化ジルコニウムJ
O,Jgを溶解した溶液と、アルミニウムインプロポ中
シ、ドタt、Ogを用いて、実施例/−α)と同様の操
作によって沸点(ココタ℃)で重合を進行させた。約7
0分後に分解が開始し、当初の約3倍の体積に膨張しこ
カルメラ状分解生成物を得た。次に温度を200℃に下
げ、排気しながら減圧下で約ノコ時間保持して、最終的
に約6倍の体積に膨張し、黒褐色に着色したカルメラ状
分解生成物32.3gを得た。
(4) When aiming at ZrOz containing iao weight% 10
Zirconium chloride J in 0 dl isopropyl alcohol
Using a solution in which O and Jg were dissolved, and Aluminum Impropolymer, Dotat, and Og, polymerization was proceeded at the boiling point (Kokota°C) in the same manner as in Example/-α). about 7
Decomposition started after 0 minutes, and a carmeloid-like decomposition product was obtained which expanded to about three times its original volume. Next, the temperature was lowered to 200° C., and the mixture was maintained under reduced pressure for about 10 hours while being evacuated to obtain 32.3 g of a carmela-like decomposition product that expanded to about 6 times its volume and was colored blackish brown.

この分解生成物は、実施例/−(1)と同様の操作で分
析を行な°・、当初の目的通り、ZrO2をlO重量4
官有する均一な組成物であることを確認した。又、実施
例/: −(1)と同様粉砕後100℃で焙焼をして僅
かに黄変した白色粉末とし、X線回折を行なった結果、
極く僅かの結晶性の悪い正方晶形のZrO2のみが検出
された。そこで/ u00℃で焙焼、徐冷した所、結晶
質のα−At203及び正方晶形と単斜晶形のZrO2
(両者の量比は約J : 4A)が検出された。
This decomposition product was analyzed in the same manner as in Example/-(1). As originally intended, ZrO2 was
It was confirmed that the composition was uniform. In addition, Example/: - Similar to (1), the powder was roasted at 100°C to produce a slightly yellowed white powder, and X-ray diffraction was performed.
Only a small amount of tetragonal ZrO2 with poor crystallinity was detected. Then, after roasting at u00℃ and slow cooling, crystalline α-At203 and tetragonal and monoclinic ZrO2 were obtained.
(The ratio of both amounts was approximately J:4A) was detected.

実施例 コ アルミナ−ジルコエア系において (1)ZrOz含有量1を量チを目的とした場合オキシ
酢酸ジルコニウム(04H6052r)3.7gをイソ
プロピルアルコールに加え、充分に攪拌して均一に分散
させた。次いで、予めアルξニウムイソグロボギシドl
!260gを入れである還流冷却器を付した内容積/l
のガラス容器に移した。更に充分攪拌して均一な分散液
とした後、実施例/ −(1)と同様の操作によって沸
点(コt<<’c)で重合を進行させた。約1時間後に
分解が開始し、当初の約3倍の体積に膨張したカルメラ
状分解生成物を得た。次いで、温度を200℃に下げ、
排気しながら減圧下で約72時間保持して最終的に約6
倍の体積に膨張した純白なカルメラ状分解生成物4to
、よgを得た。
Example In a co-alumina-zircoair system, (1) When aiming at a ZrOz content of 1, 3.7 g of zirconium oxyacetate (04H6052r) was added to isopropyl alcohol and thoroughly stirred to disperse it uniformly. Then, in advance, aluminum ξium isogloboside l
! Internal volume with reflux condenser containing 260g/l
Transferred to a glass container. After further stirring sufficiently to obtain a uniform dispersion, polymerization was carried out at the boiling point (t<<'c) by the same operation as in Example/-(1). Decomposition started after about 1 hour, and a carmela-like decomposition product expanded to about three times its original volume was obtained. Then the temperature was lowered to 200°C,
Hold it under reduced pressure for about 72 hours while evacuation, and finally about 6
Pure white carmela-like decomposition product 4to expanded to double volume
, I got a yog.

この分解生成物は、実施例1−α)と同様の操作で分析
を行ない、当初の目的通j)Zl−027重量%を含有
する均一な組成であることを解認した。又、実施例/−
(1)と同様、粉砕後100℃で焙焼して純白な粉末と
し、X線回折を行なった結果、非晶質であることを確認
した。そこで/弘00℃で焙焼、徐冷した所、結晶質の
At2Q3と正方晶形のzrQ2が検出された。
This decomposition product was analyzed in the same manner as in Example 1-α), and was found to have a uniform composition containing 27% by weight of Zl-0, which met the original objective. Also, Example/-
As in (1), the powder was crushed and roasted at 100°C to obtain a pure white powder, and as a result of X-ray diffraction, it was confirmed that it was amorphous. When the material was roasted at 00°C and slowly cooled, crystalline At2Q3 and tetragonal zrQ2 were detected.

1e2)Zr02含有量go重量%を目的とした場合1
00dのイソブロビルアルコールニ均一ニ分散させたオ
キシ酢酸ジルコニウムJり、3gと、アルミニウムイソ
プロポキシドタ6.0 gを用いて、実施例/−(1)
と同様の操作によってイソプロピルアルコールを系外に
排出した。その後窒素がスを止め、j℃/mの速度で昇
温し九所、アルミニウムイソプロポキシドの安定性が単
独の場合よシ遥かに悪くなり、融液の温度がおよそ/J
u℃で急激な粘度上昇と共に分解が開始し、当初の約3
倍の体積に膨張したカルメラ状分解生成物が得られた。
1e2) When aiming at Zr02 content go weight% 1
Using 3 g of zirconium oxyacetate homogeneously dispersed in 00d of isobrobyl alcohol and 6.0 g of aluminum isopropoxide, Example/-(1)
Isopropyl alcohol was discharged from the system in the same manner as above. After that, the nitrogen gas stopped, and the temperature rose at a rate of J℃/m, and the stability of aluminum isopropoxide became much worse than when it was used alone, and the temperature of the melt reached approximately J℃/m.
Decomposition begins with a rapid increase in viscosity at u℃, and the initial
A carmela-like decomposition product which expanded to double the volume was obtained.

次いで、温度を200℃に上げ1.IJli気しながら
減圧下で約72時間保持をして最終的に約6倍の体積に
膨張した黄色のカルメラ状分解生成物≠2.−gを得た
Then, raise the temperature to 200°C and 1. After being kept under reduced pressure for about 72 hours, the yellow carmel-like decomposition product finally expanded to about 6 times its volume≠2. -g was obtained.

この分解生成物を、実施例/−(1)と同様の操作で分
析を行ない、当初の目的通b、zr02弘0重量%を含
有する均一な組成であるととを確認した。又、実施例/
−(1)と同様、粉砕後100℃で焙焼をして僅かに黄
色の白色粉末とし、X線回折を行なった結果、極く僅か
の結晶性の悪い正方晶形のzr02のみが検出された。
This decomposition product was analyzed in the same manner as in Example 1-(1), and it was confirmed that it had a homogeneous composition containing 0% by weight of Zr02, which was the initial objective. Also, Examples/
- Similar to (1), after grinding, it was roasted at 100℃ to produce a slightly yellowish white powder, and as a result of X-ray diffraction, only a very small amount of tetragonal zr02 with poor crystallinity was detected. .

とれを7μ00℃で焙焼、徐冷した所、結晶質のα−A
zz□s及び正方晶形と単斜晶形のzr02(両者の比
は約θ、り=/)が検出された。
When the fish was roasted at 7μ00℃ and slowly cooled, crystalline α-A was obtained.
zz□s and zr02 of tetragonal and monoclinic forms (ratio of the two is approximately θ, ri=/) were detected.

実施例 3 アルミナ−マグネシア系において、完全なMgAt20
4  (スピネル)組成を目的として(1)無水塩化マ
グネシウムMgCLz (融点7/2℃、沸点lμ)−
℃の安定なマグネシウム化合物)を用いた例 jOdのエタノールに無水塩化マグネシウム?、!gを
溶解した溶液と、アルミニウムイソプロポキシドao、
rgを用いて、実施例/−(1)と同様の操作によって
エタノールを系外に排出した。その後、窒素ガスを止め
、j℃/mの速度で昇温した所、融液の温度がおよそ/
/IT:、で塩素ガスを含む急激なガス発生と粘度上昇
を伴なった分解が開始し、当初の約3倍の体積に膨張し
たカルメラ状分解生成物が得られた。次いで、温度を2
00℃に上げ、排気しながら減圧下で約l一時間保持し
て、最終的に約6倍の体積に膨張した白色カルメラ状分
解生成物/ 参、4gが得られた。
Example 3 Complete MgAt20 in alumina-magnesia system
4 (Spinel) For the purpose of composition (1) anhydrous magnesium chloride MgCLz (melting point 7/2°C, boiling point lμ) -
Anhydrous magnesium chloride in ethanol of jOd? ,! A solution in which g is dissolved, aluminum isopropoxide ao,
Using rg, ethanol was discharged out of the system in the same manner as in Example/-(1). After that, the nitrogen gas was stopped and the temperature was increased at a rate of j℃/m, and the temperature of the melt was approximately /
/IT:, decomposition started with rapid generation of gas containing chlorine gas and increase in viscosity, and a carmela-like decomposition product expanded to about three times its initial volume was obtained. Then the temperature is 2
The temperature was raised to 00° C. and maintained under reduced pressure for about 1 hour while evacuation, and finally 4 g of a white carmeloid decomposition product expanded to about 6 times the volume was obtained.

この分解生成物をウレタンゴム内張シのボットミルで軽
く粉砕後、100℃と1uoo℃で焙焼し、それぞれx
111回折による結晶構造の同定を行なった。その結果
、too℃では結晶性の悪いMgAt204が、lグo
o℃では結晶性の良いMgAt20iが検出された。
This decomposition product was lightly ground in a urethane rubber-lined bot mill, then roasted at 100°C and 1uoo°C, respectively.
The crystal structure was identified by 111 diffraction. As a result, MgAt204, which has poor crystallinity at too high a temperature,
At 0° C., MgAt20i with good crystallinity was detected.

(2)硝酸マグネシウムMg (NO3) 2−gHz
(2) Magnesium nitrate Mg (NO3) 2-gHz
.

(融点Pju、300℃チーj H2Q (F) −r
 fネシクム化合物)を用いた例 100dlの:r−メータルに硝酸マグネシラムコj。
(Melting point Pju, 300℃ Chij H2Q (F) -r
Example using 100 dl of Magnesium nitrate compound).

tgflj解した溶液と、アルミニウムイソプロポキシ
ドtAO、rgを用いて、実施例/−(1)と同様の操
作によってti℃で保持をつづけてエタノールを系外に
排出した。そのまま、との温度に保持すると約70分後
に赤褐色の二酸化窒素を含む急激なガス発生と、粘度上
昇を伴なった分解が開始し、当初の約3倍の体積に膨張
したカルメラ状分解生成物が得られた。次いで温度をコ
OO℃に上げ、排気しながら減圧下で約ノコ時間保持し
て最終的に約6倍の体積に膨張した僅かに黄色のカルメ
ラ状分解生成物/ <jJgを得た。
Using the solution dissolved in tgflj and aluminum isopropoxide tAO and rg, ethanol was discharged from the system while maintaining the temperature at ti°C in the same manner as in Example 1-(1). When kept at this temperature for about 70 minutes, rapid generation of reddish-brown gas containing nitrogen dioxide and decomposition accompanied by an increase in viscosity began, and a carmela-like decomposition product expanded to about three times its original volume. was gotten. The temperature was then raised to 00°C and held under vacuum for about 10 hours with evacuation to finally obtain a slightly yellow carmeloid decomposition product which expanded to about 6 times its volume.

この分解生成物を100℃と7μ00℃で焙焼し、X線
回折を行なった結果、実施例J−(1)と同様であった
This decomposition product was roasted at 100°C and 7μ00°C and subjected to X-ray diffraction, and the results were the same as in Example J-(1).

(3)酢酸マグネシウムMg (CH3COO)2・4
tH20(融点がto℃の有機マグネシウム化合物)を
用いた例 !00dのエタノールに溶解、分散させた酢酸マグネシ
ラムコムダgと、アルミニウムイソプロポキシドao、
rgを用いて実施例3−(2)とほぼ同様の経過を経て
白色のカルメラ状分解生成物7μ、r gを得た。
(3) Magnesium acetate Mg (CH3COO)2.4
An example using tH20 (organomagnesium compound with a melting point of to°C)! Magnesium acetate comuda g dissolved and dispersed in 00d ethanol, aluminum isopropoxide ao,
Using rg, a white carmela-like decomposition product 7μ, rg was obtained through almost the same process as in Example 3-(2).

この分解生成物をtoo℃とi<too℃で焙焼し、X
線回折を行なった結果は実施例3−α)と同様であった
This decomposition product is roasted at too°C and i<too°C,
The results of line diffraction were the same as in Example 3-α).

(4)  シュウ酸マグネシウムMgC204・2H2
0(分解性でiso℃で−λH20の有機マグネシウム
化合物)を用いた例 jOwlのエタノールに均一に分散させたシュウ酸マグ
ネシウム/ uj gと、アルミニウムイソプロポキシ
ド≠0.rgを用いて、実施例1−ωと同様の操作によ
って沸点(17s℃)で重合を進行させた。約20分後
に分解が開始し、当初の約3倍の体積に膨張したカルメ
ラ状分解生成物を得た。次に、温度を一00℃に上げ排
気しながら減圧下で約ノコ時間保持して、最終的に約を
倍の体積に膨張した極く僅か黄色に着色したカルメラ状
分解生成物/4LJgを得た。
(4) Magnesium oxalate MgC204・2H2
Example using magnesium oxalate/uj g homogeneously dispersed in ethanol of Owl and aluminum isopropoxide≠0. Using rg, polymerization was proceeded at the boiling point (17 s°C) by the same operation as in Example 1-ω. Decomposition started after about 20 minutes, and a carmela-like decomposition product expanded to about three times its original volume was obtained. Next, the temperature was raised to 100°C and maintained under reduced pressure while exhausting the air for about 1 hour, and finally a carmela-like decomposition product/4LJg with a very slight yellow color and expanded to about twice the volume was obtained. Ta.

この分解生成物を100℃で焙焼し、X線回折を行なっ
た結果、殆んど非晶質であった。またlμ00℃で焙焼
したものは、結晶質のMgAt204であった。なお、
Ir00℃で焙焼して得られた粉末のX線回折のピーク
強度の比較から検出されるスピネルの結晶性は、塩化マ
グネシウム〉硝酸マグネシウム〉酢酸マグネシウム〉シ
二つ酸マグネシウム(非晶質)の順序であった 実施例 l 微量成分の化学量論的添加を目的として、ミリグラl単
位まで厳密に秤量した無水塩化マグネシウムとアルミニ
ウムイソプロポキシドを用いて、実施例3−α)と同様
の操作でMgOとして!0O1iooo、1oooP含
有される様に二種類のカルメラ状分解生成物を合成した
This decomposition product was roasted at 100°C and subjected to X-ray diffraction, which revealed that it was mostly amorphous. Moreover, what was roasted at lμ00°C was crystalline MgAt204. In addition,
The crystallinity of spinel, detected by comparing the peak intensities of X-ray diffraction of the powder obtained by roasting Ir at 00°C, is the same as that of magnesium chloride>magnesium nitrate>magnesium acetate>magnesium sidiate (amorphous). Example 1 In the same manner as in Example 3-α), using anhydrous magnesium chloride and aluminum isopropoxide, which were precisely weighed to the milligram liter, for the purpose of stoichiometric addition of trace components. As MgO! Two types of carmela-like decomposition products were synthesized to contain 0O1iooo and 1oooP.

次いで、上記合成物を100℃で焙焼し、化学分析を行
なった結果、610、タタ0X2030−となシ、設定
値と非常によい一致を示した。
The above composite was then roasted at 100° C. and chemically analyzed, which showed 610, Tata 0X2030-, and Nasi, which were in very good agreement with the set values.

Claims (1)

【特許請求の範囲】[Claims] 単一金属アルコキシド、あるいは二種以上の金属アルコ
キシドからまる複合金属アル;キシドに、それらに含ま
れる金属とは異種の金属の塩の一種以上を添加し、加熱
重合させて粘稠な金属アルコ中シト低重合体の融液とす
る1糧と、前記金属塩を含む金属プルコキシド低重合体
融液を熱分解させ、カルメラ状の複合分解生成物とする
1鵬とを具備した複合金属化合物の製造方法
A single metal alkoxide or a composite metal alkoxide made of two or more metal alkoxides is added with one or more salts of metals different from the metals contained therein, and heated and polymerized to form a viscous metal alkoxide. A method for producing a composite metal compound, comprising: a low polymer melt; and a carmella-like composite decomposition product obtained by thermally decomposing the metal plucoxide low polymer melt containing the metal salt.
JP56123347A 1981-08-06 1981-08-06 Manufacture of composite metallic compound Granted JPS5826006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56123347A JPS5826006A (en) 1981-08-06 1981-08-06 Manufacture of composite metallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56123347A JPS5826006A (en) 1981-08-06 1981-08-06 Manufacture of composite metallic compound

Publications (2)

Publication Number Publication Date
JPS5826006A true JPS5826006A (en) 1983-02-16
JPH0247407B2 JPH0247407B2 (en) 1990-10-19

Family

ID=14858311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56123347A Granted JPS5826006A (en) 1981-08-06 1981-08-06 Manufacture of composite metallic compound

Country Status (1)

Country Link
JP (1) JPS5826006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610866A (en) * 1985-10-11 1986-09-09 Battelle Memorial Institute Method for producing beta-aluminas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610866A (en) * 1985-10-11 1986-09-09 Battelle Memorial Institute Method for producing beta-aluminas

Also Published As

Publication number Publication date
JPH0247407B2 (en) 1990-10-19

Similar Documents

Publication Publication Date Title
JP2695605B2 (en) Target and manufacturing method thereof
US5091115A (en) Semiconductor-containing glass and method for producing same
JP2003252623A (en) Method of manufacturing composite oxide powder and composite oxide powder
JPS61275108A (en) Preparation of powder of dielectric substance
US6136229A (en) Method for the mechanochemical preparation of high performance ceramics
CA1134805A (en) Hydrocarbon soluble magnesium compositions of high magnesium content
JPS5826006A (en) Manufacture of composite metallic compound
JPH10139430A (en) Production of lithium-titanium complex oxide
JP3526886B2 (en) Method for producing composite oxide
WO2004046032A1 (en) Process for producing diamond, graphite or mixture of diamond and graphite
JP3443991B2 (en) Method for producing positive electrode active material for secondary battery
JPS6086022A (en) Production of titanic acid salt
JPH01294534A (en) Production of complex metallic oxide
JPH05156326A (en) Production of fine silver powder
KR101837306B1 (en) Synthesis method of lithium-titanium oxide using liquid-state method
JP2584519B2 (en) Method for producing perovskite-type composite oxide powder
Poshkus Improved synthesis of basic zinc acetate, hexakis (. mu.-acetato)-. mu.-oxotetrazinc
JPH0244765B2 (en) KINZOKUFUKUSANKABUTSUNOSEIZOHOHO
JP2627955B2 (en) Method for producing fibrous alkaline earth metal titanate
JP3203905B2 (en) Method for producing bismuth titanate
JPS62128924A (en) Production of zirconium oxide series fine powder
JPH01246109A (en) Production of compound oxide precursor
JPH01164709A (en) Production of composite oxide precursor
JPH059375B2 (en)
JPS62265119A (en) Production of fine powder of niobium double oxide