JPS582596B2 - How to supply zinc ions to the plating bath - Google Patents
How to supply zinc ions to the plating bathInfo
- Publication number
- JPS582596B2 JPS582596B2 JP54060697A JP6069779A JPS582596B2 JP S582596 B2 JPS582596 B2 JP S582596B2 JP 54060697 A JP54060697 A JP 54060697A JP 6069779 A JP6069779 A JP 6069779A JP S582596 B2 JPS582596 B2 JP S582596B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- plating
- bath
- plating bath
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/12—Process control or regulation
- C25D21/14—Controlled addition of electrolyte components
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Electrochemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Description
【発明の詳細な説明】
本発明は亜鉛メッキ浴により被メッキ物に亜鉛メッキを
施す場合に、メッキ浴中の亜鉛濃度を適正に保つために
メッキ浴中に亜鉛イオンを補給する方法に関するもので
ある。[Detailed Description of the Invention] The present invention relates to a method for replenishing zinc ions into a plating bath in order to maintain an appropriate zinc concentration in the plating bath when galvanizing an object to be plated using a galvanizing bath. be.
亜鉛メッキ浴には大別するとシアン化亜鉛メッキ浴と、
近時公害問題回避のために使用されつつあるシアン化合
物を含まないアルカリ性亜鉛メッキ浴(以下、アルカリ
性非シアン浴という)と酸性亜鉛メッキ浴とからなる。Galvanizing baths can be roughly divided into cyanide galvanizing baths,
It consists of an alkaline galvanizing bath that does not contain cyanide compounds (hereinafter referred to as alkaline non-cyanide bath) and an acidic galvanizing bath, which have recently been used to avoid pollution problems.
これら亜鉛メッキ浴への亜鉛イオンの従来の供給方法に
ついて次に説明する。Conventional methods for supplying zinc ions to these galvanizing baths will now be described.
まず、近時公害防止の観点からシアン化合物を用いない
アルカリ性非シアン浴の使用が激増しているが、この場
合の亜鉛イオンの供給方法としては亜鉛陽極を用いる場
合と酸化亜鉛(ZnO)を用いる場合とがある。First, from the perspective of pollution prevention, the use of alkaline non-cyanide baths that do not use cyanide compounds has increased dramatically in recent years, but the methods for supplying zinc ions in this case include using a zinc anode and using zinc oxide (ZnO). There are cases.
亜鉛陽極を用いて陰極に被メッキ物を設置して通電し、
陽極亜鉛の溶解により亜鉛イオンを補給する方法では、
該陽極の表面に黒灰色の被膜が発生し、これが電流の断
続によって脱落してメッキ面にばらつきが生じる欠点が
しばしば惹起される。Using a zinc anode, place the object to be plated on the cathode and apply electricity.
In the method of replenishing zinc ions by dissolving anode zinc,
A black-gray coating is formed on the surface of the anode, which often falls off due to interruptions in current flow, resulting in variations in the plating surface.
また、陽極の溶解が進行してその表面積が小さくなると
電流密度が上昇するが、その際にも同様の現象が生じる
。Furthermore, as the anode progresses to melt and its surface area decreases, the current density increases, and a similar phenomenon occurs at this time as well.
即ち、いずれにしてもメッキ継続中に陽極が不働態化し
やすい欠点があり、さらにこの亜鉛陽極を鋳造する手間
や陽極損耗により交換する際の時間的損失もある。That is, in any case, there is a drawback that the anode tends to become passivated while plating continues, and there is also a time loss when replacing the zinc anode due to the trouble of casting and the anode wear.
そこで、これらを解決するために亜鉛陽極に代えて鉄又
はカーボンのような不溶性陽極を用いる場合があるが、
この場合にはメッキ浴への亜鉛イオンの補給が問題とな
る。Therefore, in order to solve these problems, an insoluble anode such as iron or carbon may be used instead of a zinc anode.
In this case, replenishment of zinc ions to the plating bath becomes a problem.
その一つとして、メッキ浴にZnOを添加することが考
えられるが、通常のアルカリ性非シアン浴はZn2+4
〜13g/l、NaOH70〜150g/l、有機添加
剤2〜30mg/l、温度20〜30℃程度であり、Z
nOは溶解しないでせいぜい乳濁を起す位が普通で、Z
nOが溶解するには例えば40%NaOH水溶液を加熱
してZnOを添加し10%亜鉛溶液を得るような高濃度
水酸化ナトリウム水溶液を高温下で使用しなげればなら
ず、これは現場作業としては極めて煩雑となってしまう
。One possible solution is to add ZnO to the plating bath, but normal alkaline non-cyanide baths contain Zn2+4.
-13g/l, NaOH70-150g/l, organic additives 2-30mg/l, temperature about 20-30℃, Z
Normally, nO does not dissolve and forms an emulsion at most, and Z
In order to dissolve nO, it is necessary to use a highly concentrated sodium hydroxide solution at high temperatures, such as heating a 40% NaOH solution and adding ZnO to obtain a 10% zinc solution. becomes extremely complicated.
また、かように別槽でZnOと濃厚NaOHを溶解した
濃厚ジンケート液を作り、メッキ浴中に補給することは
メッキ浴中のNaOH分が次第に多くなってメッキ不良
の原因となる。Furthermore, if a concentrated zincate solution is prepared by dissolving ZnO and concentrated NaOH in a separate tank and replenished into the plating bath, the NaOH content in the plating bath will gradually increase, causing plating defects.
従って、これを解消するには被メッキ物に電析して液中
から減少した亜鉛イオンだけを補給することが望ましい
。Therefore, in order to solve this problem, it is desirable to replenish only the zinc ions that have been reduced from the solution by electrodepositing on the object to be plated.
その解決手段として例えば特開昭52−7828号公報
によれば、金属亜鉛と、その単極電位が亜鉛よりも貴で
ありかつメッキ液中の過電圧が低いような対極との間に
電池を形成せしめて亜鉛を溶解させ、これをメッキ浴に
供給する方法が述べられているが、この方法ではメッキ
浴以外に電気化学的な亜鉛の溶解設備が必要となり、ま
た亜鉛溶解のためにメッキ電力以外に電力を要し、さら
に亜鉛溶解槽で対陰極に電析する亜鉛は無効分となって
しまう欠点がある。As a solution to this problem, for example, according to JP-A-52-7828, a battery is formed between metal zinc and a counter electrode whose unipolar potential is nobler than that of zinc and whose overvoltage in the plating solution is lower. A method is described in which at least zinc is dissolved and this is supplied to the plating bath, but this method requires electrochemical zinc dissolving equipment in addition to the plating bath, and also requires electricity other than plating power to dissolve the zinc. This method requires electricity, and has the disadvantage that the zinc deposited on the anticathode in the zinc dissolving tank becomes a useless component.
次に、従来から使用されているシアン化亜鉛メッキ浴に
おいて、例えば高濃度シアン浴では温度20〜30℃、
シアン化ナトリウム40g/l、苛性ソーダ80g/l
、シアン化亜鉛60g/l程度の組成を有し、その製法
としては最初の建浴にはじめに濃厚なシアン化ナトリウ
ムと水酸化ナトリウムの混液を作り、これに酸化亜鉛又
はシアン化亜鉛を溶かし、完全に溶解後水を添加して適
量としている。Next, in conventionally used zinc cyanide plating baths, for example, in high concentration cyanide baths, the temperature is 20 to 30°C.
Sodium cyanide 40g/l, caustic soda 80g/l
, has a composition of about 60 g/l of zinc cyanide, and its manufacturing method is to first prepare a concentrated mixture of sodium cyanide and sodium hydroxide, then dissolve zinc oxide or zinc cyanide in this, and then completely dissolve it. After dissolving, water is added to make the appropriate amount.
そして、メッキ継続時の亜鉛イオンの補給方法としては
金属亜鉛鋳造陽極が用いられ、陰極を被メッキ物として
陽極の溶解により亜鉛メッキが行なわれている。As a method for replenishing zinc ions during continued plating, a metal zinc cast anode is used, and zinc plating is performed by dissolving the anode, using the cathode as the object to be plated.
この方法によれば、前記アルカリ性非シアン浴の場合と
異なり、陽極不働態化の現象が起きないので汎用されて
いるが、液中のシアン化ナムの濃度の過不足によってメ
ッキの性質がかなり異なってしまい、例えば濃度が低い
と陽極亜鉛の溶けが悪く白化し、電流も次第に流れにく
くなり、電流効率は良いがメッキの光沢が悪くなってし
まう。This method is widely used because, unlike the alkaline non-cyanide bath, the phenomenon of anodic passivation does not occur, but the properties of the plating vary considerably depending on the concentration of nam cyanide in the solution. For example, if the concentration is low, the anode zinc will not dissolve well and will turn white, and the current will gradually become difficult to flow, resulting in good current efficiency but poor plating gloss.
また、濃度過大のときには陰極にシアン酸の悪臭を生じ
、陽極は光って溶けが早いもののメッキ効率が悪くて粗
メッキとなってしまう。In addition, when the concentration is too high, a foul odor of cyanic acid is generated at the cathode, and although the anode shines and melts quickly, the plating efficiency is poor and the plating becomes rough.
さらに陽極亜鉛は夜間などのメッキ作業休止時にも溶け
ることが多く、そのため作業終了後にメッキ浴から回収
しておく必要があるが、この回収作業のために有毒シア
ン液を放出することにもなり、かなり煩雑な作業となる
。Furthermore, anode zinc often dissolves during periods when plating operations are stopped, such as at night, so it must be recovered from the plating bath after operations are completed, but this recovery process also releases toxic cyanide solution. This is quite a complicated task.
一般に陰極電流効率は60〜85%であるのに対し、陽
極溶解効率は100〜105%と高く、浴中の亜鉛分が
高くなる傾向があり、また亜鉛陽極は亜鉛の陽極泥を生
じることがあり、これはメッキのざらつきの原因となる
のでサラン等の陽極袋を使用してこれを防止している。In general, the cathode current efficiency is 60-85%, whereas the anodic dissolution efficiency is as high as 100-105%, and the zinc content in the bath tends to be high, and zinc anodes tend to produce zinc anode mud. This causes the plating to become rough, so an anode bag made of Saran or the like is used to prevent this.
従って、このように亜鉛陽極は汎用されてはいるが浴の
管理に細心の注意が必要となるのである。Therefore, although zinc anodes are widely used, careful attention must be paid to bath management.
なお、シアン化亜鉛浴への亜鉛イオンの供給手段として
酸化亜鉛を用いることはメッキ浴に溶解しないので不適
である。Note that it is inappropriate to use zinc oxide as a means for supplying zinc ions to the zinc cyanide bath because it does not dissolve in the plating bath.
また、シアン化亜鉛を使用すればメッキ浴に溶けるが、
浴中のシアン濃度が次第に増加するので操業上好ましく
ない。Also, if you use zinc cyanide, it will dissolve in the plating bath, but
This is unfavorable in terms of operation since the cyanide concentration in the bath gradually increases.
近時公害防止の観点から低シアン亜鉛メッキが使用され
ているが、その浴の液組成はZn6〜11g/l、Na
OH60〜90g/l、NaCN5〜10g/l位で温
度20〜35℃であり、高濃度シアン亜鉛メッキ浴と同
じく亜鉛陽極の溶解によって亜鉛イオンが補給されてお
り、上記と同様の問題点がある。Recently, low cyanide zinc plating has been used from the viewpoint of pollution prevention, but the liquid composition of the bath is 6 to 11 g/l of Zn and Na.
The temperature is 20 to 35°C with 60 to 90 g/l of OH and 5 to 10 g/l of NaCN, and zinc ions are replenished by dissolving the zinc anode, similar to the high concentration cyanide zinc plating bath, and there are the same problems as above. .
次に、酸性亜鉛メッキ浴はpH 3〜5位でZnSO4
240〜410g/l、NH4Cl 0〜30g/l,
Al2(SO4)3O〜30g/l、AlCl30〜2
0g/l、Na2SO40〜75g/l、温度20〜3
0℃程度の浴液を用い、ZnSO4が主体でありこれに
電導性を向上させるために中性塩を加え、さらにアルミ
ニウム化合物をpH調整剤として添加しているのである
。Next, the acidic zinc plating bath has a pH of 3 to 5 and ZnSO4
240-410g/l, NH4Cl 0-30g/l,
Al2(SO4)3O~30g/l, AlCl30~2
0g/l, Na2SO40-75g/l, temperature 20-3
A bath liquid of about 0° C. is used, and the bath liquid is mainly composed of ZnSO4, to which a neutral salt is added to improve conductivity, and an aluminum compound is further added as a pH adjuster.
この場合にも陽極亜鉛の溶解によって亜鉛イオンが補給
されているが、溶解亜鉛量と析出亜鉛量のバランスを維
持するために細心の管理が必要であり、陽極泥の処理や
陽極の交換などの煩雑な作業が生じる。In this case as well, zinc ions are replenished by dissolving the anode zinc, but careful management is required to maintain the balance between the amount of dissolved zinc and the amount of precipitated zinc, including treatment of the anode mud and replacement of the anode. This creates complicated work.
そこで、陽極亜鉛の代りに酸化亜鉛をメッキ浴中に溶解
する方法が考えられるが、酸化亜鉛の溶解速度が遅いの
で実用化されていないのが現状である。Therefore, a method of dissolving zinc oxide in the plating bath instead of the anode zinc has been considered, but it has not been put to practical use at present because the dissolution rate of zinc oxide is slow.
本発明法は従来のように亜鉛メッキ浴への亜鉛イオンの
補給のために金属亜鉛陽極や酸化亜鉛(ZnO)を用い
るのではなく、結晶性の良いイプシロン水酸化亜鉛〔ε
−Zn(OH)2〕を用いると前記のいかなる亜鉛メッ
キ浴にも低温でも容易に溶解することを見出し、これを
亜鉛イオン補給剤として用いることを案出したのである
。The method of the present invention uses epsilon zinc hydroxide [ε
-Zn(OH)2] was found to dissolve easily in any of the above-mentioned galvanizing baths even at low temperatures, and devised the use of this as a zinc ion replenisher.
そもそも、結晶質の水酸化亜鉛は一般に高価で入手困難
であり、特殊な条件下でしか合成できなかったが、本発
明者等はその経済的な製造法を開発し、その種々の用途
を研究した結果、亜鉛メッキ浴に使用すると種々の利点
があることが分ったのである。In the first place, crystalline zinc hydroxide is generally expensive and difficult to obtain, and could only be synthesized under special conditions. However, the present inventors have developed an economical method for producing it and are researching its various uses. As a result, it was found that there are various advantages when used in galvanizing baths.
即ち、あらかじめpH10.5以上、温度35℃以下に
保持された反応槽にSO42−、Cl−又は(NO3−
)2の1種又は組合せよりなる亜鉛塩水溶液とNaOH
,NH4OH又はNH3の1種又は組合せよりなるアル
カリ中和剤とを槽内pHが10.5以上を保持できるよ
うに共に連続的に定量供給して連続反応させると結晶性
の良い
ε一Zn(OH)2が沈殿する。That is, SO42-, Cl- or (NO3-
) A zinc salt aqueous solution consisting of one or a combination of 2 and NaOH
, NH4OH or NH3, or a combination thereof, are continuously fed in a constant quantity so that the pH inside the tank is maintained at 10.5 or more. OH)2 precipitates.
例えば、pH11.5、温度35℃に保持された400
l容量の反応槽に亜鉛濃度80g/lの硫酸亜鉛水溶液
を4001/Hrの定量速度で送り、同時に48%濃度
の苛性ソーダ液を80l/Hrの速度で送入する。For example, 400 ml was maintained at a pH of 11.5 and a temperature of 35°C.
A zinc sulfate aqueous solution with a zinc concentration of 80 g/l is fed into a reactor having a volume of 1 at a quantitative rate of 4001/Hr, and at the same time a 48% concentration caustic soda solution is fed at a rate of 80 l/Hr.
上記のpH及び温度を維持して連続中和を行なうと、高
純度の結晶質
ε−Zn(OH)2が55.5kg/Hr生成する。When continuous neutralization is carried out while maintaining the above pH and temperature, 55.5 kg/Hr of highly pure crystalline ε-Zn(OH)2 is produced.
これはX線回折で同定され、化学分析でも確認された。This was identified by X-ray diffraction and confirmed by chemical analysis.
なお、不純物品位はNa30ppm,S100ppm、
Ca20ppm、Mg10ppm、その他10ppm以
下で、極めて高純度の結晶質
ε−Zn(OH)2である。In addition, the impurity quality is Na30ppm, S100ppm,
It is crystalline ε-Zn(OH)2 with extremely high purity, containing 20 ppm of Ca, 10 ppm of Mg, and 10 ppm or less of others.
この結晶性の良いε−Zn(OH)2は、濾過性が良く
洗浄が容易であるので、従来のZn(OH)2のように
濾過困難な微粒子とは異なり、Na+、NH4+等の陽
イオンの付着やSO4−、Cl−の如き陰イオンの付着
もなく、アルカリに対する溶解性も良好である。This highly crystalline ε-Zn(OH)2 has good filterability and is easy to clean, so unlike fine particles like conventional Zn(OH)2, which are difficult to filter, cations such as Na+ and NH4+ There is no adhesion of ions or anions such as SO4- and Cl-, and the solubility in alkali is good.
例えば、10%NaOH液1lに20g
ε−Zn(OH)2を添加し、30℃で攪拌すると10
分間で溶解し、40℃では5分間で溶解する現象を利用
し、アルカリ性非シアン浴系統に別槽を投げ、連続的に
液を循環抜き出しして、この槽にε−Zn(OH)2を
計算量添加して溶解すると、容易に連続メッキ作業が可
能となった。For example, when 20 g ε-Zn(OH)2 is added to 1 liter of 10% NaOH solution and stirred at 30°C, 10
Taking advantage of the phenomenon that it dissolves in 5 minutes at 40°C, a separate tank is placed in the alkaline non-cyanide bath system, the liquid is continuously circulated and extracted, and ε-Zn(OH)2 is added to this tank. By adding and dissolving the calculated amount, continuous plating work became possible.
即ち、この方法によれば浴中の亜鉛濃度の漸減を分析的
に把握し、計算量のε−Zn(OH)2を溶解槽に添加
し、30分間滞留後メッキ浴に繰返すという連続作業が
可能となり、ZnOの如く液中へのNaOHの蓄積も心
配なく、溶解によって生じる水分もメッキ浴の蒸発水分
に見合ったものなのでメッキ浴の液面管理をするだけで
充分である利点を有する。That is, according to this method, the gradual decrease in zinc concentration in the bath is analytically grasped, a calculated amount of ε-Zn(OH)2 is added to the dissolution bath, and after staying there for 30 minutes, the process is repeated to the plating bath. This has the advantage that there is no need to worry about the accumulation of NaOH in the solution as with ZnO, and the moisture generated by dissolution is commensurate with the evaporated moisture in the plating bath, so it is sufficient to manage the liquid level of the plating bath.
また、高濃度シアンメッキ浴における亜鉛イオンの補給
は前記のように亜鉛陽極が専ら使用され、酸化亜鉛を用
いることができないが、この点結晶質のε−Zn(OH
)2は該メッキ浴に容易に溶解するので好適である。In addition, as mentioned above, zinc anodes are used exclusively to replenish zinc ions in high-concentration cyan plating baths, and zinc oxide cannot be used; however, crystalline ε-Zn(OH
) 2 is suitable because it easily dissolves in the plating bath.
さらに、低シアンメッキ浴においても結晶質ε−Zn(
OH)2を浴液に添加することにより容易に亜鉛イオン
の補給ができて、作業管理上非常に簡単化される。Furthermore, crystalline ε-Zn (
By adding OH)2 to the bath solution, zinc ions can be easily replenished, which greatly simplifies work management.
実施例 I
Zn10g/l、NaOH100g/l及び光沢剤10
cc/lからなるアルカリ性非シアン浴100gを用い
、鉄板を陽極とし陰極に被メッキ銅板を設置して亜鉛メ
ッキを行なった。Example I Zn 10g/l, NaOH 100g/l and brightener 10
Zinc plating was carried out using 100 g of an alkaline non-cyanide bath consisting of cc/l, with an iron plate as an anode and a copper plate to be plated as a cathode.
亜鉛の析出量は1日当り2000gであり、亜鉛イオン
補給のためにメッキ浴の一部を連続的に10lの溶解槽
に10l/Hr抜き出し、これにε−Zn(OH)2を
連続的に134g/Hr添加して攪拌溶解し、メッキ槽
に循環した結果、メッキ浴の亜鉛濃度の一定維持が容易
に行なわれ、良好なメッキ作業を行なうことができた。The amount of zinc deposited is 2000 g per day, and a part of the plating bath is continuously drawn out at 10 l/hr into a 10 l dissolving tank to replenish zinc ions, and 134 g of ε-Zn(OH)2 is continuously added to this. /Hr was added, stirred and dissolved, and circulated to the plating bath. As a result, the zinc concentration in the plating bath could be easily maintained at a constant level, and a good plating work could be performed.
実施例 2
NaCN40g/l、NaOH80g/l、Zn(CN
)260g/l、温度25℃からなる高濃度シアン化亜
鉛メッキ浴の浴液1lに
ε−Zn(OH)210gを添加して攪拌したところ、
5分間で溶解した。Example 2 NaCN40g/l, NaOH80g/l, Zn(CN
) 260 g/l and a temperature of 25° C. When 210 g of ε-Zn(OH) was added to 1 liter of the bath solution of a high concentration zinc cyanide plating bath and stirred,
Dissolved in 5 minutes.
Claims (1)
る温度40℃以下の亜鉛メッキ浴へ結晶質のε−Zn(
OH)2を添加することを特徴とするメッキ浴への亜鉛
イオンの供給方法。1 Crystalline ε-Zn (
A method for supplying zinc ions to a plating bath, characterized by adding OH)2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54060697A JPS582596B2 (en) | 1979-05-17 | 1979-05-17 | How to supply zinc ions to the plating bath |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54060697A JPS582596B2 (en) | 1979-05-17 | 1979-05-17 | How to supply zinc ions to the plating bath |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55152167A JPS55152167A (en) | 1980-11-27 |
JPS582596B2 true JPS582596B2 (en) | 1983-01-17 |
Family
ID=13149738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54060697A Expired JPS582596B2 (en) | 1979-05-17 | 1979-05-17 | How to supply zinc ions to the plating bath |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS582596B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6144159Y2 (en) * | 1982-08-06 | 1986-12-12 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5085531A (en) * | 1973-12-04 | 1975-07-10 | ||
JPS52119432A (en) * | 1976-03-31 | 1977-10-06 | Sumitomo Metal Ind | Continuous electrogalvanizing method |
-
1979
- 1979-05-17 JP JP54060697A patent/JPS582596B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5085531A (en) * | 1973-12-04 | 1975-07-10 | ||
JPS52119432A (en) * | 1976-03-31 | 1977-10-06 | Sumitomo Metal Ind | Continuous electrogalvanizing method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6144159Y2 (en) * | 1982-08-06 | 1986-12-12 |
Also Published As
Publication number | Publication date |
---|---|
JPS55152167A (en) | 1980-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3303111A (en) | Electro-electroless plating method | |
US2458839A (en) | Electrodeposition of indium and its alloys | |
US4392922A (en) | Trivalent chromium electrolyte and process employing vanadium reducing agent | |
US4389286A (en) | Alkaline plating baths and electroplating process | |
US4477318A (en) | Trivalent chromium electrolyte and process employing metal ion reducing agents | |
US3576724A (en) | Electrodeposition of rutenium | |
US4157945A (en) | Trivalent chromium plating baths | |
US3879270A (en) | Compositions and process for the electrodeposition of metals | |
US4184929A (en) | Trivalent chromium plating bath composition and process | |
US4356067A (en) | Alkaline plating baths and electroplating process | |
US4543167A (en) | Control of anode gas evolution in trivalent chromium plating bath | |
US4417956A (en) | Alkaline plating baths and electroplating process | |
US6054037A (en) | Halogen additives for alkaline copper use for plating zinc die castings | |
US3855089A (en) | Process for the electrolytic refining of heavy metals | |
US4521282A (en) | Cyanide-free copper electrolyte and process | |
US4923573A (en) | Method for the electro-deposition of a zinc-nickel alloy coating on a steel band | |
JPS582596B2 (en) | How to supply zinc ions to the plating bath | |
EP0088192B1 (en) | Control of anode gas evolution in trivalent chromium plating bath | |
JPH1060683A (en) | Electroplating with ternary system zinc alloy, and its method | |
US4439285A (en) | Trivalent chromium electrolyte and process employing neodymium reducing agent | |
US1991995A (en) | Platinum metal ammino cyanide plating bath and process for electrodeposition of platinum metal therefrom | |
US2489523A (en) | Electrodeposition of tin or lead-tin alloys | |
US3347757A (en) | Electrolytes for the electrodeposition of platinum | |
JPS5854200B2 (en) | Method of supplying metal ions in electroplating bath | |
JP3277816B2 (en) | Ternary zinc alloy electroplating method |