JPS5825884B2 - Dynamic thrust bearing - Google Patents
Dynamic thrust bearingInfo
- Publication number
- JPS5825884B2 JPS5825884B2 JP2464376A JP2464376A JPS5825884B2 JP S5825884 B2 JPS5825884 B2 JP S5825884B2 JP 2464376 A JP2464376 A JP 2464376A JP 2464376 A JP2464376 A JP 2464376A JP S5825884 B2 JPS5825884 B2 JP S5825884B2
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- rotating member
- spiral groove
- end position
- dimension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Sliding-Contact Bearings (AREA)
Description
【発明の詳細な説明】
この発明は流体内で回転するスパイラル状の溝付きの動
圧形スラスト軸受に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrodynamic thrust bearing with a spiral groove that rotates in a fluid.
従来、この種の軸受は例えば第1図に示すような軸端に
球面状の凸形表面11をもち、この球面状の凸形表面の
下方側には複数条のスパイラル状の溝12を有する回転
部材1と、この回転部材1の凸形表面11と対向する側
にこれと共働する凹形受面21を有する支承部材2とよ
り構成されており、前記スパイラル状の溝の上部終端1
3は一線に揃いかつ凹形受面2の上部平面22に対して
H寸法だけ図において上方に位置するように構成されて
いた。Conventionally, this type of bearing has, for example, a spherical convex surface 11 at the shaft end as shown in FIG. 1, and a plurality of spiral grooves 12 on the lower side of this spherical convex surface. It consists of a rotary member 1 and a bearing member 2 having a concave receiving surface 21 cooperating with the convex surface 11 of the rotary member 1 on the side opposite to the convex surface 11 of the rotary member 1, and the upper end 1 of the spiral groove.
3 are arranged in a straight line and positioned above the upper plane 22 of the concave receiving surface 2 by the dimension H in the figure.
上記の寸法Hはこの種軸受の回転性能に大きな影響をも
つことがわかっており、軸受隙間への流体の流入はO<
H<δ(δは軸受の種類によってきする定数)の範囲で
は安定であり、H〉δのときは不安定となった。It is known that the above dimension H has a large effect on the rotational performance of this type of bearing, and the inflow of fluid into the bearing gap is O<
It was stable in the range of H<δ (δ is a constant depending on the type of bearing), and became unstable when H>δ.
一方H<0のときは軸受の周速が小さい範囲では安定で
あるが、回転が速く周速が大きくなると不安定になる場
合があった。On the other hand, when H<0, the bearing is stable in a small circumferential speed range, but may become unstable when the rotation is fast and the circumferential speed becomes large.
そして軸受隙間内への流体の流入が不安定になると、浮
上量りの変動やその急減による軸受の焼付き、または回
転部材のふれ1わり犬などのホワール発生が起り易くな
った。When the flow of fluid into the bearing gap becomes unstable, the bearing is likely to seize due to fluctuations in the flying height or its sudden decrease, or whirl, such as wobbling of the rotating member, is likely to occur.
さらに軸受の回転上昇に伴い、軸受の発熱により流体の
粘度が変化するため、浮上量りが減少し、従って上記の
H寸法が変化するので、あらゆる回転数において最適な
H寸法の値を保持することは極めて困難であった。Furthermore, as the rotation of the bearing increases, the viscosity of the fluid changes due to the heat generated by the bearing, so the flying height decreases and the above H dimension changes, so it is important to maintain the optimal value of the H dimension at all rotation speeds. was extremely difficult.
この発明は上記の欠点を除去するためになされたもので
、回転変化、流体の粘度変化等に起因するH寸法の変化
に対処するためにスパイラル状の溝の総数の中、何本か
はスパイラル状の溝の上部終端位置が最適な寸法Hを保
持できるように構成された動圧形スラスト軸受の提供を
目的とするものである。This invention was made to eliminate the above-mentioned drawbacks, and in order to cope with changes in H dimension caused by changes in rotation, changes in fluid viscosity, etc., some of the spiral grooves are It is an object of the present invention to provide a dynamic pressure type thrust bearing configured such that the upper end position of a shaped groove can maintain an optimum dimension H.
次にこの発明の実施例を図を参照しながら説明する。Next, embodiments of the present invention will be described with reference to the drawings.
3は下方に球面状の凸形表面31を有する回転部材で、
凸形表面31には複数条のスパイラル状の溝5が形成さ
れている。3 is a rotating member having a spherical convex surface 31 on the lower side;
A plurality of spiral grooves 5 are formed on the convex surface 31.
回転部材1に対応する支承部材4は、前記凸形表面31
に対して微小な隙間が形成され、凸形受面31と共働し
て流体軸受を形成するための凹形受面41をもっている
。The bearing member 4 corresponding to the rotating member 1 has the convex surface 31
A minute gap is formed between the bearing surface and the concave bearing surface 41 which cooperates with the convex bearing surface 31 to form a fluid bearing.
この実施例においては、スパイラル状の溝5の上部終端
位置が一条おきに高い位置51と、低い位置52に形成
され、この低い位置52は、回転部材3が高い位置で回
転するときに支承部材4の上部平面42と、最適なH寸
法が維持される線に一致するように設計され、終端位置
が高い位置51は、回転部材3が回転時の支障を起さぬ
範囲で支承部材4に対して最も低い位置を予想して、こ
の位置に釦ける支承部材4の上部平面42との最適Hす
法に終端位置が来るように設計する。In this embodiment, the upper end positions of the spiral grooves 5 are formed every other line at a high position 51 and a low position 52, and when the rotating member 3 rotates at a high position, the low position 52 4 is designed to coincide with the upper plane 42 of 4 and the line where the optimum H dimension is maintained, and the high end position 51 is designed to be aligned with the upper plane 42 of the rotary member 4 to the extent that the rotating member 3 does not interfere with the rotation of the supporting member 4. In contrast, the lowest position is expected, and the end position is designed so that it is located at the optimal H-shape with the upper plane 42 of the support member 4 that is to be buttoned at this position.
上記の高い位置と低い位置は軸受の大きさにもよるが微
少な差であり、図は誇張して画かれている。The above-mentioned high and low positions are slightly different depending on the size of the bearing, and the figure is exaggerated.
第2図においては回転部材3が低い位置で回転した場合
を示し、終端位置の高い位置51と支承部材4の上部平
面42とは最適H寸法が保持されている。FIG. 2 shows a case where the rotating member 3 is rotated at a low position, and the optimum H dimension is maintained between the high position 51 of the terminal position and the upper plane 42 of the support member 4.
逆に回転部材3が高い位置で回転した場合には終端位置
の低い位置52と支承部材4の上部平面42とが最適H
寸法を維持することになる。On the other hand, when the rotating member 3 rotates at a high position, the lower end position 52 and the upper plane 42 of the support member 4 are at the optimum position H.
The dimensions will be maintained.
次に示す第2の実施例においてはスパイラル状の溝6の
上部終端位置を順次変化させた場合で、回転部材3の回
転中における支承部材に対する位置を低、中、高と予定
し、これに対するスパイラル状の溝6の上部終端位置を
高い位置61、中位の位置62、低い位置63と選定、
設計したもので、実際の差は極めて小さいものである。In the second embodiment shown below, the upper end position of the spiral groove 6 is sequentially changed, and the position relative to the support member during rotation of the rotating member 3 is scheduled to be low, middle, and high. The upper end positions of the spiral groove 6 are selected as a high position 61, a middle position 62, and a low position 63;
As designed, the actual difference is extremely small.
この実2の実施例においても、回転部材3が支承部材4
に対して高い位置で回転する場合にはスパイラル状の溝
6の終端位置は、その低い位置63と支承部材4の上部
平面42とが、最適H寸法を保持し、回転部材3が中位
の位置で回転する場合には、スパイラル状の溝6の終端
位置の中位の位置64が上部平面42と最適H寸法を維
持し回転部材3が低位置で回転する場合には、スパイラ
ル状の溝6の終端位置の高い位置61が上部平面42と
最適Hす法を保持する。Also in this second embodiment, the rotating member 3 is connected to the supporting member 4.
When rotating at a high position, the end position of the spiral groove 6 is such that the low position 63 and the upper plane 42 of the support member 4 maintain the optimum H dimension, and the rotating member 3 is at a medium position. When the rotating member 3 rotates at a low position, the intermediate position 64 of the end position of the spiral groove 6 maintains the optimum H dimension with the upper plane 42, and when the rotating member 3 rotates at a low position, the spiral groove 6 The high position 61 of the end position of 6 maintains the optimum H-shape with the upper plane 42.
上記の実施例においては、スパイラル溝の終端位置を高
低2種類、または高、中、低の3種類について説明した
が、この終端位置はもつと細く差をつけて、4種類、5
種類とすることも出来るし、高低順を必ずしも一定順序
にする必要もない。In the above embodiment, the end position of the spiral groove was explained in two types, high and low, or in three types, high, medium, and low.
It is also possible to use a type, and the order of height does not necessarily have to be set in a fixed order.
上記発明の動圧形スラスト軸受は回転時においてスパイ
ラル状の溝の総数条の中、複数条の溝は常に最適H寸法
を保持するので、軸受回転中の流体の流入は安定し、回
転部材の浮上量および軸受温度の変動を小さくおさえる
ことができ回転性能を従来のこの種軸受に比較して大い
に向上することができる。In the hydrodynamic thrust bearing of the invention described above, during rotation, a plurality of the spiral grooves always maintain the optimum H dimension, so that the inflow of fluid during bearing rotation is stable, and the rotating member is Fluctuations in the flying height and bearing temperature can be suppressed, and rotational performance can be greatly improved compared to conventional bearings of this type.
なお、上記の実施例においては、回転部材は球面状の凸
形表面をもち、支承部材は前記の球面状の凸形表面に対
応する凹形受面をもつ例を示したが、これらの凸形表面
や凹形受面は球状に限定するものではなく、前記の表面
や受面が円すい状を呈する場合においても、スパイラル
状の溝の終端位置に微小差を設けて最適H寸法の維持を
はかることにより、上記と同様の効果が期待出来る。In the above embodiment, the rotating member has a spherical convex surface, and the supporting member has a concave receiving surface corresponding to the spherical convex surface. The shaped surface or concave receiving surface is not limited to a spherical shape, and even if the surface or receiving surface has a conical shape, the optimal H dimension can be maintained by providing a minute difference in the end position of the spiral groove. By measuring, the same effects as above can be expected.
第1図は従来の動圧形スラスト球面軸受を示す一部縦断
正面図、第2図および第3図はそれぞれこの発明の実施
例を示す一部縦断正面図である。
符号の説明 1は回転部材、2は支承部材、12はスパ
イラル状の溝、Hは最適寸法、hは浮上量、3は回転部
材、4は支承部材、42は上部平面、5はスパイラル状
の溝、51はスパイラル状の溝の終端位置が高い位置、
52はスパイラル状の溝の終端位置が低い位置、6はス
パイラル状の溝、61はスパイラル状の溝の終端位置が
高い位置、62はスパイラル状の溝の終端位置が中位の
位置、63はスパイラル状の溝の終端位置が低い位置。FIG. 1 is a partially vertical front view showing a conventional dynamic pressure type thrust spherical bearing, and FIGS. 2 and 3 are partially vertical front views showing an embodiment of the present invention. Explanation of symbols 1 is a rotating member, 2 is a support member, 12 is a spiral groove, H is an optimal dimension, h is a flying height, 3 is a rotating member, 4 is a support member, 42 is an upper plane, 5 is a spiral groove Groove, 51 is a position where the end position of the spiral groove is high;
52 is a low end position of the spiral groove, 6 is a spiral groove, 61 is a high end position of the spiral groove, 62 is a medium end position of the spiral groove, and 63 is a middle position. The end position of the spiral groove is low.
Claims (1)
部材と、前記回転部材の凸形表面と対向して共働する凹
形受面を有する支承部材とよりなる動圧形スラスト軸受
において、回転部材の凸形表面におけるスパイラル状の
溝の上部終端位置に微小差を設け、支承部材の上部平面
に対してスパイラル状の溝の中の何条かはその終端位置
が常に最適なH寸法を保持することを特徴とする動圧形
スラスト軸受。1. A hydrodynamic thrust bearing comprising a rotating member having a plurality of spiral grooves on a convex surface, and a support member having a concave bearing surface that faces and cooperates with the convex surface of the rotating member, A slight difference is provided in the upper end position of the spiral groove on the convex surface of the rotating member, and the end position of some of the spiral grooves always has an optimal H dimension with respect to the upper plane of the support member. A dynamic pressure type thrust bearing characterized by holding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2464376A JPS5825884B2 (en) | 1976-03-09 | 1976-03-09 | Dynamic thrust bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2464376A JPS5825884B2 (en) | 1976-03-09 | 1976-03-09 | Dynamic thrust bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52109058A JPS52109058A (en) | 1977-09-12 |
JPS5825884B2 true JPS5825884B2 (en) | 1983-05-30 |
Family
ID=12143807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2464376A Expired JPS5825884B2 (en) | 1976-03-09 | 1976-03-09 | Dynamic thrust bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5825884B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0272884U (en) * | 1988-11-22 | 1990-06-04 |
-
1976
- 1976-03-09 JP JP2464376A patent/JPS5825884B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0272884U (en) * | 1988-11-22 | 1990-06-04 |
Also Published As
Publication number | Publication date |
---|---|
JPS52109058A (en) | 1977-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3944304A (en) | Gas-lubricated self-pressurizing radial bearing | |
US6158892A (en) | Fluid film thrust bearing having integral compliant foils | |
JPH10184665A (en) | Dynamic pressure bearing | |
JPS5825884B2 (en) | Dynamic thrust bearing | |
JPH0147649B2 (en) | ||
JPS6319621Y2 (en) | ||
KR19980067442A (en) | Connected Dynamic Pressure Generator | |
JPS5830525A (en) | Dynamically pressurized fluid bearing device | |
JPS61236921A (en) | Static pressure bearing | |
JPH10227312A (en) | Fluid bearing device | |
JPS5920059B2 (en) | Gas sealed shaft sealing device | |
JPH11336753A (en) | Self-aligning roller bearing | |
JPH03292414A (en) | Air bearing for high speed revolution | |
KR200177723Y1 (en) | Air dynamic pressure bearing apparatus having micro pockets | |
JPS63312509A (en) | Fluid bearing structure | |
JPS5855364B2 (en) | Vertical bearing device | |
JPS63318315A (en) | Bearing device | |
JPH0814402A (en) | Magnetic fluid seal | |
JP3572796B2 (en) | Hydrodynamic bearing | |
JPS63285320A (en) | Fluid bearing structure | |
KR100196936B1 (en) | Fluid bearing system | |
JPS595170B2 (en) | Dynamic thrust bearing | |
KR100196934B1 (en) | Thrust bearing system | |
JPS62127508A (en) | Tilting pad journal bearing | |
JPH01279112A (en) | Sliding bearing for rotary shaft |