JPS5825282A - Photoelectric transducer - Google Patents

Photoelectric transducer

Info

Publication number
JPS5825282A
JPS5825282A JP56123660A JP12366081A JPS5825282A JP S5825282 A JPS5825282 A JP S5825282A JP 56123660 A JP56123660 A JP 56123660A JP 12366081 A JP12366081 A JP 12366081A JP S5825282 A JPS5825282 A JP S5825282A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor
amorphous
intrinsic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56123660A
Other languages
Japanese (ja)
Other versions
JPH0359587B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP56123660A priority Critical patent/JPS5825282A/en
Publication of JPS5825282A publication Critical patent/JPS5825282A/en
Publication of JPH0359587B2 publication Critical patent/JPH0359587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To effect highly efficient photoelectric conversion by laminating semi- amorphous n type and p type layers and an intrinsic or substantially intrinsic layer of amorphous substance which is produced in such a manner as H2, halogen or alkaline metal is added to the n type semi-amorphous silicon on the side of the light incidence surface. CONSTITUTION:A p type layer 53, intrinsic layer 51 and n type layer 52 of silicon are formed on a metallic substrate by CVD plasma process adding SiH, B2H6, PH3, and NH3. The layer 56 is amorphous AS, and the layer 60 gradually grows SAS of semi- amorphous substance in the direction of an electrode 54. Electromagnetic energy is increased as the intrinsic layer is accumulated and Fermi level is caused to come closer to the conduction band to promote mobility of the holes and to increase current flow. In addition, optical absorption is reduced by changing the n type layer 52 and its neighborhood into SAS to cause holes to be generated at deeper level. Therefore, diffusion distance of holes to the electrode on the reversed side can be shortened so as to increase electric current. When the p type layer 53 is formed on the substrate, the layer is caused to compose two layers, SAS and AS layers, and conduction bands and valence bands are continuously junctioned at the hetero junction faces. By such a setup, highly efficient photoelectric conversion can be achieved.

Description

【発明の詳細な説明】 本発明は非単結晶半導体を用いた半導体装置特に光照射
によシミ子・ホール対を発生する光起電力効果を有する
真性または人為的にPまたはN娶の不純物を添加しない
いわゆる実質的に真性の半導体層(以下単に1層または
単に真性半導体層という)およびP型またはN型半導体
層に関する0 本発明はかかる半導体層に再結合中心中和用の水素、フ
ッ素または塩素の如きノ)ロゲン元素またはリチューム
、ナトリューム、カリュームの如きアルカリ金属元素を
含有するとともに、6〜2000ム代表的には6〜10
0ムの大きさの結晶性(ショートレンジオーダの結晶性
)を有するセミアモルファス(半非晶質)半導体(以下
8A8という)とかかるショートレンジオーダの結晶性
を有さないアモルファス(非晶質)半導体(以下A8と
いうンとが層状に積層構造を有して設けられたものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device using a non-single-crystal semiconductor, particularly to a semiconductor device using an intrinsic or artificial P or N-containing impurity that has a photovoltaic effect that generates a pair of spots and holes when irradiated with light. Regarding a so-called substantially intrinsic semiconductor layer (hereinafter simply referred to as one layer or simply an intrinsic semiconductor layer) and a P-type or N-type semiconductor layer, the present invention provides hydrogen, fluorine, or Contains chlorine elements such as chlorine or alkali metal elements such as lithium, sodium, and potassium, and typically contains 6 to 2000 μm, typically 6 to 10
Semi-amorphous (semi-amorphous) semiconductor (hereinafter referred to as 8A8) having crystallinity of 0 μm size (crystallinity of short range order) and amorphous (non-crystalline) having no crystallinity of such short range order. A semiconductor (hereinafter referred to as A8) is provided in a layered structure.

本発明は特に光電変換装置における光照射面側のN型の
半導体層がその領域での入射光の吸収性を少なくするた
め8A8とし、さらにそれに隣接した真性半導体層を8
A8とし、入射光側でのキャリアの2イ7タイ−ムを長
くしさらに−この5AEI上面に真性の階段状または連
続的にムSまたはAsを混入させた半導体層を積層して
内部電界を自発的に設け、光−電気変換効率の向上を促
したものである。
In particular, in the present invention, the N-type semiconductor layer on the light irradiation surface side of the photoelectric conversion device is made of 8A8 in order to reduce the absorption of incident light in that region, and the intrinsic semiconductor layer adjacent thereto is made of 8A8.
A8, the carrier time on the incident light side is lengthened, and a semiconductor layer mixed with S or As is stacked on the top surface of this 5AEI in an intrinsic step-like or continuous manner to increase the internal electric field. It was established voluntarily to encourage improvements in light-to-electricity conversion efficiency.

8A8に関しては本発明式の出願になる特願昭55−0
26388.855.3.3出願(セミアモルファス半
導体)が知られている0さらにこの8Alilを利用し
てP工N接合型の光電変換装置を設けた発明として、本
発明式の出願になる特願昭66−oosa99.856
.1.22 (光電変換装置)が知られている。さらに
これら8ムSおよびム8を用またはN型の半導体層に対
し窓構造を設けたものとして本発明式の出願になる 半
導体装置(米国特許 帖239.5541880.12
.6発行米国特許 4.254.4291981.3.
3発行)が知られている。本発明はかかる本発明式の発
明になる出願をさらに発展させたものである。
Regarding 8A8, a patent application filed in 1986-0 is filed in accordance with the present invention.
26388.855.3.3 application (semi-amorphous semiconductor) is known 0 In addition, a patent application filed in the form of the present invention is filed as an invention in which a P-N junction type photoelectric conversion device is provided using this 8Alil. Showa 66-oosa99.856
.. 1.22 (photoelectric conversion device) is known. Further, an application of the present invention is filed as a semiconductor device using these 8 MU S and MU 8 or providing a window structure for an N-type semiconductor layer (US Patent No. 239.5541880.12)
.. 6 Issued US Patent 4.254.4291981.3.
3 issue) is known. The present invention is a further development of the application that constitutes the invention of the present invention type.

さらに本発明はムSとSi2とが種々の物性において異
な)、光の吸収係数、光伝導度、pまたはN型の不純物
を添加した時の活性化エネルギーおよびイオン化率にき
わめて大ぎな違いがある。本発明はそれぞれの半導体を
有機的に結合させて高効率の光電変換装置を設けた0以
下に図面に従って説明する。
Furthermore, in the present invention, S and Si2 differ in various physical properties), and there are extremely large differences in light absorption coefficient, photoconductivity, activation energy and ionization rate when p- or N-type impurities are added. . The present invention will be described below with reference to the drawings, in which a highly efficient photoelectric conversion device is provided by organically combining respective semiconductors.

第1図は本発明を笑施するのに必鷹なプラズマOVD装
置の概要を示す。
FIG. 1 shows an outline of a plasma OVD apparatus necessary for implementing the present invention.

すなわち基板(1)は石英ホルダー(ボー))(2)K
保持された反応炉(ホ)中にガスの流れに平行で体は珪
化物気体(8iXHam H21)を(6)よシ、また
P型用不純物であるジボラン(へ糧を四よシ、Nした。
In other words, the substrate (1) is a quartz holder (Bo) (2) K
Parallel to the flow of gas in the reactor (e), the body was injected with silicide gas (8iXHam H21) (6), and diborane (4), which is an impurity for P-type, and N. .

また広いエネルギノ(ンド巾とする添加材例えばTM日
(テトラメチルシラン((1)、81))をバブラーを
へてHe、Eにて/<プルして供給する。またアンモニ
ア(NH)、炭化水素例えばOH。
In addition, additives with a wide energy range, such as TM (tetramethylsilane (1), 81), are supplied by pulling them through a bubbler with He and E. Also, ammonia (NH), carbonized Hydrogen such as OH.

C,H4でおってもよい。C, H4 may be used.

これらを混合器a″i)をへてマイクロ波(1〜10G
Hz代表的には2.45GHg)の1t(aエネルギに
LO)によりエキサイタ−())にそ反応性気体またキ
ャリアガスに二次電磁エネ尤ギを加えそれらの気体を活
性化、分解して導入口(9)よシ反応容器員に導入した
。この反応容器では直流〜20MHs+面を有する基板
(1)K抵抗加熱炉(5)によシZoo〜500’C代
表的には300°Cに加熱し多量の基板処理ができるよ
うにした0 反応生成物は加熱された基板上に二次エネルギによシ被
形成面上に被膜がふみ固められる如くにして形成させた
。さらにキャリアガスおよび不純物が排気口(6)をへ
てバルブa1)、ロータリーポンプ四をへて外部に放出
される0 反応容器内の圧力は0.1〜1Otorr、代表的には
0.3〜1tOrrとしfr−0 第に図は不純物を添加しない実質的に真性の半導体被膜
を形成させたものである。図面(&)は二次′a磁エネ
ルギの光吸収係数、φ)はキャリアの拡散長または光伝
導度、(0)は活性化エネルギを示したものである0 第2図(1)に示される如く、Asの領域(36)と8
A8の領域<SPQとは光吸収係数が異なシ8ASの方
が小さくなる傾向がある0図面(4)は波長500nm
における実験値を示すOさらに二次透磁エネルギーに加
えて二次電磁エネルギを反応性気体が分解、反応をおこ
さない程度で活性化を行なうと曲線(32)より(31
に窒化する9これは形成された被膜の成長速度が3〜5
倍となシまたその密度も同上することから高密度による
増大と推定される。
These are passed through a mixer a″i) and microwaved (1 to 10G
By applying secondary electromagnetic energy to the exciter ()) to the reactive gas or carrier gas by 1 t (LO to a energy) of Hz (typically 2.45 GHg), these gases are activated and decomposed. It was introduced into the reaction vessel member through the inlet (9). In this reaction vessel, a substrate (1) having a DC to 20 MHs surface was heated in a K resistance heating furnace (5) to a temperature of 500°C, typically 300°C, so that a large amount of substrates could be processed. The product was formed on a heated substrate using secondary energy such that the film was spread and hardened on the surface to be formed. Furthermore, the carrier gas and impurities are discharged to the outside through the exhaust port (6), the valve a1), and the rotary pump 4. The pressure inside the reaction vessel is 0.1 to 1 Otorr, typically 0.3 to 1tOrr, fr-0. The second figure shows a substantially intrinsic semiconductor film to which no impurities are added. The figure (&) indicates the optical absorption coefficient of the secondary 'a magnetic energy, φ) indicates the carrier diffusion length or photoconductivity, and (0) indicates the activation energy.0 As shown in Figure 2 (1). As shown, the area of As (36) and 8
Area of A8 < The light absorption coefficient is different from SPQ. 8 AS tends to be smaller. 0 Drawing (4) has a wavelength of 500 nm.
In addition to the secondary magnetic permeability energy, the reactive gas decomposes the secondary electromagnetic energy and activates it to the extent that the reaction does not occur. From curve (32), (31
9 This means that the growth rate of the formed film is 3 to 5.
Since the density is also the same as above, it is presumed that the increase is due to high density.

第2図(ト))における曲線(34)は13.56MH
gもの二次電磁エネルギのみ、また曲線(3段はマイク
ロ波を加えた場合を示す。いずれにおいても光伝導度が
81S(3〕〕になるとIX l 6’〜8 X 16
” (Ao m5’の高い値を得、これは単結晶珪素の
場合にきわめて近いものであった。
Curve (34) in Figure 2 (g)) is 13.56MH
g of secondary electromagnetic energy alone, or the curve (the third row shows the case where microwaves are added. In either case, when the photoconductivity becomes 81S (3)), IX l 6' ~ 8 X 16
(High values of Aom5' were obtained, which were very close to those for single-crystal silicon.

さらに活性化エネルギは逆に小さくなる東みかけ上電子
の拡散長がきわめて大きくなり、N型化傾向がみ−られ
た。
Furthermore, the activation energy decreases, and the diffusion length of electrons becomes extremely large, indicating a tendency to become N-type.

本発明の真性半導体(実質的に真性の牛導体を含む)領
域において、被形成面の積層方向においてAsとSi2
とを層状にこれらのJ4ss′Jt性を利用して不連続
または連続的に変化せしめよシ高い変換効率の光電変換
装置を得んとしたものである。
In the intrinsic semiconductor (including substantially intrinsic conductor) region of the present invention, As and Si2 are formed in the stacking direction of the formation surface.
The present invention aims to obtain a photoelectric conversion device with high conversion efficiency by discontinuously or continuously changing the J4ss'Jt properties in a layered manner.

第3図はPまたはN型の導電型を有するムBまたは8A
8に関するもので、特に0.2〜2チ例えばB、H4/
BIH2・0.5%、 PHk/SiH4・1チとした
時の資料である。
Figure 3 shows MuB or 8A having P or N type conductivity.
8, especially 0.2 to 2 units such as B, H4/
This is the data when BIH2・0.5% and PHk/SiH4・1ch.

第3図(A)は二次電磁エネルギと光吸収係数の関係を
、(B)は不純物と活性化エネルギを、(0)はエネル
ギバンド巾を示す。
FIG. 3 (A) shows the relationship between secondary electromagnetic energy and optical absorption coefficient, (B) shows impurities and activation energy, and (0) shows the energy band width.

第3図(4)において曲線(41)は珪素のみの500
nmにおける吸収係数を示す。ここにおいてもA8(3
6)に比べてSム日(3))にした方が吸収係数が約1
/3〜1/30になシ、窓効果を期待することができる
。加えてこの珪素に炭素をEIiO結合を作るべ(07
Si・0.2〜0.4添加したもので、かくするとその
エネルギバンド巾も1.6eVよp2.。
In Fig. 3 (4), the curve (41) is 500% of silicon only.
The absorption coefficient in nm is shown. Here too, A8 (3
Compared to 6), the absorption coefficient is about 1 for Smuday (3)).
You can expect a window effect from /3 to January 30. In addition, carbon should be added to this silicon to form an EIiO bond (07
It is doped with 0.2 to 0.4 Si, and the energy band width is 1.6 eV p2. .

evic広げることができるため、500nm Kおけ
る吸収係数が減少し、曲線(46)を得−ることができ
る。特に8A8化させると二次電磁エネルギを60〜S
OWとし二次電磁エネルギを30〜100Wとすると1
〜3XIOoゴ′と低い値を得るととができた。
Since the evic can be widened, the absorption coefficient at 500 nm K is reduced and curve (46) can be obtained. Especially when converting to 8A8, the secondary electromagnetic energy is 60~S
If OW is assumed and the secondary electromagnetic energy is 30 to 100W, then 1
A low value of ~3XIOo was obtained.

ム日と8A8とは第3図φ)の活性化エネルギからも明
らかにすることができる。曲線(2)は二次電磁エネル
ギのみまた曲線03)は−次′を磁エネルギを30に1
00W加えた場合を示している。
8A8 can also be clarified from the activation energy shown in FIG. 3 φ). Curve (2) is for secondary electromagnetic energy only, and curve 03) is for magnetic energy of 30 to 1.
The case where 00W is added is shown.

図面よシ明らかな如く、被形成面よシ離れた位置で水素
の如き軽い元素に電磁エネルギを加えてマイクロ波を用
いると重い分子または会合分子には運動エネルギを与え
ることなくよシ低い二次エネルギにて微結晶性を有する
8A8構造に近ずけることができることがわかる。
As is clear from the drawing, when microwaves are used to apply electromagnetic energy to a light element such as hydrogen at a position far from the formation surface, a lower secondary energy is generated without imparting kinetic energy to heavy molecules or associated molecules. It can be seen that the 8A8 structure having microcrystallinity can be approached by changing the energy.

本発明は二次エネルギを100W以下特に60W(S 
A B)と20W(As)としてこれらのふたつの中間
構造を含みPXN型の光電変換装置におけるPまたはN
型半導体層に異なる構造の半導体層を積層しよシ高いi
e−+を得ようとしたものである。
The present invention reduces the secondary energy to 100W or less, especially 60W (S
P or N in a PXN type photoelectric conversion device that includes these two intermediate structures as A B) and 20W (As).
If a semiconductor layer with a different structure is stacked on the type semiconductor layer, the high i
This is an attempt to obtain e-+.

第4図および第5図は本発明の光電変換装置におけるた
て断面図およびその、エネルギバンド図を示している。
4 and 5 show a vertical sectional view and an energy band diagram of the photoelectric conversion device of the present invention.

第4図は金属基板例えばステンレス基板上にP型半導体
層(53) 、 N型半導体層(sl)、N型半導体層
(52L透明導電膜上になる対抗電極C54)が設けら
れ、照射光(55)によシエ型層(5])で発生した電
子・ホール対(5υをP型層QすN型層o52)に内部
電界) によシトリ7トして光起電力を得ようとしたものである
In FIG. 4, a P-type semiconductor layer (53), an N-type semiconductor layer (sl), and an N-type semiconductor layer (counter electrode C54 on a transparent conductive film 52L) are provided on a metal substrate, such as a stainless steel substrate, and irradiation light ( 55) An attempt was made to obtain a photovoltaic force by transferring electron-hole pairs (5υ to the P-type layer Q and N-type layer O52) to the internal electric field) generated in the Yoshie-type layer (5]). It is something.

第4図(4)に対応した一例のエネルギバンド図を同(
B)に番号を対応して示している。図面においテ(56
)はAsであシ、また(60)は8A8が′電極(54
)方向に向って漸増させていったものである0このEI
AS化率が大きいほどすなわち1層を積層してゆくにつ
れて、第2図(0)に示した如く電磁エネルギを増加さ
せていくとフェルミレベルが伝導帯に近すき、結果とし
て左下さが9の内部電界を得ることができる。その結果
ホールを価電子帯にて基板方向にドリフトさせやすくな
シ、みかけ上の拡散長を長くでき、結果として電流を増
加させることができる。加えてN層(52)とこの近傍
を8ム8化することによシ、この領域での光吸収が少な
くなシ、拡散長の短いホールに対しその発生する場所が
N層(52)のごく近傍ではなく内部にすることができ
る。そのため結果としてホールの裏面電極までの実質的
な拡散距離を短1くすることができ、この面でも大電流
をもたらすことができるように々つた。
An example energy band diagram corresponding to Fig. 4 (4) is shown in the same figure (
B) shows corresponding numbers. Drawing smell (56)
) is As, and (60) is 8A8' electrode (54
) 0 This EI is gradually increased in the direction
As the AS ratio increases, that is, as one layer is stacked, as the electromagnetic energy increases as shown in Figure 2 (0), the Fermi level approaches the conduction band, and as a result, the lower left becomes 9. An internal electric field can be obtained. As a result, holes can easily drift toward the substrate in the valence band, and the apparent diffusion length can be increased, resulting in an increase in current. In addition, by making the N layer (52) and its surrounding area 8x8, light absorption in this area is small, and holes with short diffusion lengths are generated in the N layer (52). It can be internal rather than in the immediate vicinity. As a result, the effective diffusion distance of holes to the back electrode can be shortened, and a large current can be generated even on this surface.

さらに基板上にP層を形成するに際し、このP層も8A
8化された領域(6段、ムBの領域(64)と2層に積
層し、P−工接合界面での構造敏感性を打けしこの面で
のへテロ接合面での伝導帯価電子帯を連続接合させるこ
とは重要であった。
Furthermore, when forming a P layer on the substrate, this P layer also has an 8A
The 8-layered region (6 layers, MuB region (64) is stacked in two layers to improve the structural sensitivity at the P-C junction interface. It was important that the bands be joined continuously.

かかるAs、8層日を連続的に変化させる場合のSA8
化率を第6図φ)Kその一例を示している。図面におい
てN層(52) 、 P層(53)は8五8化し特に窓
効果をもたらしめる半導体層(52)はその広いエネル
ギバンド巾として吸収係数の減少に務めた。
Such As, SA8 when changing the 8 layer days continuously
Figure 6 φ)K shows an example of the conversion rate. In the drawing, the N layer (52) and the P layer (53) are 858 in size, and the semiconductor layer (52), which can bring about a window effect, has a wide energy band width and serves to reduce the absorption coefficient.

この構造において灼絡寛流20〜30mム10rbLを
得ることができ、変換効率も1へ6チとすることができ
た。
With this structure, it was possible to obtain a permeation current of 20 to 30 mm and 10 rbL, and the conversion efficiency was also able to be increased to 1 to 6 chi.

第6図は透光性基板(58)上に透明導電膜(6荀。FIG. 6 shows a transparent conductive film (6 layers) on a transparent substrate (58).

P型半導体層(53L工型牛導体層(al)I N型半
導体層(5つ、透明導電膜になる裏面電極(59)よシ
構成している◎ 図面(4)において工型半導体層は層(60) @ (
6]) *(a”) * (56)が形成されその8A
li化率がそれぞれ0チ、25チ、50チ、75%とし
て設けである。
P-type semiconductor layer (53L engineering type conductor layer (al) I) N-type semiconductor layer (5, consisting of a back electrode (59) that becomes a transparent conductive film ◎ In drawing (4), the engineering type semiconductor layer is Layer (60) @ (
6]) *(a”) * (56) is formed and its 8A
The Li conversion rate is set to 0, 25, 50, and 75%, respectively.

かかる結果においてエネルギバンドは階段的ることかで
きた。
In this result, the energy band was found to be step-like.

すなわちこの構造においては光照射面よシ内部ニ向って
ム8よ、9SA8に変化しておL p層よシ離れて位置
において発生した電子・ホールノ表面へのドリフトを助
長させることにょシミ流の増大をはかることができた。
In other words, in this structure, from the light irradiation surface to the inside, the electrons and holes change to 9SA8 and promote the drift of electrons and holes generated at a position away from the Lp layer to the surface. I was able to increase it.

第6図(B)は単純に1層を81日とム8とに分けて作
製したものである。この場合も第6図(4)には至らな
りが内部電界にょυ従来よシ知られていたムSのみの工
型層のP工N接合を行なった場合に比べて電流を’13
mA10nより1フル20mA10 m’に増やすこと
ができた。
In FIG. 6(B), one layer was simply prepared by dividing it into 81 days and 8 days. In this case as well, Fig. 6 (4) shows that the internal electric field is very small.
It was possible to increase it from mA10n to 1 full 20mA10 m'.

本発明においてこの8A8はAsに比べて単結晶半導体
に類似した構造敏感性を有するためこれらのP工N接合
構造を作製してしまった後−次TtL磁エネルギを加え
て水素をイオン化し、プラズマ水素アニールをすること
はさらにこの光電変換装置としてのバラツキ再現性を確
実にするのに有効であった。
In the present invention, since 8A8 has a structural sensitivity similar to that of a single crystal semiconductor compared to As, after these P-N junction structures are fabricated, TtL magnetic energy is applied to ionize hydrogen and plasma Hydrogen annealing was also effective in ensuring the reproducibility of variations in this photoelectric conversion device.

このイオン化は二次電磁エネルギにおいては基板上への
イオン化のためスパッタ効果を有し逆に特性を悪化させ
てしまった。
In the case of secondary electromagnetic energy, this ionization has a sputtering effect because it is ionized onto the substrate, and on the contrary, the characteristics have been deteriorated.

このためイオン化率が13.56MHHに比べてl O
’〜10倍も大きい2.45GHgのマイクロ波としが
つ基板よシ離れた位置でイオン化し基板中に拡散によっ
て含浸させ不対結合手と結合中和させることがきわゆて
大きな効果を有してい九〇これと同様にリュームの如き
アルカリ金属を水に水酸化リチュームを溶解しこの半導
体装置を浸し1♂〜10″の低濃度に300”O以下の
温度で加熱拡散′して再結合中心を中和させることは効
果が大きい。
Therefore, the ionization rate is 13.56MHH compared to lO
'It has an extremely large effect on ionizing the ions at a distance from the substrate using microwaves of 2.45 GHg, which is 10 times larger, and impregnating the substrate by diffusion to neutralize the dangling bonds. Similarly, an alkali metal such as lithium is dissolved in water with lithium hydroxide, and the semiconductor device is immersed in it, heated and diffused at a temperature of 300" or less to a low concentration of 1♂ to 10" to form a recombination center. Neutralizing it is highly effective.

以上の説明よシ明らかな如く、本発明は半導体層はその
同−導電型の半導体層内において、ムSとSム8とを積
層してまたは連続的にその比率を制御して形成せしめる
ことが特徴であるOその結果従来よシ公知のその半導体
層中に単結晶半導体で知られる如く、不純物の濃度を制
御してフェルミレベルの位置を変化させひいては内部ド
リフト電界を作るのではなく、本発明は半導体中にその
結晶構造をム8と8ム8との間で制御することによシフ
エルミレベルの位置ヲ変化させ、ひいては不純物を添加
することなしに内部ドリフト電界を作るという大きな特
徴を有し1いる。
As is clear from the above description, in the present invention, the semiconductor layer is formed by laminating or continuously controlling the ratio of S and S in the semiconductor layer of the same conductivity type. As a result, instead of controlling the impurity concentration in the semiconductor layer to change the position of the Fermi level and thus creating an internal drift electric field, as is known in the art for single-crystal semiconductors, The invention has a major feature of changing the position of the shift ermi level by controlling the crystal structure of the semiconductor between 8 and 8 and creating an internal drift electric field without adding impurities. I have 1.

その結果真性半導体中での電子・ホールのドリフトが促
進され、光電変換装置においては特にムSを用いたPI
N型構造に比べて電流を30〜300チも大きくさせる
ことができた。
As a result, the drift of electrons and holes in the intrinsic semiconductor is promoted, and in photoelectric conversion devices, especially PI using MuS
Compared to the N-type structure, the current could be increased by 30 to 300 inches.

本発明はPIN型ダイオードであシ特にそれを用いた光
電変換装置においてその応用効果が大きい。しかし単に
P工Nダイオード、イメージセンサ、ダイオードアレー
、発光ダイオードフォトトランジスタ、絶縁ゲイト型電
界効果半導体装置、集積回路等のその他の半導体装置に
おけるP型半導体層、N型半導体層、1型(真性または
実質的に真性)の半導体層における同一導電型半導体層
中でのムSと8ムSとを局部的に設けたことをその技術
思想としている。
The present invention is applicable to PIN type diodes and is particularly effective in photoelectric conversion devices using the same. However, in other semiconductor devices such as P-type N diodes, image sensors, diode arrays, light-emitting diode phototransistors, insulated gate field-effect semiconductor devices, and integrated circuits, P-type semiconductor layers, N-type semiconductor layers, type 1 (intrinsic or The technical idea is to locally provide MU S and 8 MU S in a semiconductor layer of the same conductivity type (substantially intrinsic).

本発明はム8と8A8とは同一プラズマOVD装置で制
御しうるという実験事実をその根拠としておシ、その工
業的効果はきわめて大きなものと信じる。
The present invention is based on the experimental fact that M8 and 8A8 can be controlled by the same plasma OVD apparatus, and we believe that the industrial effects thereof will be extremely large.

なお本発明は珪素または珪素と炭素または窒素との化合
物(混合物)を中心として示した。
Note that the present invention has been mainly described with reference to silicon or a compound (mixture) of silicon and carbon or nitrogen.

しかしゲルマニューム、i−v化合物であっても同様に
適用することができる。
However, germanium and iv compounds can be similarly applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置を作るための製造装置であ
る。 第2図は真性半導体の電気・物理的特性を示す0 第3図はPtたはN型半導体の物理・電気特性を示す。 第4図、第5図は本発明の半導体装置のたて断面図およ
びそれに対応したエネルギバンド図である。 第6図はアモルファス半導体およびセンアモルファス半
導体の場所における混合の積層を示す3つの実施例であ
る。 梵、藤工:l−ノV壓−トオ(w) V pxしi−7しノ〜;−jし・ノンどbしI)23
図 ¥5図
FIG. 1 shows a manufacturing apparatus for manufacturing a semiconductor device of the present invention. Figure 2 shows the electrical and physical properties of an intrinsic semiconductor. Figure 3 shows the physical and electrical properties of a Pt or N-type semiconductor. 4 and 5 are vertical cross-sectional views of the semiconductor device of the present invention and energy band diagrams corresponding thereto. FIG. 6 shows three embodiments showing mixed stacking in place of amorphous and semi-amorphous semiconductors. Bon, Fujiku: l-ノV壓-too(w) V pxshii-7しノ~;-jshi・nondobshiI)23
Figure ¥5 figure

Claims (1)

【特許請求の範囲】 1、光照射面側は微結晶構造を有するセミアモルファス
半導体を有するNまたはP型の第1の半導体層が設けら
れ前記半導体層上に再結合中心中和用の水素、ハロゲン
元素またはアルカリ金属元素が添加されて真性または実
質的に真性のアモルファス半導体と該半導体上に該半導
体層と同一導電型のセミアモルファス半導体とが設けら
れ、該半導体上に前記第1の半導体層とは逆導電型の第
2の半導体層が設けられたことを特徴とする光電変換装
置。 2、特許請求の範囲第1項において、第1またけ第2の
半導体層は珪素と炭素または窒素とが混在した半導体よ
シなることを特徴とする光電変換装置。 3、特許請求の範囲第1項において、真性または実質的
に真性の半導体は珪素を主成分としたことを特徴とする
光電変換装置0
[Claims] 1. A first N or P type semiconductor layer having a semi-amorphous semiconductor having a microcrystalline structure is provided on the light irradiation surface side, and hydrogen for neutralizing recombination centers is provided on the semiconductor layer; An intrinsic or substantially intrinsic amorphous semiconductor to which a halogen element or an alkali metal element is added, and a semi-amorphous semiconductor having the same conductivity type as the semiconductor layer are provided on the semiconductor, and the first semiconductor layer is provided on the semiconductor. A photoelectric conversion device characterized in that a second semiconductor layer of a conductivity type opposite to that of the second semiconductor layer is provided. 2. A photoelectric conversion device according to claim 1, wherein the first and second semiconductor layers are made of a semiconductor containing a mixture of silicon and carbon or nitrogen. 3. A photoelectric conversion device 0 according to claim 1, characterized in that the intrinsic or substantially intrinsic semiconductor has silicon as its main component.
JP56123660A 1981-08-07 1981-08-07 Photoelectric transducer Granted JPS5825282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56123660A JPS5825282A (en) 1981-08-07 1981-08-07 Photoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56123660A JPS5825282A (en) 1981-08-07 1981-08-07 Photoelectric transducer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4193008A Division JP2700282B2 (en) 1992-06-26 1992-06-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5825282A true JPS5825282A (en) 1983-02-15
JPH0359587B2 JPH0359587B2 (en) 1991-09-11

Family

ID=14866120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56123660A Granted JPS5825282A (en) 1981-08-07 1981-08-07 Photoelectric transducer

Country Status (1)

Country Link
JP (1) JPS5825282A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816082A (en) * 1987-08-19 1989-03-28 Energy Conversion Devices, Inc. Thin film solar cell including a spatially modulated intrinsic layer
US5954148A (en) * 1995-10-18 1999-09-21 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Crawler apparatus for vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163693A (en) * 1978-10-23 1979-12-26 Yamazaki Shunpei Semiconductor device for photovoltaic power generation
JPS55124272A (en) * 1979-03-19 1980-09-25 Shunpei Yamazaki Semiconductor device and method of fabricating the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163693A (en) * 1978-10-23 1979-12-26 Yamazaki Shunpei Semiconductor device for photovoltaic power generation
JPS55124272A (en) * 1979-03-19 1980-09-25 Shunpei Yamazaki Semiconductor device and method of fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816082A (en) * 1987-08-19 1989-03-28 Energy Conversion Devices, Inc. Thin film solar cell including a spatially modulated intrinsic layer
US5954148A (en) * 1995-10-18 1999-09-21 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Crawler apparatus for vehicle

Also Published As

Publication number Publication date
JPH0359587B2 (en) 1991-09-11

Similar Documents

Publication Publication Date Title
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US8778448B2 (en) Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys
US4498092A (en) Semiconductor photoelectric conversion device
US4581620A (en) Semiconductor device of non-single crystal structure
US5091334A (en) Semiconductor device
KR20110069008A (en) Hetero solar cell and method for producing hetero solar cells
IE54688B1 (en) Method of making amorphous semiconductor alloys and devices using microwave energy
US9093548B2 (en) Thin film hybrid junction field effect transistor
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
KR890003148B1 (en) Semiconductor with fiber structure and manufacture thereof
US4710786A (en) Wide band gap semiconductor alloy material
JPS6043819A (en) Method for vapor-phase reaction
US4903102A (en) Semiconductor photoelectric conversion device and method of making the same
JPS5825282A (en) Photoelectric transducer
US4703336A (en) Photodetection and current control devices
JPH05275726A (en) Photoelectric conversion device
JPS58161380A (en) Semiconductor device
JPS58161381A (en) Manufacture of semiconductor device
JPH0821546B2 (en) Thin film manufacturing method
JPH0652799B2 (en) Semiconductor device
JP2626653B2 (en) Silicon semiconductor device
JPS63274184A (en) Photoelectric transducer and manufacture thereof
JPS63244887A (en) Amorphous solar cell
JPH05110123A (en) Photoelectric conversion device and its manufacture
KR860001162B1 (en) Photoelectronic convert device