JPS5825014B2 - Chiyokuryusoudennoseigiyohogohoushiki - Google Patents

Chiyokuryusoudennoseigiyohogohoushiki

Info

Publication number
JPS5825014B2
JPS5825014B2 JP49132749A JP13274974A JPS5825014B2 JP S5825014 B2 JPS5825014 B2 JP S5825014B2 JP 49132749 A JP49132749 A JP 49132749A JP 13274974 A JP13274974 A JP 13274974A JP S5825014 B2 JPS5825014 B2 JP S5825014B2
Authority
JP
Japan
Prior art keywords
converter
control
voltage
time
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49132749A
Other languages
Japanese (ja)
Other versions
JPS5158629A (en
Inventor
尾形文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP49132749A priority Critical patent/JPS5825014B2/en
Publication of JPS5158629A publication Critical patent/JPS5158629A/ja
Publication of JPS5825014B2 publication Critical patent/JPS5825014B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、直流送電の如く、順変換装置、逆変換装置よ
りなるシステムにおける制御方式保護方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control system protection system in a system including a forward converter and an inverse converter, such as DC power transmission.

従来、順変換装置、直流送電線および逆変換装置からな
る直流送電線においては、その制御保護はマイクロウェ
ーブの如き通信線を介して、互の情報を交換し、自動的
に制御保護が行なわれてきた。
Conventionally, in DC transmission lines consisting of a forward converter, a DC transmission line, and an inverse converter, control and protection have been performed automatically by exchanging information between each other via communication lines such as microwaves. It's here.

これは、上記のシステムでは順変換装置と逆変換装置と
の間で互に協調運転をする必要があるからで、例えば、
順変換器側では定電流制御、逆変換器側は定余裕角制御
が行なわれ逆変換器で直流電圧を決め、その直流電圧に
送電線ロス電圧を加えた電圧を順変換器側で発生させて
、一定の電流を流す制御方法をとっている。
This is because in the above system, it is necessary for the forward conversion device and the inverse conversion device to operate in coordination with each other, for example,
Constant current control is performed on the forward converter side, and constant margin angle control is performed on the inverse converter side.The inverse converter determines the DC voltage, and the forward converter side generates a voltage that is the DC voltage plus the transmission line loss voltage. Therefore, a control method is used in which a constant current flows.

従って、起動、運転、停止に際して相互協調が必要であ
る。
Therefore, mutual cooperation is required when starting, operating, and stopping.

しかしながら今、通信系が故障を生じた場合でも、変換
装置を動作させ電力を送ることが要求されることがある
However, even if a failure occurs in the communication system, it is now sometimes necessary to operate the conversion device and send power.

この時、例えば、逆変換器側で異常があった場合、バイ
パススイッチに電流を移し、逆変換器側は停止すること
ができるが順変換器側では、定電流が効いているので相
変らず電流を流す。
At this time, for example, if there is an abnormality on the reverse converter side, the current can be transferred to the bypass switch and the reverse converter side can be stopped, but the forward converter side remains unchanged because the constant current is in effect. Flow an electric current.

この時、制御角は、送電線のロス電圧に見合う電圧を発
生させているのでその値は60 el〜87 elの
如く、大きな制御角になる。
At this time, since the control angle generates a voltage commensurate with the loss voltage of the power transmission line, its value becomes a large control angle, such as 60 el to 87 el.

この時、変換器内に接続されているコンデンサと直列に
接続されている抵抗には、 fCE2 X (5IN2
(α)+5IN2(α+U)の損失を発生させる。
At this time, the resistor connected in series with the capacitor connected inside the converter has fCE2
A loss of (α)+5IN2(α+U) is generated.

ここでfは運転周波数、Cはコンデンサ容量、Eはトラ
ンス2次電圧で、αは制御遅くれ角、Uは重なり角であ
る。
Here, f is the operating frequency, C is the capacitor capacity, E is the transformer secondary voltage, α is the control delay angle, and U is the overlap angle.

このようにαが犬なる程その損失は多く、このためバル
ブのクーラの冷却能力を増強したり、又、抵抗器の処理
熱量を犬とする等、寸法、コスト共と大巾に増大する。
In this way, the larger α is, the greater the loss, and therefore, the cooling capacity of the valve cooler must be increased, or the amount of heat processed by the resistor must be increased, resulting in a significant increase in size and cost.

本発明はかかる場合でも、安全確実に変換器を停止する
方式を提供するものである。
The present invention provides a method for safely and reliably stopping the converter even in such a case.

本発明の要点は、通常逆変換器が正常に動作している時
は、その逆電圧子ライン電圧降下分を、順変換器側で発
生させるため、制御角が10〜30 elの範囲にあ
り更に逆変換器が故障等でバイパススイッチを入れて、
切離しされてからは、逆変換器の発生する逆電圧がなく
なるために、ライン電圧降下分のみを順変換器が発生す
ればよいので、制御角は70〜80 数度電気角になる
The main point of the present invention is that when the inverse converter is normally operating, the control angle is in the range of 10 to 30 el because the inverse voltage line voltage drop is generated on the forward converter side. Furthermore, if the inverter breaks down, turn on the bypass switch,
After disconnection, since there is no reverse voltage generated by the reverse converter, the forward converter only needs to generate the line voltage drop, so the control angle becomes 70 to 80 electrical degrees.

即ち3相ブリツジ結線の場合は、直流出力電圧わされる
That is, in the case of three-phase bridge connection, the DC output voltage is applied.

勿論正確には、変換器用のトランスの直流電圧降下、変
換器の電圧時下等も含むべきであるが、大勢には、影響
を与えぬので省略はしである。
Of course, to be precise, it should include the DC voltage drop of the converter transformer, the voltage drop of the converter, etc., but this will not affect the majority of people, so I will omit it.

ここでE2はトランス2次電圧、IX係はトランスパー
セントリアクタンスで、αは制御遅れ角である。
Here, E2 is the transformer secondary voltage, IX is the transformer percent reactance, and α is the control delay angle.

今、上式のEdが直流ライン電圧降下■dx−RLに等
しければよい。
Now, it is sufficient that Ed in the above equation is equal to the DC line voltage drop (dx-RL).

即ち、ここでIdN:定格直流電瞥■dx:その時に設
定された直流電流(IdN=Idx)である。
That is, here, IdN: rated DC current; dx: DC current set at that time (IdN=Idx).

従って、Idx−RL/1.35 E2:0.2、IX
%=0.2、Idx/IdN=1とすると、αは、72
,5度電気角である。
Therefore, Idx-RL/1.35 E2:0.2, IX
When %=0.2 and Idx/IdN=1, α is 72
, 5 degrees electrical angle.

設定直流電流Idxが小さい程ライン電圧降下が小さい
程、αは90度電気角に近づくことは、(2)式より明
らかである。
It is clear from equation (2) that the smaller the set DC current Idx and the smaller the line voltage drop, the closer α becomes to 90 degrees electrical angle.

従って、ある一定時間以上、即ちこの一定時間とは、起
動、停止時、潮流反転等、αが70〜90 elを通過
する時間で、通常の直流送電では0.3秒程度であるが
、ブリッジが数段カスケードに接続されていて、ブリッ
ジが1段毎に起動、停止されることを考慮すると、その
段数倍だけ、は更に増加させることは必要である。
Therefore, over a certain period of time, that is, this certain period of time is the time for α to pass through 70 to 90 el during startup, shutdown, power flow reversal, etc., which is about 0.3 seconds in normal DC power transmission, but Considering that the bridges are connected in several stages in cascade and the bridge is started and stopped for each stage, it is necessary to further increase the number of stages by the number of stages.

従って、今、まで述べたように、制御角が70〜90
elにある時間が、一定時間以上あることを検出すれば
逆変換器側に異常を生じ、直流回路より切離されたこと
が、通信線を介することなく順変換器側で判別できるの
で、順変換器を無用に長時間運転することなく停止でき
る。
Therefore, as mentioned above, the control angle is between 70 and 90.
If it is detected that the time in el is longer than a certain period of time, an abnormality has occurred on the inverse converter side, and the forward converter side can determine that it has been disconnected from the DC circuit without going through a communication line. The converter can be stopped without needing to run for a long time.

本発明の具体的実施例を示す。A specific example of the present invention will be shown.

第1図は、一般的な直流送電を示すためのブロック図で
ある。
FIG. 1 is a block diagram showing general DC power transmission.

変換器3は、制御遅くれ角αが0〜90 elは順変換
、90〜180 elは逆変換の動作をする。
The converter 3 performs forward conversion when the control delay angle α is 0 to 90 el, and performs inverse conversion when the control delay angle α is 90 to 180 el.

バイパススイッチ5は、直流回路より変換器を切離すた
めで、第1図は、ブリッジ1段の場合を示しているがブ
リッジが複数個カスケードに構成されているシステムで
は各々のブリッジの直流出力端に並列にバイパススイッ
チは取付けられる。
The bypass switch 5 is used to disconnect the converter from the DC circuit. Although Figure 1 shows the case of a single bridge, in a system where multiple bridges are configured in cascade, the DC output terminal of each bridge is A bypass switch is installed in parallel with.

第2図は、制御遅くれ角を設定する原理図である。FIG. 2 is a diagram showing the principle of setting the control delay angle.

即ち第2図のイはトランス2次線間電圧を示し、交流電
圧が零点を切る時に口の如き矩形波状の信号を発生させ
る。
That is, A in FIG. 2 shows the voltage between the secondary lines of the transformer, and when the AC voltage crosses the zero point, a rectangular wave-like signal is generated.

この信号はハの如く積分された結果三角状の信号を発生
させる。
This signal is integrated as shown in (c) to generate a triangular signal.

このハの三角状の信号は、制御、信号Ecとの交点で、
二の如く、パルスを発生させる。
This triangular signal C is the intersection with the control signal Ec,
Generate a pulse as shown in step 2.

このパルスを増巾整形し、変換器中のアームの点弧信号
に供する。
This pulse is amplified and shaped and is used as the firing signal for the arm in the transducer.

この制御信号Ecは、制御信号設定値EcOと電流フィ
ードバック信号Ecxとの差に比例して、常にこの差を
零にする如き動作をする。
This control signal Ec always operates in proportion to the difference between the control signal set value EcO and the current feedback signal Ecx to make this difference zero.

従って、このEcが、制御遅くれ角と一対一で対応する
ので、ECの電圧レベルを検出し、このレベルがある一
定時間以上続くと、変換器を停止する信号を出す。
Therefore, since this Ec has a one-to-one correspondence with the control delay angle, the voltage level of EC is detected, and if this level continues for a certain period of time or more, a signal is issued to stop the converter.

即ち、第3図に示す如く、α0が70 以上で動作する
比較器イとその出力を時間積分する口、その積分値が一
定以上であれば出力をだす比較器ハ、又、逆変換器運転
中は、αは90 以上なので、その時には、ハの出力を
阻止するナンドゲートニよりなる。
That is, as shown in Fig. 3, a comparator A operates when α0 is 70 or more, a port that integrates its output over time, a comparator C that outputs an output if the integral value is above a certain value, and an inverse converter operation. In the middle, since α is 90 or more, in that case, it consists of a NAND gate 2 that blocks the output of C.

第3図でα。は、7001以上と設定するための制御角
設定入力、ハのt。
α in Figure 3. is the control angle setting input for setting 7001 or more, t of C.

は、一定時間以上続いた場合の時間を設定するだめの入
力である。
is an input to set the time when it continues for more than a certain period of time.

動作の詳細は、今更説明を要する迄もなく簡単であるの
で、省略する。
The details of the operation are simple and do not require further explanation, so they will be omitted.

本発明により、通信線断時にでも安全に順変換器を停止
することができると共に、従来、用いられていた直流電
圧低下を直流電圧変成器により検出し停止する方式にく
らべても、直流電圧変成器は不必要であるので、コスト
も安く、その経済上の利点は大きい。
According to the present invention, it is possible to safely stop the forward converter even when the communication line is disconnected, and it is also possible to stop the forward converter safely even when the communication line is disconnected. Since no vessels are required, the cost is low and the economic advantage is great.

又、制御角を直接検出しているのと等価であるので、バ
ルブの中に含まれているダンピング抵抗等の損失の増大
に伴なう加熱を大事故に至る前に未然に防ぐこともでき
るので、本発明の利点は太きい。
In addition, since it is equivalent to directly detecting the control angle, it is also possible to prevent heating caused by increased loss in the damping resistance contained in the valve before it leads to a major accident. Therefore, the advantages of the present invention are significant.

なお、本発明は、制御角と等価な制御電圧を直接検出し
て保護動作させることに特徴がある。
Note that the present invention is characterized in that a control voltage equivalent to a control angle is directly detected and a protective operation is performed.

したがって、この範囲において具体的な実施回路が種々
考えられることは言うまでもない。
Therefore, it goes without saying that various specific implementation circuits can be considered within this range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、直流送電システムの主回路を示す図、第2図
は、位相制御回路の原理を示す図、第3図は、本発明の
検出回路を示す図である。 符号の説明、1・・・・・・変換用トランス、2・・・
・・・直流リアクトル、3・・・・・・変換器、4・・
・・・・直流線路、5・・・・・・バイパススイッチ、
6・・・・・・比較器、I・・・・・・積分器、8・・
・・・・アンド。
FIG. 1 is a diagram showing the main circuit of a DC power transmission system, FIG. 2 is a diagram showing the principle of a phase control circuit, and FIG. 3 is a diagram showing a detection circuit of the present invention. Explanation of symbols, 1... Conversion transformer, 2...
...DC reactor, 3...Converter, 4...
...DC line, 5...bypass switch,
6... Comparator, I... Integrator, 8...
····and.

Claims (1)

【特許請求の範囲】[Claims] 1 順変換装置と、自端側の異常に際して自端側で投入
されるバイパススイッチを備えた逆変換装置とよりなる
直流送電系において、順変換装置の制御角がある一定以
上の高値をとり、しかも一定時間以上、その状態である
ことを検出して、順変換装置を停止することを特徴とす
る直流送電の制御保護方式。
1. In a DC power transmission system consisting of a forward converter and a reverse converter equipped with a bypass switch that is turned on at the own end in the event of an abnormality at the own end, the control angle of the forward converter reaches a high value above a certain level, Moreover, the DC power transmission control and protection system is characterized in that it detects that the state remains for a certain period of time or more and stops the forward converter.
JP49132749A 1974-11-20 1974-11-20 Chiyokuryusoudennoseigiyohogohoushiki Expired JPS5825014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49132749A JPS5825014B2 (en) 1974-11-20 1974-11-20 Chiyokuryusoudennoseigiyohogohoushiki

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49132749A JPS5825014B2 (en) 1974-11-20 1974-11-20 Chiyokuryusoudennoseigiyohogohoushiki

Publications (2)

Publication Number Publication Date
JPS5158629A JPS5158629A (en) 1976-05-22
JPS5825014B2 true JPS5825014B2 (en) 1983-05-25

Family

ID=15088669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49132749A Expired JPS5825014B2 (en) 1974-11-20 1974-11-20 Chiyokuryusoudennoseigiyohogohoushiki

Country Status (1)

Country Link
JP (1) JPS5825014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332409U (en) * 1989-08-07 1991-03-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332409U (en) * 1989-08-07 1991-03-29

Also Published As

Publication number Publication date
JPS5158629A (en) 1976-05-22

Similar Documents

Publication Publication Date Title
CN101277085B (en) Motor drive device
JP2903863B2 (en) Inverter device
JP2928264B2 (en) Semiconductor power conversion system
JPH02231922A (en) Inrush current prevention system for motor driver upon recovery from instantaneous power interruption
JPS5825014B2 (en) Chiyokuryusoudennoseigiyohogohoushiki
JP2791928B2 (en) Inverter control device
JP3132814B2 (en) Semiconductor power conversion system
JP2980796B2 (en) Power converter
JPH0928032A (en) Device for operating variable speed pumped storage power generation system
JP2006166525A (en) Testing device and method of power converter
JPS6046735A (en) Method of disassembling parallel power system
JPH1032922A (en) Ratio differential relay
JPH0815366B2 (en) Inverter generator
JPH0537676Y2 (en)
JP2634692B2 (en) Secondary overvoltage protection device for AC-excited synchronous machine
JPS5812540Y2 (en) Frequency converter commutation failure protection device
JPH02133095A (en) Stationary type variable frequency power source and motor driver
JPH0880030A (en) Power converter
JPS5970118A (en) Protecting relay unit for dc transmission line
JPS60237873A (en) Controller of elevator
JPH10304554A (en) Malfunction detector and protective device for ac-to-dc converter
JPH09172782A (en) Main circuit protection device for inverter
JPS5836131A (en) Protecting device at time of breaking inverter load
JP3746552B2 (en) Abnormality confirmation method of instantaneous voltage drop countermeasure device
JPS5927184B2 (en) Stopping method of converter