JPS5824952B2 - Gankou Kasoshi - Google Patents

Gankou Kasoshi

Info

Publication number
JPS5824952B2
JPS5824952B2 JP50136876A JP13687675A JPS5824952B2 JP S5824952 B2 JPS5824952 B2 JP S5824952B2 JP 50136876 A JP50136876 A JP 50136876A JP 13687675 A JP13687675 A JP 13687675A JP S5824952 B2 JPS5824952 B2 JP S5824952B2
Authority
JP
Japan
Prior art keywords
electron concentration
oscillation
effect element
gunn effect
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50136876A
Other languages
Japanese (ja)
Other versions
JPS5260578A (en
Inventor
横川茂
久継徳重
山村栄志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP50136876A priority Critical patent/JPS5824952B2/en
Publication of JPS5260578A publication Critical patent/JPS5260578A/en
Publication of JPS5824952B2 publication Critical patent/JPS5824952B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Description

【発明の詳細な説明】 本発明は、固体発振器の発振特性、特に周波数特性の向
上に有用なガン効果素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Gunn effect element useful for improving the oscillation characteristics, particularly the frequency characteristics, of a solid-state oscillator.

固体発振器用のガン効果素子は、一般に第1X図に示す
ような厚さ方向の電子濃度分布を持ち、高電子濃度(N
+型)の基板1上にエピタキシャル成長された低電子濃
度の動作層2、例えばN−型GaAs層、とその上のオ
ーミック接触を得るための高電子濃度層(電極層)3を
有するもので、基板1側がアノード、電極層3側がカソ
ードとされ、通常動作層2は厚さ方向に電子濃度分布が
ほぼ平担な領域4と、厚さ方向に電子濃度分布が変化す
る電子濃度遷移領域5とを持つ。
Gunn effect elements for solid-state oscillators generally have an electron concentration distribution in the thickness direction as shown in Figure 1X, and have a high electron concentration (N
It has a low electron concentration active layer 2, such as an N-type GaAs layer, epitaxially grown on a + type) substrate 1, and a high electron concentration layer (electrode layer) 3 thereon for obtaining ohmic contact. The substrate 1 side is used as an anode, and the electrode layer 3 side is used as a cathode, and the normal operation layer 2 has a region 4 where the electron concentration distribution is almost flat in the thickness direction and an electron concentration transition region 5 where the electron concentration distribution changes in the thickness direction. have.

電子濃度遷移領域5は、電子濃度が上昇し始める部分か
ら電子濃度が領域4の4倍となる部分、即ち、はぼドメ
インが消滅する部分までの領域であって、その厚さは、
電子濃度遷移幅と称される。
The electron concentration transition region 5 is a region from a portion where the electron concentration starts to increase to a portion where the electron concentration is four times that of the region 4, that is, a portion where the Habo domain disappears, and its thickness is as follows.
This is called the electron concentration transition width.

この電子濃度遷移領域5の存在は、利得低下と直列抵抗
増大の原因となって出力を低下させるため、従来、電子
濃度遷移幅は可及的に狭くされ、最大限で動作層厚さの
20%程度とされている。
The existence of this electron concentration transition region 5 causes a decrease in gain and an increase in series resistance, resulting in a decrease in output. It is said to be about %.

特に動作層厚さが著しく小さいミリ波帯(30GHz以
上)用のガン効果素子は、気相エピタキシャル成長では
基板からのオートドーピングにより、電子濃度遷移幅を
小さくできないため、液相エピタキシャル成長により動
作層2が作成され、無視し得る程度の狭い電子濃度遷移
幅を持つものとされていた。
In particular, in Gunn effect devices for millimeter wave bands (30 GHz or higher) where the active layer thickness is extremely small, the electron concentration transition width cannot be reduced by vapor phase epitaxial growth due to autodoping from the substrate. It was believed that the electron concentration transition width was negligible and narrow.

しかしながら、特にミリ波帯では、負荷回路のインピー
ダンスを十分低くすることは工作精度等の点から困難で
あり、上記の如きガン効果素子を用いても所期の発振出
力が得られ難いばかりか、帯域特性及び周波数特性が劣
るものしか得られていないことが判明した。
However, especially in the millimeter wave band, it is difficult to make the impedance of the load circuit sufficiently low from the viewpoint of machining accuracy, and even if the Gunn effect element described above is used, it is not only difficult to obtain the desired oscillation output, but also It was found that only inferior band characteristics and frequency characteristics were obtained.

本発明は、発振出力を殆んど低下させることなく、帯域
特性及び周波数特性を著しく改善した固体発振器を構成
できるガン効果素子を提供することを目的とする。
An object of the present invention is to provide a Gunn effect element that can constitute a solid-state oscillator with significantly improved band characteristics and frequency characteristics without substantially reducing the oscillation output.

本発明のガン効果素子は、動作結晶層において、高電子
濃度の基板を接する側の電子濃度遷移幅が該動作結晶層
さの40%乃至100%を占めることを特徴とするもの
であり、以下これを詳細に説明する。
The Gunn effect element of the present invention is characterized in that, in the active crystal layer, the electron concentration transition width on the side that is in contact with the high electron concentration substrate occupies 40% to 100% of the width of the active crystal layer. This will be explained in detail.

第2図は、本発明実施例のガン効果素子の電子濃度分布
を示す。
FIG. 2 shows the electron concentration distribution of the Gunn effect element according to the example of the present invention.

このガン効果素子は、N++GaAs基板1上にGaA
s結晶を気相エピタキシャル成長させて、動作層2及び
N+型電電極層3形成したものであり、動作層2の厚さ
は1.58m1電子濃度遷移領域5の厚さ、即ち電子濃
度遷移幅は0.9μm1領域4における電子濃度NOは
1×16cE3である。
This Gunn effect element is made of GaAs on an N++GaAs substrate 1.
The active layer 2 and the N+ type electrode layer 3 are formed by vapor phase epitaxial growth of s crystal, and the thickness of the active layer 2 is 1.58 m1, and the thickness of the electron concentration transition region 5, that is, the electron concentration transition width is The electron concentration NO in the 0.9 μm region 4 is 1×16 cE3.

このガン効果素子を発振回路に実装し、素子と可変短絡
板間の距離、即ちショート長を変えて発振周波数を変化
させ、その時の発振出力を測定して得た周波数特性を第
3図に示す。
Figure 3 shows the frequency characteristics obtained by mounting this Gunn effect element in an oscillation circuit, changing the oscillation frequency by changing the distance between the element and the variable shorting plate, that is, the short length, and measuring the oscillation output at that time. .

第3図における曲線6,7,8.9は夫々発振回路のサ
セプタンスを変えたときの周波数特性である。
Curves 6, 7, and 8.9 in FIG. 3 are frequency characteristics when the susceptance of the oscillation circuit is changed, respectively.

比較のため、電子濃度遷移幅を0.3μmとした以外は
、上記実施例と同等のガン効果素子を作成し、同様の発
振回路に実装して周波数特性を測定した。
For comparison, a Gunn effect element similar to that of the above example was fabricated, except that the electron concentration transition width was set to 0.3 μm, and the device was mounted in a similar oscillation circuit and its frequency characteristics were measured.

その結果を第4図に示す。第4図における曲線6’、
7’、 8’、 9’は夫々第3図の曲線6,7゜8.
9と同一の発振回路であり、サセプタンスを変えたとき
の周波数特性である。
The results are shown in FIG. Curve 6' in FIG.
7', 8', and 9' are the curves 6, 7°, and 8. in Fig. 3, respectively.
This is the same oscillation circuit as No. 9, and the frequency characteristics are shown when the susceptance is changed.

第3図及び第4図の比較から明らかなように、本発明の
ガン効果素子は帯域特性に優れ、また周波数特性も高い
方に拡がっていることが判る。
As is clear from the comparison of FIGS. 3 and 4, the Gunn effect element of the present invention has excellent band characteristics, and its frequency characteristics extend toward higher frequencies.

例えば、曲線7,7′に着目すると、ショート長のみを
変えたときの発振出力3dB低下の帯域幅は、比較例の
発振器では約6 GHzであるのに対し、本発明のガン
効果素子を用いた発振器では14 GHzに達しており
、大幅な帯域特性の改善が実現されている。
For example, focusing on curves 7 and 7', the bandwidth of 3 dB reduction in oscillation output when only the short length is changed is approximately 6 GHz in the oscillator of the comparative example, whereas it is approximately 6 GHz when using the Gunn effect element of the present invention. With the previous oscillator, the frequency reached 14 GHz, demonstrating a significant improvement in band characteristics.

ショート長を変えて発振周波数を変化させると共に、発
振回路のアドミッタンスを最適値に調整して得た周波数
特性を第5図に示す。
FIG. 5 shows the frequency characteristics obtained by changing the oscillation frequency by changing the short length and adjusting the admittance of the oscillation circuit to an optimum value.

第5図において、曲線10は本発明実施例のガン効果素
子を用いた発振器の、曲線11は比較例の発振器の夫々
についての周波数特性を示す。
In FIG. 5, a curve 10 shows the frequency characteristics of the oscillator using the Gunn effect element according to the example of the present invention, and a curve 11 shows the frequency characteristics of the oscillator of the comparative example.

第5図から明らかなように。比較例の発振器は周波数が
高くなるに従って出力が急激に低下しており、63 G
Hz以上で発振が停止しているのに対し、本発明による
ガン効果素子を用いた発振器は発振周波数が70 GH
zに及び優れた周波数特性を示している。
As is clear from Figure 5. The output of the oscillator in the comparative example decreased rapidly as the frequency increased, and the output was 63 G.
On the other hand, the oscillator using the Gunn effect element according to the present invention has an oscillation frequency of 70 GHz or above.
It shows excellent frequency characteristics over z.

また第3図乃至第5図から明らかなように、本発明によ
るガン効果素子を用いた発振器は、比較例の発振器に比
べて発振出力が格別低下してはいない。
Furthermore, as is clear from FIGS. 3 to 5, the oscillation output of the oscillator using the Gunn effect element according to the present invention is not significantly lower than that of the oscillator of the comparative example.

以下の如き本発明の効果が得られる理由は、本発明によ
るガン効果素子では負性抵抗の絶対値が大きいため、広
帯域特性の発振回路を構成するのが容易であり、また周
波数変化に対する負性抵抗値の変化分が小さく、発振回
路とのインピーダンスマツチングが良好で、発振出力の
低下が、周波数変化に対して緩やかなためと考えられる
The reason why the following effects of the present invention can be obtained is that the Gunn effect element according to the present invention has a large absolute value of negative resistance, so it is easy to construct an oscillation circuit with broadband characteristics, and This is thought to be because the change in resistance value is small, the impedance matching with the oscillation circuit is good, and the oscillation output decreases gradually with respect to frequency changes.

例えば、上記比較例のガン効果素子の高出力動作時の負
性抵抗値は一5Ω以下であり、周波数変化±20%に対
し負性抵抗値は±34%変化するが、本発明実施例のガ
ン効果素子の高出力動作時の負性抵抗値は−11,20
であり、周波数変化±20%に対する負性抵抗の変化は
±18%に過ぎない。
For example, the negative resistance value of the Gunn effect element of the above comparative example during high output operation is less than 15 Ω, and the negative resistance value changes by ±34% with respect to a frequency change of ±20%. The negative resistance value of Gunn effect element during high output operation is -11,20
Therefore, the change in negative resistance with respect to a frequency change of ±20% is only ±18%.

電子濃度遷移幅を変えて検討を加えた結果、上記の広帯
域化の効果は、電子濃度遷移幅が動作結晶層厚さの40
%以上を占める場合に著しいことが判明した。
As a result of examining the electron concentration transition width by changing it, we found that the above-mentioned broadbanding effect was obtained when the electron concentration transition width was 40% of the operating crystal layer thickness.
% or more, it was found to be significant.

第6図は電子濃度遷移幅が動作結晶層厚さの60%を占
め、周波数が65 GHzの場合のダイオード面積と発
振出力及び発振効率との関係を示した図であり、実線P
は発振出力、破線ηは発振効率を指示している。
Figure 6 is a diagram showing the relationship between the diode area, oscillation output, and oscillation efficiency when the electron concentration transition width occupies 60% of the operating crystal layer thickness and the frequency is 65 GHz.
indicates the oscillation output, and the broken line η indicates the oscillation efficiency.

同図より明らかなように、ダイオード面積が約5.5X
10”fflの時の発振出力P′、及び発振効率η′の
点を境にダイオード面積が大きくなるにつれて発振出力
及び発振効率は急激に低下している。
As is clear from the figure, the diode area is approximately 5.5X
The oscillation output and oscillation efficiency rapidly decrease as the diode area increases beyond the point of oscillation output P' and oscillation efficiency η' at 10''ffl.

そしてこのときの煮干9及びη′での負性抵抗が約−5
0であることから、−50より負性抵抗が小さくなると
帯域特性が急激に低下するものと判断される。
At this time, the negative resistance at Niboshi 9 and η' is about -5
Since it is 0, it is determined that when the negative resistance becomes smaller than -50, the band characteristics deteriorate rapidly.

第7図は電子濃度遷移幅が動作結晶層厚さの20%、4
0%及び60%を占めた時の負のコンダクタンス(−G
)とサセプタンス(B)との関係をそれぞれ示した図で
あり、線Xは20%、線Yは40%、線Zは60%の場
合を示している。
Figure 7 shows that the electron concentration transition width is 20% of the operating crystal layer thickness, 4
Negative conductance at 0% and 60% (-G
) and susceptance (B), where line X shows the case of 20%, line Y shows the case of 40%, and line Z shows the case of 60%.

尚、負性抵抗(6)はコンダクタンス(G)とサセプタ
ンス(B)とにより(1)式から算出される。
Note that the negative resistance (6) is calculated from equation (1) using conductance (G) and susceptance (B).

R=(−G’)/(G2+B2) ・・・・・・・・
・ (1)これより、電子濃度遷移幅が40%(ト)の
時のY′の点で負性抵抗Rが約−50となり、電子濃度
遷移幅が40%より大きくなるにつれて、負性抵抗が一
5Ωより大きくなることが導出される。
R=(-G')/(G2+B2) ・・・・・・・・・
・ (1) From this, the negative resistance R becomes approximately -50 at the point Y' when the electron concentration transition width is 40% (g), and as the electron concentration transition width becomes larger than 40%, the negative resistance increases. is derived to be greater than 15Ω.

従って、電子濃度遷移幅が動作結晶層厚さの40%より
小さくなると、負性抵抗の絶対値が小さくなり、また周
波数変化に対する負性抵抗値の変化も大きくなり、その
相関により、帯域特性が急激に劣化する。
Therefore, when the electron concentration transition width becomes smaller than 40% of the operating crystal layer thickness, the absolute value of the negative resistance becomes small, and the change in the negative resistance value with respect to frequency changes becomes large, and due to their correlation, the band characteristics change. Deteriorates rapidly.

これとは逆に、動作層全体が電子濃度遷移領域とされ、
基板に向って次第に電子濃度が増大するような分布を持
つガン効果素子は、発振出力が僅かに低下するのみで、
極めて良好な帯域特性と、より高い周波数での発振を可
能にすることが判った。
On the contrary, the entire active layer is an electron concentration transition region,
Gunn effect elements, which have a distribution in which the electron concentration gradually increases toward the substrate, have only a slight decrease in oscillation output;
It was found that it has extremely good band characteristics and enables oscillation at higher frequencies.

以上のように、本発明に依れば、発振出力を殆んど低下
させることなく、固体発振器の帯域特性及び周波数特性
を著しく改善することが可能である。
As described above, according to the present invention, it is possible to significantly improve the band characteristics and frequency characteristics of a solid-state oscillator without substantially reducing the oscillation output.

尚、本発明は、ミリ波帯ガン効果素子に適用した場合に
上記の効果が顕著であるが、他の周波数帯についても、
本発明による広帯域化の効果は得られ、またGaAs結
晶以外のガン効果を起し得る化合物半導体を用いたガン
効果素子にも本発明を適用できることは言うまでもない
Although the above-mentioned effects of the present invention are remarkable when applied to millimeter-wave band Gunn effect elements, the present invention also has the following effects for other frequency bands:
It goes without saying that the band widening effect of the present invention can be obtained, and that the present invention can also be applied to Gunn effect elements using compound semiconductors other than GaAs crystals that can cause the Gunn effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガン効果素子の電子濃度分布を示す図、
第2図は本発明実施例のガン効果素子の電子濃度分布を
示す図、第3図は本発明実施例の発振器の周波数特性を
示す図、第4図は比較例の発振器の周波数特性を示す図
、第5図は本発明実施例及び比較例の発振器の周波数特
性を示す図、第6図は電子濃度遷移幅が動作結晶厚さの
60%を占めた場合のダイオード面積と、発振出力及び
発振効率との関係を示す図、第7図は電子濃度遷移幅が
動作結晶厚さの20%、40%、60%を占めた場合の
負のコンダクタンスとサセプタンスとの関係を示すであ
る。 1は基板、2は動作層、3は電極層、5は電子濃度遷移
領域である。 4は動作層における電子濃度のほぼ平担な領域である。
Figure 1 is a diagram showing the electron concentration distribution of a conventional Gunn effect element.
FIG. 2 is a diagram showing the electron concentration distribution of the Gunn effect element of the example of the present invention, FIG. 3 is a diagram showing the frequency characteristics of the oscillator of the example of the present invention, and FIG. 4 is a diagram showing the frequency characteristics of the oscillator of the comparative example. Figure 5 shows the frequency characteristics of the oscillators of the examples of the present invention and comparative examples, and Figure 6 shows the diode area, oscillation output, and FIG. 7 shows the relationship between negative conductance and susceptance when the electron concentration transition width occupies 20%, 40%, and 60% of the operating crystal thickness. 1 is a substrate, 2 is an active layer, 3 is an electrode layer, and 5 is an electron concentration transition region. 4 is a region where the electron concentration in the active layer is almost flat.

Claims (1)

【特許請求の範囲】[Claims] 1 動作結晶層において、高電子濃度の基板と接する側
の電子濃度遷移幅が該動作結晶層の厚さの40%乃至1
00%を占めることを特徴とするガン効果素子。
1 In the active crystal layer, the electron concentration transition width on the side in contact with the high electron concentration substrate is 40% to 1% of the thickness of the active crystal layer.
A gun effect element characterized in that it occupies 00%.
JP50136876A 1975-11-14 1975-11-14 Gankou Kasoshi Expired JPS5824952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50136876A JPS5824952B2 (en) 1975-11-14 1975-11-14 Gankou Kasoshi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50136876A JPS5824952B2 (en) 1975-11-14 1975-11-14 Gankou Kasoshi

Publications (2)

Publication Number Publication Date
JPS5260578A JPS5260578A (en) 1977-05-19
JPS5824952B2 true JPS5824952B2 (en) 1983-05-24

Family

ID=15185587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50136876A Expired JPS5824952B2 (en) 1975-11-14 1975-11-14 Gankou Kasoshi

Country Status (1)

Country Link
JP (1) JPS5824952B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833783A (en) * 1971-09-03 1973-05-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833783A (en) * 1971-09-03 1973-05-12

Also Published As

Publication number Publication date
JPS5260578A (en) 1977-05-19

Similar Documents

Publication Publication Date Title
US7696535B2 (en) Gallium nitride high electron mobility transistor having inner field-plate for high power applications
US5705847A (en) Semiconductor device
US8461631B2 (en) Composite contact for semiconductor device
JPWO2006132419A1 (en) Field effect transistor
US10276704B1 (en) High electron mobility transistor with negative capacitor gate
JPH03265175A (en) Horizontal type varistor diode and manufacture thereof
US7355215B2 (en) Field effect transistors (FETs) having multi-watt output power at millimeter-wave frequencies
JP2002343814A (en) Field effect transistor
Shealy et al. Gallium nitride (GaN) HEMT's: progress and potential for commercial applications
Irvin et al. Fabrication and noise performance of high-power GaAs IMPATTS
Kumabe et al. GaAs travelling-wave amplifier
JPS5824952B2 (en) Gankou Kasoshi
CN107017310B (en) Planar Gunn diode with high power and low noise and preparation method thereof
JP2000299386A (en) Semiconductor circuit device and manufacturing method therefor
US3833858A (en) High gain solid-state distributed interaction microwave amplifier
Reynolds et al. High-efficiency transferred electron oscillators
JP2008288365A (en) Semiconductor device
Fank et al. InP Gunn diode sources
JP2007116007A (en) Semiconductor power amplifier and method for manufacturing same
Nakamura et al. High-efficiency low-phase-noise 79-GHz Gunn oscillator module
JP4437342B2 (en) Bipolar Gun Effect Triode, Voltage Controlled Frequency Variable Oscillator, Injection Locked Oscillator, Self-Oscillating Mixer, and Radio Receiver Using It
CN111066239B (en) Terahertz wave detector and terahertz unit
Shino et al. GaAs power MESFETs prepared by metalorganic chemical vapour deposition
JPWO2003067664A1 (en) Field effect transistor and manufacturing method thereof
JPH0669249A (en) Multi-feed complex transistor