JPS5824873A - Measuring apparatus for radio wave receiving position - Google Patents

Measuring apparatus for radio wave receiving position

Info

Publication number
JPS5824873A
JPS5824873A JP12301981A JP12301981A JPS5824873A JP S5824873 A JPS5824873 A JP S5824873A JP 12301981 A JP12301981 A JP 12301981A JP 12301981 A JP12301981 A JP 12301981A JP S5824873 A JPS5824873 A JP S5824873A
Authority
JP
Japan
Prior art keywords
receiving position
radio waves
reference signal
equation
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12301981A
Other languages
Japanese (ja)
Other versions
JPH0153430B2 (en
Inventor
Fusakichi Ono
小野 房吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12301981A priority Critical patent/JPS5824873A/en
Publication of JPS5824873A publication Critical patent/JPS5824873A/en
Publication of JPH0153430B2 publication Critical patent/JPH0153430B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems

Abstract

PURPOSE:To enable accurate determination of receiving position by solving proper equation derived from an observation equation in the number equal to that of unknown values therein. CONSTITUTION:Radio waves are received from a wireless navigation aid system adapted to emit radio waves synchronized in a fixed relationship. The received phase of the radio waves is measured with respect to an appropriate reference signal. Based on a plurality of measured data and the reception positions, an observation equation is set up to connect the true direction of the station corresponding to the data, a deviation between an estimated receiving position and the actual receiving position and the phase of the reference signal. Then, from this observation equation, proper equations are derived in the number equal to that of unknown values therein. Then, the equations thus obtained are solved to find the correct receiving position. This enables the expansion of the service area free from error due to possible drift of the reference signal without causing difficulty in measuring the position. A higher stability of the measured values can be obtained in a short time.

Description

【発明の詳細な説明】 例へば、ロラン−Cシステム1マ、米国コーストガード
が運用する無線航行援助システムであるが、これを利用
する双曲線航法受信機で測定されるデータは。
DETAILED DESCRIPTION OF THE INVENTION For example, the data measured by a hyperbolic navigation receiver using the Loran-C System 1M, a radio navigation aid system operated by the US Coast Guard, is as follows.

主局の発射電波に対する従局の発射電波の受信点におけ
る相対到来時間差である。このデータをTDとすると。
This is the relative arrival time difference between the radio waves emitted by the slave station and the radio waves emitted by the master station at the receiving point. Let this data be TD.

5bz ここで(sr、+cD)1 :従局の発射遅延時間τ〔
え  :従局から受信点までの 電波伝搬時間 T□エ  :主局から受信点までの 電波伝1般時間 である。
5bz where (sr, +cD) 1: Launch delay time τ of slave station [
E: Radio wave propagation time from the slave station to the receiving point T□E: General time for radio wave propagation from the master station to the receiving point.

このデータから、受信点の測地座標(q)i入)c)を
知ることを考へる。
From this data, consider knowing the geodetic coordinates (q)i)c) of the receiving point.

受信点の受信推定位置を与へて、これとあらかじめシス
テム定数として与へられる電波発射局の位置から、送受
信点間の測地線長を計算し電波伝搬時間τltを求め、
さらに を計算する・ 一方、受信推定位置乾へ)から見た各局の真方位z1゜
2、・・・・Zjも計算する。
Given the estimated receiving position of the receiving point, and from this and the position of the radio wave emitting station given in advance as a system constant, calculate the geodesic length between the transmitting and receiving points and find the radio wave propagation time τlt.
In addition, calculate the true bearing of each station z1゜2, ...Zj as seen from the estimated receiving position.

これらの計算から得られる既知数△Ti、、Ziと未知
数の受信推定位置と実際の受信位置との経緯度偏差△入
The known numbers ΔTi, , Zi obtained from these calculations and the latitude and longitude deviation Δ between the estimated reception position and the actual reception position, which are unknown numbers, are entered.

△ψ及び主局の電波の受信位相−を結びつける観測方程
式は。
The observation equation that connects △ψ and the reception phase of the main station's radio waves is:

である。It is.

この観測方程式の既知定数を、最小二乗法の手法で計算
処理し、未知数の数に等しい数の正規方程式を導び(、
(それには、(3)式の0osZ+、5inZH、T)
cの系数1゜ΔJ をそれぞれaL +bf tOjs
dL としたとき U at atl[bt  aL]
、 [0tail、 [di  ’J]+ [:bl 
 1)+:]、 [O+tl+]。
The known constants of this observation equation are calculated using the method of least squares, and a number of normal equations equal to the number of unknowns are derived (,
(For that, 0osZ+, 5inZH, T in equation (3))
The corollary number 1゜ΔJ of c is aL +bf tOjs, respectively
When dL, U at atl [bt aL]
, [0tail, [di 'J] + [:bl
1)+:], [O+tl+].

[d)tliコ、[C+O+コ、[dHc;コを計算す
る・この計算値から未知数の最確値を求める正規方程式
ここまでくれば、未知数の解は系数の行列式から全く機
械的に これで、未知数がすべて決定した。求める受信位置は 以上が、この発明の測位原理であるが、ここ処このよう
なデータ処理を行なう測位装置の、従来の方式に対する
特徴を列記しでおく。
[d) Calculate tli, [C+O+, [dHc;]. From this calculated value, we can find the most probable value of the unknown. Once we have reached this point, we can find the solution to the unknown completely mechanically from the determinant of the system. , all unknowns have been determined. The reception position to be determined has been described above as the positioning principle of the present invention, but the features of the positioning apparatus that performs such data processing compared to the conventional system will be listed here.

(+)  (3)I (4)でTχを未知数としで解く
から、測定の基準となるレファレンス信号は、この例の
ように主局の電波の受信位相ではなく、距離航法(f’
−P航法とも呼ばれる)の如く、受信点の適当なレファ
レンス信号に対する測定デー、夕でも全く同様に解が得
られる。
(+) (3)I Since (4) is solved with Tχ as an unknown, the reference signal that is the standard for measurement is not the receiving phase of the main station's radio waves as in this example, but the distance navigation (f'
(also called P-navigation), exactly the same solution can be obtained even on a measurement day or evening for an appropriate reference signal at the receiving point.

しかも、この場合従来の距離航法の欠点であった。レフ
ァレンス信号のドリフトによるL呉差を受けない。
Moreover, this was a drawback of conventional distance navigation. It is not affected by the L difference caused by the drift of the reference signal.

(2)3局の電波を受信して2本の双曲線データを得る
。双曲線航法では主従局を結ぶ基線の延長線附近で測位
が困難であるが、この方式では3局の電波を受信して、
三つのデータをレファレンス信号を介して取得でき、送
受信点間の幾何学的量系がどうであれ、三つのデータが
得られる限りにおいて、>111位困難が生ぜずサービ
スエリアが広くなる。
(2) Receive radio waves from three stations and obtain two hyperbolic data. In hyperbolic navigation, positioning is difficult near the extension line of the baseline connecting the master and slave stations, but with this method, radio waves from three stations are received,
Three pieces of data can be obtained via the reference signal, and regardless of the geometrical quantity system between the transmitting and receiving points, as long as the three pieces of data can be obtained, the problem of >111 will not occur and the service area will be widened.

(3)そのシステムが5局で構成される場合、最大5つ
のデータが取得できるが、その全部 を測位計算にとり
込むことができるから一つのデータの測位におけるウェ
イ団子がり測位値の短時間安定度の向上が期待できる。
(3) If the system is composed of 5 stations, a maximum of 5 pieces of data can be acquired, and all of them can be incorporated into positioning calculations, which improves the short-term stability of way-dumpling positioning values when positioning one data. can be expected to improve.

(4)この方式では受信データが多いとき、最終測位値
の計算で得られたT工を個個の測定デ″−タ△T、から
差引くことによって、そのデータの質を評価することが
できる。即わち。
(4) In this method, when there is a large amount of received data, the quality of the data can be evaluated by subtracting the T value obtained by calculating the final positioning value from the individual measurement data △T. Yes, I can.

このVlは普通残差と言われるもので、測定データに誤
差がなければ零となる性質のものである・(5) vl
が既知点におけるものであれば、このときのV。
This Vl is usually called a residual, and has the property of being zero if there is no error in the measurement data. (5) vl
is at a known point, then V at this time.

Claims (1)

【特許請求の範囲】 「一定の関係で同期した電波を発射する無線航行援助シ
ステムの電波を受信し、この電波の受信位相を適当なレ
ファレンス信号に対して測定し。 複数の測定データと受信位置からみた。そのデータに対
応する局の真方位と、受信推定位置と某際の受信位置と
の経緯度偏差及びレファレンス信号の位相を結びつける
観測方程式を立て、この観測方程式から未知数の数に等
しい数の正規方程式を導びき、この方程式を解くことに
よって受信位置を知る電波受信側位置装置」
[Claims] "Radio waves from a radio navigation aid system that emits radio waves synchronized in a certain relationship are received, and the reception phase of these radio waves is measured with respect to an appropriate reference signal. A plurality of measurement data and reception positions. An observation equation is created that connects the true direction of the station corresponding to the data, the longitude and latitude deviation between the estimated reception position and a certain reception position, and the phase of the reference signal, and from this observation equation, a number equal to the number of unknowns is calculated. A radio wave receiving side positioning device that derives the normal equation of and determines the receiving position by solving this equation.
JP12301981A 1981-08-07 1981-08-07 Measuring apparatus for radio wave receiving position Granted JPS5824873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12301981A JPS5824873A (en) 1981-08-07 1981-08-07 Measuring apparatus for radio wave receiving position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12301981A JPS5824873A (en) 1981-08-07 1981-08-07 Measuring apparatus for radio wave receiving position

Publications (2)

Publication Number Publication Date
JPS5824873A true JPS5824873A (en) 1983-02-14
JPH0153430B2 JPH0153430B2 (en) 1989-11-14

Family

ID=14850207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12301981A Granted JPS5824873A (en) 1981-08-07 1981-08-07 Measuring apparatus for radio wave receiving position

Country Status (1)

Country Link
JP (1) JPS5824873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500187A (en) * 1983-10-14 1986-01-30 ナビゲ−シヨン.サイエンス.インコ−ポレ−テツド Navigation equipment with centralized electronic chart display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500187A (en) * 1983-10-14 1986-01-30 ナビゲ−シヨン.サイエンス.インコ−ポレ−テツド Navigation equipment with centralized electronic chart display

Also Published As

Publication number Publication date
JPH0153430B2 (en) 1989-11-14

Similar Documents

Publication Publication Date Title
US3866229A (en) Method and apparatus for automatically determining position-motion state of a moving object
US10557919B2 (en) Observed time difference of arrival angle of arrival discriminator
US7990314B2 (en) Method and system for locating a geographical position using broadcast frequency modulation signals
US6529165B1 (en) Radio positioning systems
EP1014103B1 (en) Local positioning system
US4894655A (en) Landing assistance system using navigation satellites
US6061021A (en) Locatable mobile cellular telephony terminal
US7477193B2 (en) Method and system for elliptical-based surveillance
US6408246B1 (en) Remote terminal location algorithm
US3430234A (en) Navigation systems using earth satellites
JP5450081B2 (en) Method, software and system for determining the position of a user device
CA2372843C (en) Improvements in or relating to object location
WO2017130513A1 (en) Information processing device, computation method, and positioning system
WO2003003040A2 (en) Enhanced location methodology for a location system
NO302323B1 (en) Precision landing system
JPS58129277A (en) Radio navigation device of hyperbola system
RU2624457C1 (en) Method of determining coordinates of object
RU2004115740A (en) AUXILIARY BEAM IDENTIFICATION IN A SATELLITE SYSTEM
JPS5824873A (en) Measuring apparatus for radio wave receiving position
RU2112991C1 (en) Integral navigation system
US20040085242A1 (en) Synthetic Doppler system and method for locating cooperative transceivers
CN109490828A (en) Localization method based on homologous baseline array
JPS582764A (en) Direction finding system using hyperbolic navigation
RU2457629C1 (en) Phase radio-navigation system
EP4350379A1 (en) Method of time difference of arrival locating as well as locating system