JPS5824827A - Method for measuring stress distribution - Google Patents

Method for measuring stress distribution

Info

Publication number
JPS5824827A
JPS5824827A JP11428881A JP11428881A JPS5824827A JP S5824827 A JPS5824827 A JP S5824827A JP 11428881 A JP11428881 A JP 11428881A JP 11428881 A JP11428881 A JP 11428881A JP S5824827 A JPS5824827 A JP S5824827A
Authority
JP
Japan
Prior art keywords
data
raster
measured
stress distribution
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11428881A
Other languages
Japanese (ja)
Inventor
Yoji Nakayama
仲山 要二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP11428881A priority Critical patent/JPS5824827A/en
Publication of JPS5824827A publication Critical patent/JPS5824827A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/248Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet using infrared

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To measure the stress distribution without contact by alternately applying compressing and tensile loads to a body to be measured, and performing raster scanning on an image spot of an infrared ray detector at the timing of the maximum load. CONSTITUTION:The body to be measured 1 is fixed to chucks 2 and 2' of a load testing machine, and the compressing and tensile loads are alternately applied to it. The infrared rays irradiated from the body to be measured 1 are detected by the infrared ray detector 3. The signal from an optical scanner 4 which scans the image spot of the detector 3 is sent to a CRT display 6. The signal is converted into the digital signal by an A/D converter 7 and stored in data memories 12 and 13. A computer 19 samples the detected signal values corresponding to the position which is separated by a specified distance from the initial point of each raster for every raster at the timing of the maximum compressing and tensile loads, obtains a data, and prepares the stress distribution image based on the data.

Description

【発明の詳細な説明】 本発明はラスタ走査を行う赤外線撮像装置を用いた新規
な応力分布測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel stress distribution measurement method using an infrared imaging device that performs raster scanning.

機械部品等を作成するにあたっては荷重による応力が特
定部位に集中しない様に注意を払う必要があり、そのた
めJこ実物又はそれに近い模型を使って応力分布を測定
することが行われている。応力分布の測定法きしては被
測定体の各部1こ多数の歪ゲージを取付け、各デージか
らの出力を総合して判断することが従来から行われてい
るが、歪ゲージの取付は作業に手間がかかるばかりでな
く、歪デージの大きさの関係で測定点の数が限定されて
しまい正確な応力分布の測定は不可能であるとllう欠
声があった。
When creating mechanical parts, etc., care must be taken to ensure that the stress due to the load does not concentrate on a specific part, and for this reason, the stress distribution is measured using a real object or a model close to it. The conventional method for measuring stress distribution is to attach one or more strain gauges to each part of the object to be measured, and then make a judgment by integrating the output from each gauge.However, installing strain gauges is a labor-intensive process. Not only is it time-consuming, but the number of measurement points is limited due to the size of the strain, making it impossible to accurately measure the stress distribution.

そこで近時ラスタ走査を行う赤外線撮像装置を用いるこ
と(こより非接触で短時間1ζ応力分布を測定する方法
が提案されている。この提案方法は被測定体の応力集中
部位の表面温度が、圧縮荷重を受けた時上昇し逆1こ引
張荷重を受けた時下降すること1こ着目したものであり
、被測定体Iこ圧縮荷重と引張荷重とを交互(こ繰返し
加えて応力集中部位の温度を繰返し変化させた状態でこ
の被測定体をラスタ走査を行う赤外線撮像装置で撮影す
ると、取得した赤外線像の応力集中部位lこ繰返し温度
変化に起因する縞模様が現れることを利用している。
Therefore, a method has recently been proposed that uses an infrared imaging device that performs raster scanning to measure the 1ζ stress distribution in a short time without contact. This method focuses on the fact that it rises when a load is applied and falls when it receives an inverse tensile load. This method takes advantage of the fact that when this object to be measured is photographed with an infrared imaging device that performs raster scanning while the temperature is repeatedly changed, a striped pattern appears in the stress concentration area of the acquired infrared image due to the repeated temperature changes.

ところが、この提案方法では縞模様の有無1どより応力
集中部位の有無を判別することはできるが、その強さく
縞模様の濃さ)を全視野にわたって定駄的lこ把握する
ことは極めて困難である。本発明はこの点lこ鑑みてな
されたものであり、赤外線映像信号1こ簡単な処理を加
えること1こより応力分布を定曲的1こ測定することの
できる方法を提供することを目的とするもので、赤外線
像の撮像を荷重の繰返し印加と非同期で行い得ることl
こ特徴がある。以下図面を用いて本発明を詳説する。
However, although this proposed method can determine the presence or absence of a stress concentration area based on the presence or absence of a striped pattern, it is extremely difficult to determine the strength and density of the striped pattern in a fixed manner over the entire field of view. It is. The present invention has been made in view of this point, and it is an object of the present invention to provide a method that can measure stress distribution in a fixed curve by adding simple processing to an infrared image signal. It is possible to take infrared images asynchronously with the repeated application of loads.
There is this characteristic. The present invention will be explained in detail below using the drawings.

第1図は本発明1こかかる方法を実施するための装置の
一例を示い図において1は荷i7ρ#2に両端が固定さ
れた被測定体、6は該被測定体1から放射される赤外線
を検出するための赤外線検出器、4は該検出器乙の像ス
ポットSを被測定体上(こ結像すると共に該像スポット
Sを視野Z内でラスタ走査するための光スキャナである
。該スキャナ41こよる像スポットSの視野走査1どよ
り検出器3から得られた赤外線映像信号は増幅器5を介
して陰極線管表示装置6へ送られるが、該表示装置6は
前記光スキャナ4から発生する水平、垂直同期信号81
(、SVに同期して走査されるため、その画面iこは第
2図1b+に示す様に被測定体1の赤外線像が表示され
ること1こなる。
FIG. 1 shows an example of a device for carrying out the method of the present invention. In the figure, 1 is an object to be measured whose both ends are fixed to the load i7ρ#2, and 6 is the radiation emitted from the object to be measured 1. An infrared detector 4 for detecting infrared rays is an optical scanner for forming an image spot S of the detector B on the object to be measured and raster scanning the image spot S within a field of view Z. The infrared image signal obtained from the detector 3 through the field of view scanning 1 of the image spot S by the scanner 41 is sent to the cathode ray tube display device 6 via the amplifier 5. Horizontal and vertical synchronization signals 81 generated
(Since the scanning is performed in synchronization with the SV, the infrared image of the object to be measured 1 is displayed on the screen as shown in FIG. 2, 1b+).

上記赤外線映像信号は表示装置6へ送られると共lこA
−D変換器7によってデジタル信号に変換され、タイミ
ング回路8,9からのタイミング信号IこよってON、
OFFされるスイッチ10.11を介して1画面分の映
像信号を格納する記憶容量を持つ2つのデータメモリ1
2又は16へ送られて記憶される。14はその時の格納
すべき番地fこ関する情報を与えるためのカウンタであ
り、該カウンタは前記スキャナ4からの水平同期信号S
Hを計数し、垂直同期信号SvIこよってクリアされる
The above-mentioned infrared video signal is sent to the display device 6.
- It is converted into a digital signal by the D converter 7, and the timing signal I from the timing circuits 8 and 9 is turned ON.
Two data memories 1 having a storage capacity to store one screen worth of video signals via switches 10 and 11 that are turned off.
2 or 16 and stored. 14 is a counter for giving information regarding the address f to be stored at that time, and this counter receives the horizontal synchronizing signal S from the scanner 4.
H is counted and cleared by the vertical synchronizing signal SvI.

15は被測定体1の適宜な部位lこ取付けられたストレ
ンデージ、16は該ストレンデージ15の歪信号)の正
ピークを検出するためのピーク検出回路、18は同じく
負ピークを検出するためのピーク検出回路であり、前記
タイミング回路8,9は該検出回路17.18の出力信
号と水平同期信号S Hに基づいてタイミング信号を作
成する019は撮影終了後データメモ1J12,151
ご格納された211!のデータ(こスムージング処理を
施した後両者の差を求め、その結果をデータメモリ12
へ格納するtコめのコンピュータ、20は該メモリ12
1こ格納された結果を繰返し読出して陰極線管21へ表
示するための読出し回路である。
Reference numeral 15 denotes a strainage attached to an appropriate part of the object to be measured 1, 16 a peak detection circuit for detecting the positive peak of the distortion signal of the strainage 15, and 18 a peak detection circuit for detecting the negative peak. 019 is a peak detection circuit, and the timing circuits 8 and 9 create a timing signal based on the output signal of the detection circuit 17.18 and the horizontal synchronization signal SH.
211 stored! data (after performing smoothing processing, calculate the difference between the two, and store the result in the data memory 12
t second computer 20 stores data in the memory 12;
This is a readout circuit for repeatedly reading out the stored results and displaying them on the cathode ray tube 21.

斯かる構成fこおいて荷重試験機が例えば5 Hzの繰
返し周波数で第3図(a) lど示す様lこ圧縮力と引
張力を交互1こ被測定体11こ印加しているとすると、
被測定体1の応力集中部位人ではそれ1こ同期して第2
図1b+ iこ示す様1こ圧縮期間t1の間熱荷重時の
温度よりも高温となり、引張期間t2の間熱荷重時の温
度よりも低温となる。この様1こ繰返しの荷重印加fこ
同期して高温期上低温期が繰返されているA部を検出器
像スポットSでラスタ走査する場合について考えると、
今荷重印加の1回のサイクルの間1こ10回のラスタ走
査が行われるとすれば、A部の拡大図である第2図1b
+に示す様に高温期t1に5回のラスタ走査が行われ、
低温期t21こも5回のラスタ走査が行われる。この時
表示装置6でもそれlこ同期してラスタ走査が行われ、
tlの期間の5本のラスタは高温に(高輝度で)表示さ
れ、t2の期間の5本のラスタは低温lこ(低輝度で)
表示される。従って該表示装置6の画面iこ表示される
被測定体1の温度分布像には第2図1clに示す様1こ
、応力集中邦人に濃淡の縞模様が発生することになる。
In such a configuration, suppose that the load tester is applying compressive force and tensile force alternately to 11 objects to be measured at a repetition frequency of, for example, 5 Hz, as shown in FIG. 3(a). ,
In humans, the stress concentration area of the object to be measured 1 is synchronously
As shown in FIG. 1b+i, during the compression period t1, the temperature is higher than that during the thermal load, and during the tension period t2, the temperature is lower than the temperature during the thermal load. Considering the case where the detector image spot S raster-scans the part A where the high temperature period and low temperature period are repeated in synchronization with the load application f repeated once in this way,
If we assume that raster scanning is performed 1 to 10 times during one cycle of load application, Figure 2 1b is an enlarged view of section A.
As shown in +, raster scanning is performed five times during the high temperature period t1,
During the low temperature period t21, raster scanning is performed five times. At this time, raster scanning is also performed on the display device 6 in synchronization with the display device 6.
The five rasters in the period tl are displayed at a high temperature (high brightness), and the five rasters in the period t2 are displayed at a low temperature (low brightness).
Is displayed. Therefore, in the temperature distribution image of the object to be measured 1 displayed on the screen of the display device 6, a striped pattern of shading is generated, as shown in FIG. 2, 1cl.

この縞の炭淡の差は高温期々低温期の温度差であり、こ
の濃淡の差から応力の大きさを知ることが可能ではある
が定量的な把握が困難であることば先1こ述べた通りで
ある。
The difference in the charcoal density of this stripe is the temperature difference between the high temperature period and the low temperature period, and although it is possible to know the magnitude of stress from this difference in shading, it is difficult to understand it quantitatively. That's right.

本実施例では1画面中で圧縮荷重が最大になるタイミン
グのラスタと引張荷重が最大lζなるタイミングのラス
タのみ1こ着目し、圧縮荷重が最大1こなるタイミング
のラスタ毎1ど各ラスタの始点から同−距離離れた位置
に対応する映像信号データをサンプリングして第1のデ
ータ群として記憶し、又引張荷重が最大lこなるタイミ
ングのラスタ毎Iこ各ラスタの始点からと記と同距離離
れた位ti¥fこ対応する映像信号データをサンプリン
グして第2のデータ群として記憶し、各データ群毎に折
線近似処理を行った後両データ群の差を求めることによ
り定量的な把握を可能にしている。
In this example, we focus only on the raster at the timing when the compressive load is maximum and the raster when the tensile load is at maximum lζ in one screen, and the starting point of each raster is 1 for each raster at the timing when the compressive load is at maximum 1. The video signal data corresponding to the position the same distance away from is sampled and stored as the first data group, and the same distance as noted from the starting point of each raster is sampled for each raster at the timing when the tensile load reaches the maximum. Quantitative understanding can be done by sampling the corresponding video signal data at distant positions and storing it as a second data group, and after performing broken line approximation processing for each data group, finding the difference between both data groups. is possible.

即ち、ここで第2図(C)1こ示す画面においてLで示
される様1ど、画面の左端から距離l離れラスタに直交
する1本の直線fこ沿った温度の変化を考える。1画面
が例えば240本のラスタから構成されているとすると
、Lに沿った温度変化は240個の点(データ)の連な
りとし′C第4図(alに示す様lこ表わすことができ
る。この時の荷重変fヒは同図(hl Iこ示r様であ
り、同図−)のデータから圧縮荷重が最大になるタイミ
ングのデータA、−Anを抜き出Vと同図iclの様l
こなり、同じく引張荷重が最大1どなるタイミングのデ
ータB1〜Bnを抜き出すと同図(dlの様になる。縞
の濃淡の差が応力値に対応するのであるから(clのデ
ータとtdlのデータの差を取ればLlこ沿った応力変
化が求められる筈であるが、夫々のデータは位置がずれ
ているので差を求める相手のデータがない。そこで第4
図icl 、 tdlのデータ1こ基づいて折線近似を
行うことtこより同図(e) 、 fflの様な240
点の全ラスク分のデータを作成し、このtelとffl
のデータの差を求めれば同図+glに示す様fこLに沿
った応力変化を示す240点のデータを得ることができ
る。
That is, let us now consider the change in temperature along a straight line f perpendicular to the raster, a distance l from the left edge of the screen, as indicated by L on the screen shown in FIG. 2(C)1. If one screen is made up of, for example, 240 rasters, the temperature change along L can be expressed as a series of 240 points (data) as shown in Figure 4 (al). At this time, the load change f is as shown in the same figure (hl I shown r, same figure -), and the data A and -An of the timing when the compressive load is maximum are extracted. l
Similarly, if you extract the data B1 to Bn at the timing when the tensile load reaches a maximum of 1, it will look like the same figure (dl).The difference in the density of the stripes corresponds to the stress value (data of cl and data of tdl). If we take the difference between the two, we should be able to find the stress change along Ll, but since the positions of each data are shifted, there is no data for the other party to find the difference in.
Figure 240 (e), ffl, etc. is obtained by performing a broken line approximation based on the data of icl and tdl.
Create data for the entire rask of points, and use this tel and ffl
By finding the difference between the data, it is possible to obtain 240 points of data indicating stress changes along the f-L as shown in +gl in the same figure.

更1こここで光スキャナ4のラスタ走査と荷重印加のサ
イクルの間lこ同期関係がない場@−(こついて考える
と、次の1画面走査で得られる像では縞の位置が垂直方
向へずれるため同じ直線L lこ沿った温度変化も第4
図+a+からずれる。従って次の1画面走査時にも上記
と同様に圧縮及び引張の最大荷重のタイミングでデータ
人11〜An’ 、 n、l〜no′を抜き出し、記憶
しておいた前回のデータA、 −An及びB1〜Bn(
第4図icl 、 ldl )と夫々重ねると第4図+
1++ 、 +1+が得られ、これを更1こ次々と繰返
せばデータが更fこ増加するので折線近似の精度が極め
て向上し得られる応力分布ら正確1こなる。
Furthermore, if there is no synchronous relationship between the raster scanning of the optical scanner 4 and the load application cycle, then (thinking about it further, in the image obtained in the next one screen scan, the position of the stripes will be in the vertical direction. Because of the shift, the temperature change along the same straight line L is also 4th.
It deviates from the figure +a+. Therefore, when scanning the next screen, data 11 to An', n, l to no' are extracted at the timing of the maximum compressive and tensile loads in the same way as above, and the previously stored data A, -An and B1~Bn(
Figure 4+
1++, +1+ are obtained, and if this is repeated one more time, the data will increase by another f, so the accuracy of the broken line approximation will be extremely improved, and the obtained stress distribution will be exactly one.

本実施例ではこの様な考え方1こ基づき、1画面中1こ
多数の(例えば200本)直線りを設定し全画面につい
ての応力分布データを得る様1こしている。即ら入−1
)変換器7は1本のラスタIこ対応する映像信号から2
00点のデータをサンプリングしてデジタル変換し、デ
ータメモリ12及び16は1ラスタ当り200個のデー
タを1ijlj面240本のラスタfこついて記憶する
ための200列・240行のマトリクスで表わされる記
憶領域(第5図)を夫々持っている。検出回路16から
は第3図fatlこ示される様な荷重をストレンデージ
15によって測定して得た歪信号(第3図(C))が得
られ、ピーク検出回路17からは該歪信号が最大1こな
った時点(圧縮荷重が最大Iこなった時点)で第3図+
dlに示す様なタイミングパルスが発生し、同様にピー
ク検出回路18からは歪信号が最小1こなった時点(引
張荷重が最大になった時点)で同図te+ 1ど示ず様
なタイミングパルスが発生する。そしてタイミング回路
8,9は該タイミングパルスと水平同期信号8 Hに基
づき、第3図(flに示す様にスキャナ4によって繰返
し行われている水平走査のうらkrEタイミングパルス
が発生してから最初の1回の水平走査の期間を指定する
タイミング信号(第3図+gl及び(h))を作成し、
該タイミング信号をスイッチ10.11へ夫々送る。該
スイッチ10゜11は該タイミング信号1どよって指定
された期間のみONとなるため、各高温期間の最大圧縮
荷重時のラスタ1本分の200個の映像信号データはス
イッチ10を介してデータメモリ12へ送られ、各低温
期間の最大引張荷重時のラスタ1本分の200個の映像
信号データはスイッチ11を介してデータメモリ16へ
送られる。その時各データメモリ12.13へは各映像
信号データが何本目のラスタのものかを示すカウンタ1
4のカウント値が供給されており、各映像信号データは
第5図で示されるマトリクス中のそのカランI・値で示
されるラスタ位tillこ該当する行へ格納される。従
って、1画面走査が終了した時点1こおいて各データメ
モリIこは第5図で斜線で示す様にサンプリングされた
ラスタのデータが、そのラスタの位置に対応する行iこ
格納されている。この状態で任意の列、例えばP列のデ
ータを抜き出したものが第4図1cl又はldl lこ
相当するものである。そこで1画面走査が終了後、コン
ピュータ191こよりマトリクス中の各列毎1こ格納さ
れている部分的データを用いて先に述べた第4Zlcl
からratへ虞いは同図1dlからlflへの近似処理
と全く同一の処理を行ってマトリクス中の空欄のデータ
を作成して格納すれば2つのメモリのマトリクス中lこ
空欄はなくなり、第4図(C)。
In this embodiment, based on this idea, a large number (for example, 200) of straight lines are set in one screen to obtain stress distribution data for the entire screen. Immediate entry-1
) The converter 7 converts one raster I from the corresponding video signal to two
The data of 00 points is sampled and converted into digital data, and the data memories 12 and 16 are memories represented by a matrix of 200 columns and 240 rows to store 200 pieces of data per raster in 240 rasters on a plane. Each has its own area (Figure 5). From the detection circuit 16, a strain signal (Fig. 3 (C)) obtained by measuring the load as shown in Fig. 1 (when the maximum compressive load is reached), Fig. 3 +
A timing pulse as shown in dl is generated, and similarly, when the strain signal reaches a minimum of 1 from the peak detection circuit 18 (when the tensile load reaches its maximum), a timing pulse as shown in te+1 in the figure is generated. occurs. Based on the timing pulse and the horizontal synchronizing signal 8H, the timing circuits 8 and 9 perform the first scan after the krE timing pulse is generated after the horizontal scanning repeatedly performed by the scanner 4, as shown in FIG. 3 (fl). Create a timing signal (Figure 3+gl and (h)) that specifies the period of one horizontal scan,
The timing signals are sent to switches 10 and 11, respectively. Since the switches 10 and 11 are ON only during the period specified by the timing signal 1, the 200 video signal data for one raster at the maximum compressive load during each high temperature period are transferred to the data memory via the switch 10. 12, and 200 video signal data for one raster at the maximum tensile load during each low temperature period are sent to the data memory 16 via the switch 11. At that time, a counter 1 indicating which raster each video signal data belongs to is stored in each data memory 12 and 13.
A count value of 4 is supplied, and each video signal data is stored in the corresponding row of the matrix shown in FIG. 5 at the raster position indicated by its column I value. Therefore, at the time one screen scan is completed, each data memory stores sampled raster data in rows corresponding to the raster position, as shown by diagonal lines in FIG. . Data extracted from an arbitrary column, for example column P, in this state corresponds to 1cl or ldll in FIG. After one screen scan is completed, the computer 191 uses the partial data stored once for each column in the matrix to scan the fourth Zlcl as described above.
To avoid the possibility of going from rat to rat, if you create and store the blank data in the matrix by performing exactly the same approximation process as the approximation process from 1dl to lfl in the same figure, there will be no blank data in the matrices of the two memories, and the fourth Figure (C).

lflの差からIglを求めた様Iここの2つのメモリ
に格納されている2つのデータ群の差を求めて求めたデ
ータをメモリ12へ格納すれば、該メモリ12中1こは
全画面200 x240=48000点fこわたる応力
分布を表わすデータが得られることになる。
Igl is calculated from the difference between lfl. If the data obtained by calculating the difference between the two data groups stored in the two memories here is stored in the memory 12, one of the memories 12 will have the entire screen 200. Data representing the stress distribution over x240=48000 points f will be obtained.

そしてこの全画面の応力データを読出し回路20iこよ
り順次繰返し続出しで映像信号の形で陰極線管21へ送
れば、その画面には応力に応じた輝度又は色相が与えら
れた応力分布像が表示されるため、応力集中部位は言う
までもなくその程度まで明確に判断することができる〇 尚上記は1画面走査のデータで応力分布像を作成する場
合であったが、光スキャナ4Iこよる走査と荷重印加の
間に同期関係がなければ複数回の画面走査毎lこ同一操
作を行うこと1こより、第4図(h)。
When the stress data of the entire screen is sequentially and repeatedly read out from the readout circuit 20i and sent to the cathode ray tube 21 in the form of a video signal, a stress distribution image with brightness or hue corresponding to the stress is displayed on the screen. Therefore, it is possible to clearly determine the location of stress concentration, needless to say, to the extent of stress concentration.The above was a case in which a stress distribution image was created using data from one screen scan, but the optical scanner 4I performs extensive scanning and load application. If there is no synchronization between them, the same operation is performed every time the screen is scanned multiple times, as shown in FIG. 4(h).

+i+と全く同様にメモリマトリクス中の原データが増
えるので近似精度が向上し、分解能の良い応力分布像(
データ)を得ることができる。
Just like +i+, the amount of original data in the memory matrix increases, improving approximation accuracy and creating a stress distribution image with good resolution (
data) can be obtained.

又本発明では2つのメモリに格納されたデータの差を求
めているため、荷重が印加されない状態で被測定体瑳こ
存在する温度変化は差を求めることによりキャンセルさ
れ、従って応力に関する情報のみを取出rことができる
In addition, since the present invention calculates the difference between the data stored in two memories, the temperature change that exists in the measured object when no load is applied is canceled by calculating the difference, and therefore only information regarding stress is obtained. It can be taken out.

以J:詳述した如く本発明fこよれば応力分布を定量的
に把握することができ、又光スキャナによる走査と荷重
印加の間に同期関係がないという最ら安易な状態でかえ
って分解能が向とするという極めて優れた効果が得られ
る。
J: As described in detail, the present invention allows stress distribution to be grasped quantitatively, and even in the simplest state, where there is no synchronous relationship between scanning by an optical scanner and load application, resolution is improved. This provides an extremely excellent effect of making it more directional.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明lこかかる方法を実施するための装置の
一例を示す図、第2図は縞の発生を説明するための図、
第3図は装置の動作を説明するための波形図、第4図は
本発明の基本的な考え方を説明するための図、第5図は
データメモリ中のマトリクスを説明するための図である
。 1:被測定体、5:赤外線検出器、4:光スキャナ、6
:陰極線管表示装置、7:A−D変換器、8.9:タイ
ミング回路、10.11 :スイッチ、12.15 :
データメモリ、14:カウンタ、15ニストレンデージ
、16:検出回路、17.18 :ピーク検出回路、1
9:コンピュータ、20:[出し回路、21:陰極線管
〇 特許出願人 日本電子株式会社 代表者加勢忠雄 へ  ^     う 2    S     z   g     CQ6 
 9   ?  q 寸 ′″′ 触
FIG. 1 is a diagram showing an example of an apparatus for carrying out the method according to the present invention, and FIG. 2 is a diagram for explaining the generation of stripes.
FIG. 3 is a waveform diagram for explaining the operation of the device, FIG. 4 is a diagram for explaining the basic idea of the present invention, and FIG. 5 is a diagram for explaining the matrix in the data memory. . 1: Object to be measured, 5: Infrared detector, 4: Optical scanner, 6
: Cathode ray tube display device, 7: A-D converter, 8.9: Timing circuit, 10.11: Switch, 12.15:
Data memory, 14: Counter, 15 Nistorange, 16: Detection circuit, 17.18: Peak detection circuit, 1
9: Computer, 20: Output circuit, 21: Cathode ray tube 〇 To Tadao Kase, representative of JEOL Ltd., patent applicant ^ U2 S z g CQ6
9? q dimension′″′ touch

Claims (1)

【特許請求の範囲】 L  im+被測定体に圧縮荷重と引張荷重を交互にく
り返し印加すること、 tbl該被測定体上で赤外線検出器の像スポットをラス
タ走査し検出信号を取得すること、let圧縮荷重が最
大のタイミングのラスタ毎lこ各ラスタの始点から一定
距離!離れた位置に対応する検出信号値をサンプリング
して第1のデータ群として記憶すること、 ldl引張荷重が最大のタイミングのラスタ毎fこ各ラ
スタの始点から一定距離l離れた位置に対応する検出信
号値をサンプリングして第2のデータ群として記憶する
こと、 16+前配第1のデータ群に基づいて第1の折線近似デ
ータを作成すること lfl前記第2のデータ群1こ基づいて1:記憶1の折
線近似データと同一数の第2の折線近似データを作成す
ること、 1g)上記第1の折線近似データと第2の折線近似デー
タの差を求めること、 より成る応力分布測定方法。 λ 前11cl p tdlにおける検出信号値のサン
プリング及び記憶を複数回の画面走査について行う特許
請求の範囲第1項記載の応力分布測定方法。
[Claims] L im + Alternately and repeatedly applying a compressive load and a tensile load to the object to be measured, tbl Raster scanning an image spot of an infrared detector on the object to be measured to obtain a detection signal, let A certain distance from the start point of each raster for each raster when the compressive load is maximum! Sampling detection signal values corresponding to distant positions and storing them as a first data group; detecting signals corresponding to positions a certain distance l away from the starting point of each raster for each raster at the timing when the ldl tensile load is maximum; Sampling signal values and storing them as a second data group; Creating first broken line approximation data based on the first data group; 1 based on the second data group: A stress distribution measuring method comprising: creating the same number of second broken line approximation data as the broken line approximation data in memory 1; 1g) determining the difference between the first broken line approximation data and the second broken line approximation data. 2. The stress distribution measuring method according to claim 1, wherein the detection signal value at 11cl ptdl before λ is sampled and stored for a plurality of screen scans.
JP11428881A 1981-07-21 1981-07-21 Method for measuring stress distribution Pending JPS5824827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11428881A JPS5824827A (en) 1981-07-21 1981-07-21 Method for measuring stress distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11428881A JPS5824827A (en) 1981-07-21 1981-07-21 Method for measuring stress distribution

Publications (1)

Publication Number Publication Date
JPS5824827A true JPS5824827A (en) 1983-02-14

Family

ID=14634092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11428881A Pending JPS5824827A (en) 1981-07-21 1981-07-21 Method for measuring stress distribution

Country Status (1)

Country Link
JP (1) JPS5824827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439146B2 (en) 2015-08-07 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439146B2 (en) 2015-08-07 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device

Similar Documents

Publication Publication Date Title
US4365307A (en) Temperature pattern measuring device
MX165965B (en) METHOD AND APPARATUS TO IMPROVE THE VERTICAL DEFINITION OF A TELEVISION SIGNAL THROUGH SWEEP CONVERSION
JP2001506113A (en) Adaptive oblique interpolation for enhanced image resolution
JPS5824827A (en) Method for measuring stress distribution
US4916535A (en) Method of non-destructive quality inspection of materials and videomonitor realizing this method
JPS6037894B2 (en) acoustic image display device
JP3221032B2 (en) X-ray imaging device
JPS56153228A (en) Method and device for measurement of stress
JP3214038B2 (en) X-ray imaging device
JPS62115307A (en) Method and instrument for measuring displacement distribution in real time
CA1165444A (en) Temperature pattern measuring method and device therefor
JPS5846564A (en) X-ray analyzer of energy dispersal type
JP2900391B2 (en) Bright line distortion measuring device
JP2835047B2 (en) Reading waveform inspection device for image reading device
SU744666A1 (en) Device for displaying information on crt screen
SU1008779A1 (en) Device for reproducing flaws of investigated object on the crt screen
SU824189A1 (en) Device for output of information from cathode-ray tube
JPH10104175A (en) X-ray inspection apparatus for specifying material quality
JP3523308B2 (en) Display resolution measurement device
JPH0137684B2 (en)
JPH08298091A (en) Scanning electron microscope
SU1118921A1 (en) Oscillographic meter of electric signal amplitude parameters
SU945920A1 (en) Device for measuring parameters of cathode-ray tubes
KR860000607B1 (en) Temperatrue pattrern measuring device
JPS6228142Y2 (en)