JP2835047B2 - Reading waveform inspection device for image reading device - Google Patents

Reading waveform inspection device for image reading device

Info

Publication number
JP2835047B2
JP2835047B2 JP63040573A JP4057388A JP2835047B2 JP 2835047 B2 JP2835047 B2 JP 2835047B2 JP 63040573 A JP63040573 A JP 63040573A JP 4057388 A JP4057388 A JP 4057388A JP 2835047 B2 JP2835047 B2 JP 2835047B2
Authority
JP
Japan
Prior art keywords
pixel
image
image signal
reading
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63040573A
Other languages
Japanese (ja)
Other versions
JPH01216487A (en
Inventor
幸治 扇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63040573A priority Critical patent/JP2835047B2/en
Publication of JPH01216487A publication Critical patent/JPH01216487A/en
Application granted granted Critical
Publication of JP2835047B2 publication Critical patent/JP2835047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は画像読取装置の読取り画像波形を検査して製
品自動検査を行う画像読取装置の読取り波形検査装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a reading waveform inspection apparatus of an image reading apparatus which inspects a reading image waveform of an image reading apparatus and performs an automatic product inspection. .

(従来の技術) ファクシミリやイメージスキャナなどにおいて、画像
読取りを行う画像読取装置部分は複数の微小なイメージ
ング素子をライン状に例えば16dot/mmと言うった高密度
に並べたライン型(一次元配列)のイメージセンサを用
いて構成する。そして、このようなライン型のイメージ
センサに対して原稿をこれと直交する方向に送りつつ、
各イメージング素子位置で原稿の画像を読み、その濃淡
情報に合わせた画像信号の形で、順に送り出すことによ
り1ライン単位で画素位置順に連なる画像信号を得てい
る。ところで、このような画像読取装置においては極め
て膨大な数のイメージング素子の集合体であるライン型
のイメージセンサにより画像信号を得るため、各々のイ
メージング素子の特性のバラツキが問題になる。すなわ
ち、イメージング素子個々の読取り出力特性がある程
度、揃っていないと得られる画像の再現性が悪くなり、
解像度や忠実度が損われる。そこで、画像読取装置の出
力画像信号を検査して、そのバラツキを測定し、良否を
判定して製品の選択や出力補正を行う必要がある。
(Prior Art) In a facsimile, an image scanner, or the like, an image reading device portion for reading an image is a line type (one-dimensional array) in which a plurality of minute imaging elements are arranged in a line at a high density of, for example, 16 dots / mm. ) Is configured using the image sensor. Then, while sending the original to such a line type image sensor in a direction orthogonal to the original,
An image of a document is read at each imaging element position, and is sequentially sent out in the form of an image signal corresponding to the density information, thereby obtaining an image signal continuous in a pixel position order in units of one line. By the way, in such an image reading apparatus, since an image signal is obtained by a line-type image sensor which is an aggregate of an extremely large number of imaging elements, variations in characteristics of each imaging element become a problem. That is, if the readout characteristics of the individual imaging elements are not uniform to some extent, the reproducibility of the obtained image becomes poor,
Resolution and fidelity are compromised. Therefore, it is necessary to inspect the output image signal of the image reading apparatus, measure the variation, determine the quality, and perform product selection and output correction.

従来、この種の検査を行う場合は、例えば白パターン
の原画を読取らせて得らた画像波形をシンクロスコープ
に入力し、検査員がその表示波形を目で観測することで
行っていた。この場合に得られる観測波形は第2図のよ
うなものであり、細かい変動は個々のイメージング素子
の白レベル出力を示している。従って、イメージング素
子のバラツキの様子と全体的な白レベルのずれの様子を
大まかに知ることができ、これによって良否判定は出来
るが、これは検査員の熟練度や個人差、観察する目の高
さ等に左右される主観的な検査に止まることになり、物
理的に精密な客観的波形検査ができなかった。すなわ
ち、シンクロスコープによる波形観測では、波形の均一
性、解像度、読取り幅の精密な算出が出来ない。また、
高周波シンクロスコープを使用した波形検査では取扱い
が難しく、測定器の価格も高い。
Conventionally, when performing this type of inspection, for example, an image waveform obtained by reading an original image of a white pattern is input to a synchroscope, and an inspector visually observes the displayed waveform. The observation waveform obtained in this case is as shown in FIG. 2, and the fine fluctuation indicates the white level output of each imaging element. Therefore, it is possible to roughly know the state of the variation of the imaging element and the state of the shift of the overall white level, and it is possible to judge whether or not the quality is good. Therefore, only subjective inspections, which are influenced by factors such as the above, could not be carried out to perform physically precise objective waveform inspections. That is, in the waveform observation by the synchroscope, it is not possible to precisely calculate the uniformity, resolution, and reading width of the waveform. Also,
It is difficult to handle the waveform inspection using a high-frequency synchroscope, and the price of the measuring instrument is high.

(発明が解決しようとする課題) 上述の如く、従来の画像読取装置の良否や特性を知る
読取り画像波形の検査は、当該画像読取装置の出力する
画像波形をシンクロスコープで観測する目視検査であっ
たので、検査員の主観による検査となり、従って、検査
結果も個人差があり、また、波形を見る角度や集中度な
どにも影響を受け易い。また、高周波シンクロスコープ
を使用した波形検査では取扱いが難しく、測定結果に大
きく影響を受ける他、測定器の価格も高いと言う問題が
ある。また、客観的な波形検査ができず、波形の均一
性、解像度、読取り幅の精密な算出が出来ない。客観的
な性能測定をすることは、製品の性能を客観的に知るこ
おができることを意味し、製品の品質管理上、重要であ
るばかりでなく、製品改良や性能向上を図る上での技術
資料としても重要であるので、このような客観的精密測
定を実現できる検査装置の開発が嘱望される。
(Problems to be Solved by the Invention) As described above, the inspection of the read image waveform for knowing the quality and characteristics of the conventional image reading apparatus is a visual inspection for observing the image waveform output from the image reading apparatus with a synchroscope. Therefore, the inspection is performed subjectively by the inspector, and accordingly, the inspection result also has individual differences, and is easily affected by the angle at which the waveform is viewed and the degree of concentration. In addition, waveform inspection using a high-frequency synchroscope is difficult to handle, and is greatly affected by measurement results. In addition, there is a problem that the price of a measuring instrument is high. In addition, objective waveform inspection cannot be performed, and precise calculation of waveform uniformity, resolution, and reading width cannot be performed. Objective performance measurement means that you can objectively know the performance of a product.It is not only important for product quality control, but also a technology for product improvement and performance improvement. Since it is also important as a material, development of an inspection device capable of realizing such objective precision measurement is expected.

そこで、この発明の目的とするところは、ライン型イ
メージセンサのような画像読取装置の性能測定が客観的
に行え、必要な物理的情報を容易に得ることが出来るよ
うにした画像読取装置の読取り波形検査装置を提供する
ことにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of reading an image reading device such as a line-type image sensor, in which the performance of the image reading device can be objectively measured and necessary physical information can be easily obtained. It is to provide a waveform inspection device.

[発明の構成] (課題を解決するための手段) 上記目的を達成するため、本発明は次のように構成す
る。すなわち、基準パターンを読取らせた画像読取装置
の出力画像信号を受け、順に記憶する記憶手段と、この
記憶手段の記憶情報を読み出して入力としこの受けた画
像信号の隣接する各画素間の信号値を比較して極点の画
素を順次検索する手段と、この検索した各画素の信号値
の平均値より所定の範囲を超えて外れる特異画素を検索
し、この特異画素の前後に位置する限定された所定数の
画素の信号値の平均値を求めてこの平均値に前記特異画
素を置き換えることで、補正済み画像信号を得る補正手
段とを備え、この補正手段により得られた補正済み画像
信号により各画素のとる信号値の均一性及び解像度を算
出し、この算出した値を予め設定した所定の規格値と比
較して検査結果を判定し出力するようにしている。
[Configuration of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention is configured as follows. That is, storage means for receiving and sequentially storing the output image signals of the image reading apparatus which has read the reference pattern, and reading out the information stored in the storage means and inputting the signal between adjacent pixels of the received image signal. Means for sequentially searching for extreme-point pixels by comparing values, and searching for a singular pixel that deviates beyond a predetermined range from the average value of the signal values of the searched pixels, and a limited pixel located before and after this singular pixel. Correction means for obtaining a corrected image signal by obtaining an average value of the signal values of the predetermined number of pixels and replacing the specific pixel with the average value, the corrected image signal obtained by the correction means The uniformity and resolution of signal values taken by each pixel are calculated, and the calculated values are compared with a predetermined standard value to determine and output an inspection result.

(作用) このような構成の本装置は基準パターンを読取らせた
画像読取装置より得た画像信号を順次記憶手段に記憶
し、これを読み出して補正手段により当該画像信号中に
おける異常値を示す少数の画素の信号を平均値に補正
後、算出手段によりこの補正画像信号から読取り信号の
均一性、解像度を算出し、これを判定手段により所定の
規格値と比較し、検査結果の判定をして出力する。従っ
て、評価に当り、数も少なく全体の画面形成に対する影
響は小さいが測定結果に大きな影響を与える異常画素の
影響を抑えて均一性等の値を算出でき、人為的判断によ
る目測検査のように個人差や観察条件等に左右されず、
実情に即した再現性の高い客観的な検査が可能になる。
(Operation) The present apparatus having such a configuration sequentially stores the image signals obtained from the image reading device that has read the reference pattern in the storage means, reads out the image signals, and indicates the abnormal value in the image signals by the correction means. After correcting the signals of a small number of pixels to an average value, the calculating means calculates the uniformity and resolution of the read signal from the corrected image signal, and compares them with predetermined standard values by the determining means to determine the inspection result. Output. Therefore, in the evaluation, the number of the pixels is small and the influence on the entire screen formation is small, but the value of the uniformity can be calculated by suppressing the influence of the abnormal pixel which has a large influence on the measurement result. Independent of individual differences and observation conditions,
Objective inspection with high reproducibility according to the actual situation becomes possible.

このように本発明は、シンクロスコープによる目測検
査でなく数値処理による測定検査であることから、精密
な検査結果が得られ、また、検査結果に個人差や作業条
件の違いによるバラツキが生じることもなくなって一定
水準での検査結果が得られるようになり、安定した製品
管理が出来るようになる他、検査結果の集計および処理
が容易となる等の特徴を有する画像読取装置の読取り画
像検査装置を提供できる。
As described above, since the present invention is not a visual inspection using a synchroscope but a measurement inspection based on numerical processing, a precise inspection result can be obtained, and the inspection result may vary due to individual differences or differences in work conditions. As a result, inspection results at a certain level can be obtained, and stable product management can be performed. In addition, a reading image inspection device of an image reading device that has features such as easy collection and processing of inspection results is provided. Can be provided.

また、この発明では、特異画素を検査する際に、平均
値より所定の範囲を超えて外れる画素を特異画素として
いるので、信号レベルが異常に小さい画素はもとより異
常に大きい画素も特異画素として検索することができ、
これによりゴミ等による黒画素や傷等の乱反射による異
常な白画素をそれぞれ特異画素としてもれなく検出する
ことができる。
Further, according to the present invention, when inspecting a specific pixel, a pixel which deviates from the average value by more than a predetermined range is set as a specific pixel. Therefore, not only a pixel having an abnormally low signal level but also an abnormally large pixel is searched as a specific pixel. Can be
As a result, a black pixel due to dust or an abnormal white pixel due to irregular reflection such as a scratch can be detected as a specific pixel without fail.

さらにこの発明では、特異画素を除く際に、特異画素
の前後に位置する限定された所定数の画素の信号値の平
均値を求め、この平均値に特異画素を置き換えるように
している。このため、レンズの歪みの影響等により1ラ
インの画素レベルがその領域によってばらつきを生じる
ような場合でも、この発明であれば特異画素の周囲画素
レベルのみを考慮した適切な画素レベルに修正すること
ができる。これに対し、例えば特異画素をただ単に削除
したり、また1ライン中のすべての画素レベルの平均値
をもとに修正すると、修正後の特異画素レベルがその周
辺画素のレベルと大きくかけ離れることがあり、結果的
に異常画素となって残留して均一性等の判定に悪影響を
及ぼす。
Further, according to the present invention, when removing a peculiar pixel, an average value of signal values of a limited number of pixels located before and after the peculiar pixel is obtained, and the peculiar pixel is replaced with this average value. For this reason, even in the case where the pixel level of one line varies depending on the area due to the influence of lens distortion or the like, according to the present invention, the pixel level is corrected to an appropriate pixel level considering only the peripheral pixel level of the specific pixel. Can be. On the other hand, for example, if a singular pixel is simply deleted or corrected based on the average value of all pixel levels in one line, the corrected singular pixel level will be significantly different from the level of its surrounding pixels. As a result, the pixel remains as an abnormal pixel and adversely affects the determination of uniformity or the like.

(実施例) 以下、本発明の一実施例について図面を参照して説明
する。第1図は本装置の構成を示すブロック図であり、
図中1は画像読取装置の読取った画像信号である入力画
像信号、2はこの入力画像信号1を入力された波形表示
するシンクロスコープ等のような波形観測用の測定器、
3は前記入力画像信号1を入力されてこれに補正を加え
増幅する増幅器、4はこの増幅器3の出力をディジタル
・データに変換するA/Dコンバータ、5はクロック制御
部、6はA/Dコンバータ4の出力データを記憶する記憶
部である。これらA/Dコンバータ4及び記憶部6はクロ
ック制御部5の出力するクロック信号に同期してA/D変
換、変換データの取込みを行う。7は記憶部6の記憶デ
ータについてデータ処理し、解析や集計をしたり、ま
た、データの入/出力や表示を行う例えばマイクロコン
ピュータ等により構成された演算制御部、8はこの演算
制御部7の表示出力情報を画像として表示するCRT表示
器、9は前記演算制御部7にデータやコマンド入力をす
るためのキーボードである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the present apparatus.
In the figure, reference numeral 1 denotes an input image signal which is an image signal read by an image reading device; 2 denotes a measuring instrument for waveform observation such as a synchroscope for displaying a waveform of the input image signal 1 input;
Reference numeral 3 denotes an amplifier which receives the input image signal 1 and corrects and amplifies the input image signal 1. Reference numeral 4 denotes an A / D converter which converts the output of the amplifier 3 into digital data. Reference numeral 5 denotes a clock control unit. Reference numeral 6 denotes an A / D converter. The storage unit stores output data of the converter 4. The A / D converter 4 and the storage unit 6 perform A / D conversion and fetch conversion data in synchronization with a clock signal output from the clock control unit 5. Reference numeral 7 denotes an arithmetic control unit which is configured by, for example, a microcomputer or the like which performs data processing on the data stored in the storage unit 6, analyzes and tabulates, and inputs / outputs and displays data. A CRT display 9 for displaying the display output information as an image, and a keyboard 9 for inputting data and commands to the arithmetic and control unit 7.

このような構成において、例えば、ライン型イメージ
センサを用いた検査対象画像読取装置からの白パターン
原画に対する読取り画像信号1が入力されると、測定器
2上に第2図のようなその画像信号波形が観測されると
共に、増幅器3に入力され増幅される。
In such a configuration, for example, when a read image signal 1 for a white pattern original image is input from an inspection target image reading device using a line type image sensor, the image signal as shown in FIG. While the waveform is observed, it is input to the amplifier 3 and amplified.

ここで、測定器2では検査員により第2図で説明した
ような大まかな波形観測(全体的な傾向な把握による良
否検査)を行う。また、増幅器3ではA/Dコンバータ4
の入力条件に合うようにオフセット調整及びレベル調整
を行う。そして、この増幅器3を経た画像信号はA/Dコ
ンバータ4に送られ、A/Dコンバータ4はクロック制御
部5よりコントロールされながら、画像信号を原画像信
号における画像単位でディジタル・データに変換し、記
憶部6に与えて記憶させる。記憶部6に記憶された画像
信号のデータは演算制御部7に送られ、演算制御部7で
は第3図に符号10で示す波形の特異点及び符号11で示す
最上限点、符号12で示す最下限点を検索し、これを近隣
の平均的な値に修正した第4図に示すように信号波形の
データに補正する。そして、演算制御部7では更に第4
図の符号13で示す読取り幅、解像度、符号14で示すデー
タの分布幅より画像信号の均一性を演算し、これらが所
定の規格範囲内に納まっているか否か判定を行う。この
検査結果はCRT表示器8に出力して表示したり、図示し
ない外部記憶装置にファイルし、また、図示しないプリ
ンタに打出す。
Here, in the measuring device 2, the inspector performs a rough waveform observation as described in FIG. 2 (a pass / fail inspection by grasping the overall tendency). In the amplifier 3, the A / D converter 4
The offset adjustment and the level adjustment are performed so as to meet the input condition of (1). The image signal that has passed through the amplifier 3 is sent to an A / D converter 4, which converts the image signal into digital data for each image in the original image signal while being controlled by a clock control unit 5. To the storage unit 6 for storage. The data of the image signal stored in the storage unit 6 is sent to the arithmetic control unit 7, and the arithmetic control unit 7 shows the singular point of the waveform indicated by the reference numeral 10 in FIG. The lowest point is searched for and corrected to signal waveform data as shown in FIG. 4 in which this is corrected to a nearby average value. Then, the arithmetic control unit 7 further performs the fourth
The uniformity of the image signal is calculated from the reading width and resolution indicated by reference numeral 13 in the drawing and the distribution width of the data indicated by reference numeral 14, and it is determined whether or not these are within a predetermined standard range. This inspection result is output to and displayed on the CRT display 8, filed in an external storage device (not shown), and output to a printer (not shown).

ここで、演算制御部7による波形解析をもう少し詳し
く説明しておく。演算制御部7には記憶部6より画像信
号のデータが読込まれるが、この読込まれた段階での画
像信号データは何等の補正も加えられていない原画像信
号そのままのデータである。これを模式的に表わすと第
3図の如きであり、個々のイメージング素子の出力特性
の違いをそのまま反映している。但し、第3図は白パタ
ーンについての画像信号であり、ここで10は特異点、11
は最上限点、12は最下限点、13は読取り幅である。前記
特異点10は前後の所定画像数の極点平均値より所定値以
上ずれている以上画像であり、前記最上限点11は画像信
号の中で最も上限にある画素であり、また、前記最下限
点12はそれとは逆に画像信号の中で最も下限にある画素
である。前記読取り幅13は、画像信号全体からダミー画
素を差し引いた画素である。これは通常、イメージセン
サは画素を結像させるために入力面側にレンズを配して
おり、このレンズによる結像領域から外れるイメージセ
ンサ両サイド領域のイメージング素子出力である。レン
ズを用いない密着型の場合は読取り幅13は問題とならな
い。
Here, the waveform analysis by the arithmetic control unit 7 will be described in more detail. The image signal data is read from the storage unit 6 into the arithmetic control unit 7, and the image signal data at the read stage is the original image signal as it is without any correction. This is schematically shown in FIG. 3, which directly reflects the difference in the output characteristics of the individual imaging elements. However, FIG. 3 shows an image signal for a white pattern, where 10 is a singular point, 11
Is the upper limit point, 12 is the lower limit point, and 13 is the reading width. The singular point 10 is an image that is shifted by a predetermined value or more from the average value of the poles of a predetermined number of images before and after the image, the upper limit point 11 is a pixel at the upper limit in the image signal, and the lower limit. Point 12, on the contrary, is the lowest pixel in the image signal. The read width 13 is a pixel obtained by subtracting a dummy pixel from the entire image signal. In general, the image sensor has a lens on the input surface side to form an image of a pixel, and the output of the image sensor in both side regions of the image sensor which is out of the image formation region by the lens. In the case of a contact type without using a lens, the reading width 13 does not matter.

このような画像信号データに対し、特異点10、最上限
点11、最下限点12、読取い幅13を調べ、そのデータを得
ると共に特異点10を除去し、最上限点11及び最下限点12
を参照し、補正を加える。この補正済み白レベル画像信
号データを模試的に表わすと第4図のような波形とな
り、演算制御部7はこの補正済みデータを用いて白レベ
ルの均一性を示す範囲14、読取り幅13、解像度を計算す
る。この計算値と演算制御部7に与えた所定の規格値と
を比較して判定をし、その結果を表示する。
For such image signal data, the singular point 10, the upper limit point 11, the lower limit point 12, and the reading width 13 are examined, and the data is obtained and the singular point 10 is removed. 12
And make corrections. The corrected white level image signal data is schematically represented as a waveform shown in FIG. 4, and the arithmetic control unit 7 uses the corrected data to obtain a range 14 indicating white level uniformity, a reading width 13, and a resolution. Is calculated. The calculated value is compared with a predetermined standard value given to the arithmetic control unit 7 to make a determination, and the result is displayed.

第5図は前記演算制御部7におけるデータ補正方法を
説明するための図である。図において15は上限極点、16
は下限極点、17は中間レベルの画素、18は前後各10個ず
つの上限極点の平均値であり、前記特異点10を補正した
値である。ここで、画像信号データの上昇するところの
最大値すなわち、極大値が上限極点15、それとは逆に下
降するところの最小値が下限極点16であり、これらは図
のように多数ある。
FIG. 5 is a diagram for explaining a data correction method in the arithmetic control unit 7. In the figure, 15 is the upper limit pole, 16
Is a lower limit pole, 17 is a pixel at an intermediate level, 18 is an average value of 10 upper and lower poles for each of the front and rear, and is a value obtained by correcting the singular point 10. Here, the maximum value where the image signal data rises, that is, the maximum value is the upper limit pole 15, and the minimum value where the image signal data falls conversely is the lower limit pole 16, which are many as shown in the figure.

特異点10の補正方法を説明すると、第5図(a)に示
すように、先ず上限極点15、下限極点16を見付け出す。
これは前後の画素のデータを比較してゆき、画像信号デ
ータの上昇するところの最大値を見付け、これを見付け
る毎に上限極点15の画素として記憶し、それとは逆に下
降するところの最小値を見付ける毎にこれを下限極点16
の画素として記憶する。このようにして前後の画素のデ
ータを順次比較して行き、中間レベル17の値を示す画素
を無視して、上限及び下限の極点15,16を示す画素を順
に求める。次にこれらの中から特異点10を見付け出す。
これは所定の規格値を設定し、その値より超えたものを
当てる。これらの特異点10、上限極点15、下限極点16を
用い、次に第5図(b)に符号18で示すように特異点10
の値をその特異点より前後各10個ずつの上限極点15(下
限の特異点であれば下限極点16)の平均値を求めてこの
値に改める。また、読取り幅の算出は両端の領域におせ
る最下限の値を示す画素を見付けてこれよりこれらの間
の画素数を求めて得る。特異点や最上限極点、最下限極
点は第5図の上限極点15及び下限極点16のデータをソー
ティング法によりソートして上限極点15の中より最大
値、下限極点16の中より最小値を求めることにより見付
け出す。
The method of correcting the singular point 10 will be described. First, as shown in FIG. 5A, an upper limit pole 15 and a lower limit pole 16 are found.
This compares the data of the preceding and following pixels, finds the maximum value of the rising image signal data, stores it as the pixel of the upper limit pole 15 each time it is found, and conversely, the minimum value of the falling pixel Each time the
Are stored as pixels. In this way, the data of the preceding and succeeding pixels are sequentially compared, and the pixels indicating the upper and lower extreme points 15, 16 are obtained in order, ignoring the pixels indicating the value of the intermediate level 17. Next, a singular point 10 is found from these.
For this, a predetermined standard value is set, and a value exceeding that value is applied. Using these singular points 10, upper limit poles 15, and lower limit poles 16, the singular points 10 as shown by reference numeral 18 in FIG.
The average value of the upper limit poles 15 (or the lower limit pole 16 in the case of the lower limit singular point) of each of ten values before and after the singular point is calculated from the value of. In addition, the calculation of the reading width is obtained by finding the pixels showing the lowest value in the regions at both ends and calculating the number of pixels between them. For the singular point, the upper limit pole, and the lower limit pole, sort the data of the upper limit pole 15 and the lower limit pole 16 in FIG. 5 by the sorting method and find the maximum value from the upper limit pole 15 and the minimum value from the lower limit pole 16 Find out by doing.

この結果、評価に当り、数も少なく全体の画面形成に
対する影響の小さい特異点10のデータの影響を抑えて読
取り幅、均一性等の値を算出でき、実情に即した再現性
の高い検査が可能になる。
As a result, in the evaluation, it is possible to calculate the values such as the reading width and the uniformity while suppressing the influence of the data of the singular point 10 having a small number and having a small influence on the entire screen formation, and an inspection with high reproducibility in accordance with the actual situation. Will be possible.

このように本装置では、白パターン等の基準パターン
を読取らせた画像読取装置の出力画像信号を受け、順に
記憶する記憶手段と、この記憶手段の記憶情報を読み出
して入力としこの受けた画像信号の隣接する各画素間の
信号値を比較して極点の画素を順次検索する手段と、こ
の検索した各画素の信号値の平均値より所定の範囲を超
えて外れる特異画素を検索し、この特異画素の前後に位
置する限定された所定数の画素の信号値の平均値を求め
てこの平均値に前記特異画素を置き換えることで、補正
済み画像信号を得る補正手段とを備え、この補正手段に
より得られた補正済み画像信号により各画素のとる信号
値の均一性及び解像度を算出し、この算出した値を予め
設定した所定の規格値と比較して検査結果を判定し出力
するようにしている。従って、白パターンの読み取りに
より得た白レベル画像信号をもとに、異常値を示す少数
の画素の信号を平均値に補正後、この補正画像信号から
画像読取装置の読取り幅、読み信号の均一性、解像度を
算出して所定の規格値と比較し、所定の規格範囲内に収
まる良品か否かの検査結果判定をするようにしたので、
評価に当り、数も少なく全体の画面形成に対する影響は
小さいが測定結果に大きな影響を与える異常画素の影響
を抑えて読取り幅、均一性等の値を算出でき、人為的判
断による目測検査のように個人差や観察条件等に左右さ
れず、実情に即した再現性の高い客観的な検査が可能に
なる。
As described above, in the present apparatus, a storage means for receiving an output image signal of an image reading apparatus which reads a reference pattern such as a white pattern and sequentially storing the output image signal, and reading and inputting information stored in the storage means to input and receive the received image Means for sequentially searching for extreme pixels by comparing signal values between adjacent pixels of the signal, and searching for specific pixels that deviate beyond a predetermined range from the average value of the searched signal values of each pixel, Correcting means for obtaining a corrected image signal by calculating an average value of signal values of a limited number of pixels located before and after the specific pixel and replacing the specific pixel with the average value. Calculate the uniformity and resolution of the signal value taken by each pixel based on the corrected image signal obtained by the above, compare the calculated value with a predetermined standard value set in advance to determine and output an inspection result. Is Therefore, based on the white level image signal obtained by reading the white pattern, the signal of a small number of pixels indicating an abnormal value is corrected to an average value, and then the read width of the image reading device and the uniformity of the read signal are obtained from the corrected image signal. , The resolution is calculated and compared with a predetermined standard value, and the inspection result is determined as to whether or not it is a non-defective product within a predetermined standard range.
In the evaluation, the number of pixels is small and the influence on the overall screen formation is small, but the value of the reading width, uniformity, etc. can be calculated by suppressing the influence of abnormal pixels which have a large effect on the measurement result. This makes it possible to carry out an objective test with high reproducibility and in accordance with the actual situation, without being influenced by individual differences or observation conditions.

尚、本発明は上記し、且つ図面に示す実施例に限定す
ることなくその要旨を変更しない範囲内で適宜変形して
実施し得るものであり、特に測定項目や演算条件等は適
宜に設定して使用し得る。また、基準パターンは白パタ
ーンに限るものでは無い他、対象となる画像読取装置も
ライン型イメージセンサに限らず、二次元配列のものに
も適用可能である。
The present invention is not limited to the embodiment described above and shown in the drawings, and can be carried out by appropriately modifying it without departing from the scope of the invention. In particular, measurement items and calculation conditions are appropriately set. Can be used. In addition, the reference pattern is not limited to the white pattern, and the target image reading device is not limited to the line-type image sensor, but can be applied to a two-dimensional array.

[発明の効果] 以上、説明したように本発明によれば、シンクロスコ
ープによる目測検査でなく数値処理による測定検査であ
るため、精密な検査結果が得られる他、検査結果に個人
差や作業条件の違いによるバラツキが生じることもなく
なって一定水準での検査結果が得られるようになり、安
定した製品管理が出来るようになる他、検査結果の集計
および処理が容易となる等の特徴を有する画像読取装置
の読取り画像検査装置を提供できる。
[Effects of the Invention] As described above, according to the present invention, since the measurement inspection is not a visual inspection using a synchroscope but a numerical processing, a precise inspection result can be obtained. Images that have characteristics such that inspection results at a certain level can be obtained without variation due to differences in the product, stable product management can be performed, and inspection results can be easily collected and processed. A read image inspection device of the reader can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
画像読取装置の読取り画像信号の例を示す図、第3図乃
至第5図は本発明の一実施例を説明するための波形図で
ある。 1……入力画像信号、2……測定器、3……増幅器、4
……A/Dコンバータ、6……記憶部、7……演算制御
部、8……CRT表示器、10……特異点、11……最上限
点、12……最下限点、15……上限極点、16……下限極
点。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of a read image signal of an image reading apparatus, and FIGS. 3 to 5 are views for explaining an embodiment of the present invention. FIG. 1 ... input image signal, 2 ... measuring instrument, 3 ... amplifier, 4
... A / D converter, 6 ... Storage unit, 7 ... Calculation control unit, 8 ... CRT display, 10 ... Singular point, 11 ... Upper limit point, 12 ... Lower limit point, 15 ... Upper limit pole, 16… Lower limit pole.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基準パターンを読取らせた画像読取装置の
出力画像信号を受け、順に記憶する記憶手段と、 この記憶手段の記憶情報を読み出して入力としこの受け
た画像信号の隣接する各画素間の信号値を比較して極点
の画素を順次検索する手段と、 この検索した各画素の信号値の平均値より所定の範囲を
超えて外れる特異画素を検索し、この特異画素の前後に
位置する限定された所定数の画素の信号値の平均値を求
めてこの平均値に前記特異画素を置き換えることで、補
正済み画像信号を得る補正手段と、 この補正手段により得られた補正済み画像信号より各画
素のとる信号値の均一性及び解像度を算出する算出手段
と、 この算出した値を予め設定した所定の規格値と比較して
検査結果を判定する手段と、 この判定結果を出力する手段とを具備したことを特徴と
する画像読取装置の読取り波形検査装置。
A storage means for receiving and sequentially storing output image signals of an image reading apparatus which has read a reference pattern, and reading and storing information stored in the storage means and inputting each pixel adjacent to the received image signal. Means for sequentially searching for extreme pixels by comparing signal values between the pixels; and searching for a singular pixel that deviates beyond a predetermined range from an average value of the searched signal values of each pixel, and that is located before and after the singular pixel. Correcting means for obtaining a corrected image signal by obtaining an average value of the signal values of a limited number of pixels to be limited and replacing the specific pixel with the average value; and a corrected image signal obtained by the correcting means. Calculating means for calculating the uniformity and resolution of the signal value taken by each pixel; means for comparing the calculated value with a predetermined standard value to determine an inspection result; means for outputting the determination result When Reading waveform inspection system of the image reading apparatus characterized by comprising.
JP63040573A 1988-02-25 1988-02-25 Reading waveform inspection device for image reading device Expired - Lifetime JP2835047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63040573A JP2835047B2 (en) 1988-02-25 1988-02-25 Reading waveform inspection device for image reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63040573A JP2835047B2 (en) 1988-02-25 1988-02-25 Reading waveform inspection device for image reading device

Publications (2)

Publication Number Publication Date
JPH01216487A JPH01216487A (en) 1989-08-30
JP2835047B2 true JP2835047B2 (en) 1998-12-14

Family

ID=12584222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63040573A Expired - Lifetime JP2835047B2 (en) 1988-02-25 1988-02-25 Reading waveform inspection device for image reading device

Country Status (1)

Country Link
JP (1) JP2835047B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230265A (en) * 1986-03-31 1987-10-08 Mitsubishi Electric Corp Picture signal correcting device

Also Published As

Publication number Publication date
JPH01216487A (en) 1989-08-30

Similar Documents

Publication Publication Date Title
US5033015A (en) Automated system for testing an imaging sensor
JPH0799322B2 (en) Non-contact method and apparatus for determining the position of linear features of an article
US20060222232A1 (en) Appearance inspection apparatus and appearance inspection method
US8094922B2 (en) Crack measuring method and apparatus
JPS59163548A (en) Automatic analyzing method of electron-ray diffraction figure
CN101281169A (en) Method and algorithms for inspection of longitudinal defects in an eddy current inspection system
CN112767396B (en) Defect detection method, defect detection device and computer-readable storage medium
JP2835047B2 (en) Reading waveform inspection device for image reading device
JPH11160053A (en) Working surface inspection device and inspection method therefor
US6621915B1 (en) Method and system inspecting on-line cotton web homogeneity by digital image processing
JP3322976B2 (en) Apparatus for determining the degree of contamination of printed matter
JPH11279936A (en) Creping capability measurement system for creped woven fabric and creping capability measurement
US6826307B1 (en) Contrast determining apparatus and methods
RU2343404C1 (en) Method of textile fibre length evaluation using computer image
JP2715897B2 (en) IC foreign matter inspection apparatus and method
JPS586426B2 (en) Television screen automatic measurement device
JP2638121B2 (en) Surface defect inspection equipment
JP2569543B2 (en) Hardness tester
JPS6338657B2 (en)
EP0428626B1 (en) Automated system for testing an imaging sensor
EP0416114B1 (en) Image processing method and apparatus
JPH10239027A (en) Film thickness measuring device
JPH0682724B2 (en) Wafer defect inspection system
JP4093338B2 (en) Automatic evaluation equipment for printed matter
CN117824482A (en) Method and device for on-line measuring lift-off of internal defect instrument of thin strip steel

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071002

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10