JPS5824115A - Progressive multifocus lens - Google Patents

Progressive multifocus lens

Info

Publication number
JPS5824115A
JPS5824115A JP8840582A JP8840582A JPS5824115A JP S5824115 A JPS5824115 A JP S5824115A JP 8840582 A JP8840582 A JP 8840582A JP 8840582 A JP8840582 A JP 8840582A JP S5824115 A JPS5824115 A JP S5824115A
Authority
JP
Japan
Prior art keywords
lens
distance
center
curve
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8840582A
Other languages
Japanese (ja)
Inventor
Shunei Shinohara
俊英 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP8840582A priority Critical patent/JPS5824115A/en
Publication of JPS5824115A publication Critical patent/JPS5824115A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

PURPOSE:To use one kind of lens as left and right lenses of a pair of spectacles, by constituging so that a sectional curve falling at right angles with a main meridian curve is >=2.5mm. from the main meridian curve in a far use part area, and has a circular shape. CONSTITUTION:A far use center A of a progressive multifocus lens is positioned in the geometrical center of the lens, and a border line C1 between a far use part area and an intermediate part area is horizontal. Also, width of a spherical area D in the far use part area is >=2.5mm. from the main meridian curve, and in area D1 of its outside, as it is separated from the main meridian curve, a curvature in the horizontal direction increases. In other, words, a sectional curve falling at right angles with the main meridian curve is >=2.5mm. from the main maridian curve in the far use part area, and forms a circular shape. According to this invention, it is unnecessary to make a lens asymmetrical in order to eliminate astigmatism on the vision center line, and one kind of lens can be used as left and right lenses of a pair of spectacles.

Description

【発明の詳細な説明】 本発明は、累進多焦点レンズの屈折面の形状に関する。[Detailed description of the invention] The present invention relates to the shape of a refractive surface of a progressive multifocal lens.

本発明の目的は、累進多焦点レンズに必然的に存在する
非点収差と儂の歪曲を極力押え、その使用者が種々の状
況において使用したときに、最も満足度の高い糸道多焦
点レンズt−傍供することにある。また他の目的は、レ
ンズ製造工程における形状楕度管j]を容易にするとと
もに、v!1−とした場合のレンズ玉入れ稍[2よび使
用者の眼に対するフィッティングの精1f’を緩和する
ことである。
The purpose of the present invention is to suppress astigmatism and distortion that inevitably exist in progressive multifocal lenses as much as possible, and to create a thread path multifocal lens that provides the most satisfaction to its users when used in various situations. t-To be present. Another purpose is to facilitate the shape elliptic tube j] in the lens manufacturing process, and v! The objective is to reduce the lens insertion error [2 and the fitting precision 1f' for the user's eyes when set to 1-.

本発明の埋St−容易にするために、累進多焦点レンズ
の用途とS造および光学的特性について説明管する。
In order to facilitate implementation of the present invention, we will explain the use, structure, and optical characteristics of a progressive multifocal lens.

JFI進多進講焦点レンズ王として高齢者における眼の
水晶体の調節機Noの低下′ft禰圧するために、開発
されたものであり、1つのレンズ内iC遠くのものを見
る九めの領域と、近くのものt見るための領域と、更に
内領域の闇に連続的に変化する度aを持った中間距離の
ものを見る禎域t−待っている。
JFI Shinta Shinko's focal lens was developed as the king of focusing lenses in order to reduce the decrease in eye lens adjustment mechanism No'ft pressure in the elderly. There is an area for seeing things nearby, and an area for seeing things at an intermediate distance with degrees that change continuously into darkness in the inner area.

これらS領域をそれぞれ遠用部領域、近用t@5領域、
中間部領域と呼ぶ。第1図ri累進多焦点レンズの一般
的な調造を示したもので、凸状屈折面の斜視図である。
These S areas are respectively distance vision area, near vision t@5 area,
It is called the intermediate region. FIG. 1 shows the general preparation of a progressive multifocal lens, and is a perspective view of a convex refractive surface.

図示されない反対貴の凹面に、球面あるいは円柱曲面と
し、遠視、近視i?よび乱視の補正をしている。図中の
1μレンズの光学中心軸(以下、元軸と称す)であり、
レンズの幾例学中心0を通っている、2は光@1を含む
垂直な平面5(以下、主子午面と称す)とレンズ屈折面
とのターである主子午線曲線である。この主子午1曲線
の曲率の変化を示し友ものが第2図であり、図の縦軸は
主子午線曲線に沿った距離で、横軸Pr1面屈折力(凸
状屈折面による屈折効果の値。凹面を含めたレンズとし
ての屈折効果の僅ニ屈折力と称する。)である。主子午
縁曲−に沿った面層折力は、A点より上方およびB点よ
り下刃に2いて一定であり、A点からB点にかけて累進
的に増加している。このA点、B点をそれぞれ遠用中心
および近用中心と呼び、その闇の面層折力の変化量(図
中、ADD)tl;C加入度と呼ばれる。レンズの面層
折力と曲率は比例するη為ら、この図に曲率の変化とみ
なすことができ、主子午線曲線の曲率中心の軌跡は第1
図中3で示す如くなる。また主子午線曲線上の各点′C
″ける主子午縁曲−に垂直   1な方向の曲率と同曲
率に沿った方向の曲;$框等しくいわゆるヘソ状曲−で
あり、主子午線曲線上での非点収差に零となる。すなわ
ち、主子午線曲線に凸った部分ではほぼ球圓形状會成す
。しかし、曲率の異なる球面をつないで一つの清ら力為
な曲面にするため、主子午−曲#〃為ら遠ざかるにつれ
非球面とぜざるを得なく、そのため非点収差が周辺に発
生することになる。また、屈折(2)の/i!rg分で
儂の倍率が異なるために1象の歪曲も同時に付随する。
The opposite concave surface (not shown) is made into a spherical or cylindrical curved surface, so that it is farsighted or myopic. and astigmatism correction. This is the optical center axis (hereinafter referred to as the original axis) of the 1μ lens in the figure,
Passing through the geometrical center 0 of the lens, 2 is the principal meridian curve that is the intersection of the perpendicular plane 5 containing the light @1 (hereinafter referred to as principal meridian plane) and the refractive surface of the lens. Figure 2 shows changes in the curvature of this principal meridian curve.The vertical axis of the figure is the distance along the principal meridian curve, and the horizontal axis is the Pr1 surface refractive power (the value of the refractive effect due to the convex refractive surface). (This is called the slight refractive power of the refractive effect of the lens including the concave surface.) The plane rupture force along the principal meridian curve is constant above point A and below point B, and increases progressively from point A to point B. These points A and B are called the distance center and the near center, respectively, and the amount of change in the dark plane layer rupture power (ADD in the figure) tl;C addition is called. Since the surface layer rupture power and the curvature of the lens are proportional η, this figure can be regarded as a change in curvature, and the locus of the center of curvature of the principal meridian curve is the first
It becomes as shown by 3 in the figure. Also, each point 'C on the principal meridian curve
The curvature in the direction perpendicular to the principal meridian curve and the direction along the same curvature; it is a so-called navel-shaped curve, and the astigmatism on the principal meridian curve is zero. , it forms an almost spherical shape in the convex part of the principal meridian curve.However, in order to connect spherical surfaces with different curvatures to form one clean and smooth curved surface, as it moves away from the principal meridian curve, it becomes aspherical. As a result, astigmatism will occur in the periphery.Furthermore, since the magnification differs by /i!rg in refraction (2), distortion of one image also accompanies it.

第3図は累進多焦点レンズの非点収差の分布を表わす。FIG. 3 shows the distribution of astigmatism of a progressive multifocal lens.

図中において、ハンチングのピッチが狭いはゲ収差は大
きくなる。すなわち、像がボケることt意味している、
一般に八が非点収差を知覚し、不快感t−mつのはα5
デイオプトリ(以下、Dと略記する)以上と言われてお
り、図中の無・1ツチングの領域に(L5D以下の領域
である。A点より上方のこの蘭域を遠用明視域、B点よ
り下刃のこの領域を近用明視域、A点からB点の闇のこ
の領域を中間明視域と呼び、それぞれの距廂で物がはっ
きり見えると知覚される範囲である。第4図に、累進多
焦点レンズを通して垂直および水平方向に等ピッチで描
かれた格子模様(以下、正方格子と称す。)を見たとき
の像の歪曲を示す。格子の像に倍率の変化により、図の
如く垂直−に主子午線曲線t″逼るもの(図中で41)
を中心に下向きにふくらみ、水平線も周辺へゆくに従っ
て彎曲している。この儂の歪Sa、 儂の歪曲として知
覚されることはもちろん、使用者が、動く物を目で逼っ
たり、首1rIIIJかす等により、視酵に対して見え
る物が相対的に動くような場合に像の揺れとして知覚さ
れ、着しい不快感を生ぜしめる。このように勧<w’i
見るような場合tm的伐覚と呼びそれに対して、本を読
んだり、一点を注視するようなaft!Aと物の動きの
はとんと無い場合tS的視覚と呼ぶ。先の説明より明ら
かなように、静的視覚は王として非点収差によシ影響を
受ける。すなわち遠用、近用、中間の各明視域が広いほ
ど、また非点収差が全体として小さいほど、快適な視覚
が祷られる。−万、動的視覚a王として像の歪曲に影響
される。すなわち儂の歪曲が小さいものほど、儂の揺れ
の小さい快適な視覚が得られる。この静的視覚と動的視
覚の関係に独立した関係でなく、良好な静的視覚を得る
ために明視域會広くすると、レンズの@方において偉倍
率の変化が急激になるため、儂の歪曲が大きくなり動的
視覚が害され、逆に、動的視覚を良くすると遠用部領域
および近用ilS憔域領域男に2ける非点収差が大きく
なって、静的視覚t−害するという相反する関係にある
In the figure, the narrower the hunting pitch, the greater the aberration. In other words, it means that the image is blurred.
Generally eight people perceive astigmatism, and the discomfort t-m is α5
It is said to be more than a diopter (hereinafter abbreviated as D), and in the area of no/1 tsuching in the figure (area of less than L5D).This orchid area above point A is the distance clear vision area, and B This region below the point is called the near clear vision region, and this dark region from point A to point B is called the intermediate clear vision region, and is the range in which objects are perceived to be clearly visible at each distance. Figure 4 shows the distortion of an image when a grid pattern (hereinafter referred to as a square grid) drawn at equal pitches in the vertical and horizontal directions is viewed through a progressive multifocal lens. , as shown in the figure, the main meridian curve t'' is vertically close (41 in the figure)
It bulges downward with the center at the center, and the horizon curves toward the periphery. This distortion Sa is not only perceived as my own distortion, but also when the user focuses his/her eyes on a moving object, or when the user's neck moves, etc. In some cases, it is perceived as image shaking, causing discomfort. This is how I recommend<w'i
When you look at something, it's called tm-like observation, whereas when you read a book or stare at one point, it's called aft! When there is no difference between A and the movement of objects, it is called tS vision. As is clear from the above explanation, static vision is primarily affected by astigmatism. In other words, the wider the distance, near, and intermediate clear vision ranges, and the smaller the overall astigmatism, the more comfortable vision is expected. - 10,000, as a dynamic visual a king, is affected by image distortion. In other words, the smaller my distortion is, the more comfortable vision I can get with less distortion. The relationship between static vision and dynamic vision is not independent, and if we widen the clear vision range in order to obtain good static vision, the change in magnification will be rapid on the @ side of the lens. Distortion increases, impairing dynamic vision, and conversely, improving dynamic vision increases astigmatism in the distance and near vision regions, impairing static vision. They have a contradictory relationship.

このように累進多焦点レンズに宿命的に存在する非点収
差と像の歪曲を極力押え、楕々の静的視覚条件に対して
最良の動的視覚を与えるものとして本発明:I!に秀−
昭55−171569に示されるような累進多焦点レン
ズを開発した◎第5.6.7図にその累進多焦点レンズ
の屈折面の#I造を説明する−であり、第5図に正面図
、第7図は屈折面の−it斜視したものである。第5図
KBいて、01*02ijそれぞれ遠用中心Aおよび近
用中心Bで主子午線4曲mMと交わりレンズ屈折lを3
つに分割する#HU−であり、領域51・52653?
それぞれ遠用S領域、近用品領域、重布11i賎中閣S
憤域とする。Mlは、主子午線曲縁と平行な平面による
断面曲線であり、曲線C11C2との叉点をそれぞれA
1.B1とする。
In this way, the present invention is designed to minimize the astigmatism and image distortion that inevitably exist in progressive multifocal lenses, and provide the best dynamic vision for elliptical static vision conditions: I! Nihide-
A progressive multifocal lens as shown in 171569 of 1982 was developed. Figure 5.6.7 explains the #I structure of the refractive surface of the progressive multifocal lens. Figure 5 shows a front view. , FIG. 7 is a -it perspective view of the refractive surface. Figure 5 KB, 01*02ij intersects with the principal meridian 4 mm at distance center A and near center B, respectively, and the lens refraction l is 3
#HU- to be divided into areas 51 and 52653?
Distance S area, near area, and heavy cloth 11i Shenzhong Pavilion S, respectively.
It's a matter of anger. Ml is a cross-sectional curve by a plane parallel to the principal meridian curve edge, and the points of intersection with the curve C11C2 are respectively A
1. Let it be B1.

第6図に、断1曲縁M1上の各点におけるレンズ屈折面
の法線と主子午面との成す角度の変化を示したもので、
第7図の斜視図により理解が容易である、第7図におい
て、P 1 * P 2 * P Sに断面曲縁M1上
の遠、返書中間のq!r1iI域内の点で、各点の法−
T1*T2*T5と王子千面71と成す角[K1.に2
.に3で示される。このレンズの物像の一つに、この角
度が第6図(縦軸が曲縁M1上の位置、横軸が角度)に
示す如く、遠用部領域(A1より主力の部分)と近用S
領域(B1より下刃の部分)でにそれぞれの値で一定で
あり、中間部領域(A 1 :l)mらB1の関)でに
連続的に滑らかに変化し、力1つその変化の仕方か主子
午−曲耐上での曲率の変化の法則と同じである手である
Figure 6 shows changes in the angle between the normal to the lens refractive surface and the principal meridian plane at each point on the curved edge M1.
In FIG. 7, which is easy to understand from the perspective view of FIG. 7, P 1 * P 2 * P S has the distance and the middle q! on the cross-sectional curved edge M1! For points in the r1iI region, the modulus of each point -
The angle formed by T1*T2*T5 and Oji Senmen 71 [K1. to 2
.. This is indicated by 3. One of the object images of this lens is that this angle, as shown in Figure 6 (the vertical axis is the position on the curved edge M1, the horizontal axis is the angle), is the distance area (the area where the main force is stronger than A1) and the near area. S
Each value is constant in the region (the part of the lower blade from B1), and it changes continuously and smoothly in the middle region (A 1 : l) m to B1), and one force changes the value of that change. This is somehow the same as the law of change in curvature on the principal meridian.

これに、主子午圓と平行なすべての断面に2いて満足さ
れている。!@8図に1数の断面における、     
i前述の角f変化を示した図で、M1*M2會M5IM
4の順番で主子午縁曲11!から遠ざかる断面での角変
変化を表わしている。この垂直なlri[1[I曲#1
8Ivc沿った角度の変化に、近似的にその断面曲線に
沿った水平方向のプリズムの変化と比例するので、第8
図に各断面での垂直−の歪曲と見なすことができる。水
平−の歪曲に垂直線の歪曲と関係し、垂II−に歪曲が
無ければ水平縁も歪曲せず、垂直線が歪曲する部分でに
水平−も歪曲する。従って遠用部領域と近用部領域に、
歪力格子が*方形に変形するノーマル歪となり中間部領
域は歪力格子が平行四辺形状に変形するスキュー蝋とな
る。これVCより遠用部領域と近用部鎖酸の儂の価れを
押えられる。
This is satisfied for all cross sections parallel to the main meridian circle. ! @8 In one cross section in Figure 8,
i In the diagram showing the change in angle f mentioned above, M1*M2 M5IM
Main meridian tune 11 in the order of 4! It shows the angular change in the cross section moving away from the point. This vertical lri[1[I song #1
Since the change in angle along 8Ivc is approximately proportional to the change in the horizontal prism along its cross-sectional curve, the 8th
It can be regarded as vertical distortion at each cross section in the figure. Horizontal distortion is related to vertical line distortion; if there is no vertical line distortion, the horizontal edge will not be distorted, and the horizontal line will also be distorted where the vertical line is distorted. Therefore, in the distance vision area and the near vision area,
The strain force lattice becomes a normal strain in which it deforms into a square shape, and the intermediate region becomes a skewed wax in which the strain force lattice deforms into a parallelogram shape. This allows me to suppress the value of the distance vision area and near vision chain acid from VC.

また中間部領域においてに、垂直線の歪曲の仕方を主子
午縁曲−の遠用中心から近用中心の闇での一率の変化の
痢則と同じにすることにより、主子午縁曲練上での非点
収差t−零とするとともに、同辺の格子が整えられ、非
点収差と像の歪曲を極力押えることができる。
In addition, in the intermediate region, by making the method of distortion of the vertical line the same as the law of change in the rate of change in darkness from the distance center of the principal meridian curve to the center of near vision, the principal meridian curve can be distorted. The astigmatism at the top is set to t-zero, and the gratings on the same side are arranged to suppress astigmatism and image distortion as much as possible.

本発明に、このような基本思想の累進多焦点レンズにお
いて、製造上および使用上の改良t−mしたものである
The present invention is a progressive multifocal lens based on such a basic idea, which has been improved in manufacturing and usage.

累進多焦点レンズの単焦点レンズや二重焦点レンズ等と
異なる特性として、つぎのことが挙けられる。まず、レ
ンズの製造咳関して、全体が一つまたは傾Vの球面から
@IHされておらず非球面的形状であるため、通常の光
学的あるいに機械的な方法による形状絹度の側足および
それに基づく形5aIfの管理が難しいことが挙げられ
る。また、眼鏡とした場合、中間明視域の幅が狭いため
、眼の遠方視から遠方視にかけての輻#會考慮して、左
右のレンズと両眼の位置関係を厳密にフィッティングす
る必懺がある。I@9図に、中間距離にあるものを中間
明視域reつて見るときの、眼鏡レンズ上での視線の動
きt示したものである。水平遠方にあるものから、手元
のものに順仄視11iil會移丁と、レンズ上での視線
の通る点は眼球の輻@により図中のa点力為ら)点まで
順次移動する。
Characteristics of progressive multifocal lenses that differ from single focus lenses, bifocal lenses, etc. include the following. First, regarding the manufacturing of the lens, since the entire lens is not made from a spherical surface with an inclination of V and has an aspherical shape, it is difficult to form the lens using normal optical or mechanical methods. The management of the foot and the form 5aIf based thereon is difficult. In addition, when wearing glasses, the width of the intermediate clear vision range is narrow, so it is necessary to strictly fit the positional relationship between the left and right lenses and both eyes, taking into account the convergence of the eyes from distance vision to distance vision. be. Figure I@9 shows the movement of the line of sight on the spectacle lens when looking at an object at an intermediate distance from the intermediate clear vision range. As the eye moves from an object in the horizontal distance to an object at hand, the point on the lens through which the line of sight passes is sequentially moved to point a in the figure by the eyeball's convergence.

この視憩の軌跡に、垂直から約101[の角度を持って
いる。−刀、遠用部領域および近用部領域において@を
見るとき、%IC注視するようなとき框、顔の正面に智
がくるように顔を移動させるため、レンズ上のa−a’
−およびb−b’栂の近傍を多く使う。
The trajectory of this visual deviation has an angle of about 101 [from the vertical. - When looking at @ in the sword, distance area, and near area, when looking at the %IC, move your face so that the face is in front of your face, a-a' on the lens.
- and bb' use a lot of neighborhoods.

従ッテ、a−a’巌+b−b’麿の近傍においてに非点
収差が無いことが望1れる。(a’ −a−b−b’1
1を視覚中心−と呼ぶことにする。)このため従来の累
進多焦点レンズでに視覚中心@に沿ってヘソ状曲l1i
lt−設けたり、遠用S5領域および近用部領域を球面
にして幾例字的に左右対称のレンズをつくり、その対巌
軸である主子午巌曲Ala−bmに合せて約10[傾斜
させていた。しかし、視覚中心線に合せてヘソ状曲−を
設けた場合、レンズが幾例学的に非対称となり左右それ
ぞれ専用のレンズが必峻となる。これは、レンズの製造
′s?よび眼鏡に仕上げるまでの管理に2いて、極めて
不都合である。−刀、遠用廊領域および近用部領域を球
面にした場合、中間明視域の幅が狭くなり、眼に対する
レンズのツイツチインクt−mめて正確にする必費があ
る。
It is desirable that there be no astigmatism in the vicinity of a-a'+b-b'. (a'-a-b-b'1
1 will be called the visual center. ) For this reason, conventional progressive multifocal lenses create a umbilicus-shaped curve l1i along the visual center @.
lt-, or by making the distance S5 region and the near vision region spherical to create a geometrically symmetrical lens. I was letting it happen. However, if a navel-shaped curve is provided in alignment with the center line of vision, the lens becomes geometrically asymmetrical, requiring dedicated lenses for the left and right lenses. Is this the lens manufacturer's? This is extremely inconvenient as it takes a lot of effort to manage the production process until the glasses are finished. - If the distance vision area and the near vision area are made spherical, the width of the intermediate visual field becomes narrower, and it becomes necessary to adjust the lens's ink to the eye more accurately.

本発明に上述の欠点t−解消し、使用者にとって使い易
く、レンズ製造者にとって造り易く、また眼鏡作製者に
とって作製し易い累進多焦点レンズを提供するものであ
る。
The present invention overcomes the above-mentioned drawbacks and provides a progressive multifocal lens that is easy for users to use, easy for lens manufacturers to manufacture, and easy for eyeglass manufacturers to manufacture.

以下、本発明を実施例KJcシ詳細に説明する。Hereinafter, the present invention will be explained in detail using Example KJc.

第10図に、本発明の一実施例である累進多焦点レンズ
の正面図である。この5jl!施例において、遠用中心
Aにレンズの幾伺学中心にあり、遠用部領域と中間部領
域の境界線C1に水平である。また、近用部領域と遠用
部領域の境界線C2に近用中心りと非球面域D1を設け
たことである。更に詳細に述べると、遠用部領域におけ
る球面域りの暢に主子午線曲縁カら2.5−以上であり
、その外側の領域D1でに主子午縁曲線力為ら崩れるに
従って水平方間曲率が増加する。また、近用部頒域に2
いて、主子午縁曲1と直角な断面曲−に、主子午線[1
1,;C1,□カ、bvcッhl永”F15risr*
4−tslK+−r    ’る。ピい換えると、主子
午線と直焚する断面曲線ば、遠用部−域において主子午
耐曲線から2.5■以上で円形形状であり、その円形形
状の曲率半径にその断面曲線と主子午線曲線の交点での
主子午縁曲−の曲率半径に等しい。
FIG. 10 is a front view of a progressive multifocal lens that is an embodiment of the present invention. This 5jl! In the example, the distance vision center A is located at the geometric center of the lens, and is horizontal to the boundary line C1 between the distance vision area and the intermediate area. Another advantage is that an aspherical area D1 is provided around the center of the near vision area on the boundary line C2 between the near vision area and the distance vision area. To be more specific, the spherical area in the distance area is more than 2.5-degrees from the principal meridian curve, and as the principal meridian curve force collapses in the area D1 outside of that, the horizontal direction is Curvature increases. In addition, 2
The main meridian [1
1,;C1,□ka,bvchlei”F15risr*
4-tslK+-r'ru. In other words, if the cross-sectional curve is directly fired with the principal meridian, it has a circular shape at a distance of 2.5 square meters or more from the principal meridian resistance curve in the distance area, and the radius of curvature of the circular shape is the cross-sectional curve and the principal meridian. Equal to the radius of curvature of the principal meridian curve at the point of intersection of the curves.

また、それ以外でに、玉子千@@@’tIhら離れるに
従って曲率半径が減少する非円形形秋管な丁。
In addition, there are also non-circular fall pipes whose radius of curvature decreases as the distance from Tamagosen@@@'tIh increases.

このレンズを通して正方格子を見たときの格子像の歪曲
を示す、、図中の破−に、第10図の鎖酸区分を示す、
遠用部領域の球面に対応する部分では正方格子にそこで
の屈折力に相当する像倍率で拡大された正方格子となり
、それらの惰力域でに図中の両側矢印で示す方向に厳大
、最小屈折力をもつノーマル金となる。このとき遠用部
領域の惰力域でに周辺にゆく#/c従って水平力量に強
く伸張された格子像とな9、−レンズ貴方部vcおける
像の煩曲が押えられる。、第13図に、非点収差の分布
をtcvし、無ハツチングの明視域の中で破−で囲われ
た領域、および中間S−城と近用部領域の玉子]1 午−曲1へ非点収差が零の領域である。遠用部領域でに
、貴方部D1での曲率の増加の仕方にほぼ比例して非点
収差が増大する。
The distortion of the lattice image when viewed through this lens is shown.The broken part in the figure shows the chain acid division in Figure 10.
In the part corresponding to the spherical surface of the distance region, the square lattice becomes a square lattice magnified by an image magnification corresponding to the refractive power there, and in these inertial force regions, the light is strictly focused in the direction shown by the arrows on both sides of the figure. It becomes normal gold with the minimum refractive power. At this time, in the inertial force region of the distance vision area, #/c moves toward the periphery, so that the lattice image is strongly stretched by the horizontal force. , Fig. 13 shows the distribution of astigmatism in tcv, the area surrounded by a broken area in the clear vision area without hatching, and the area in the intermediate S-castle and near vision area] 1. This is the region where the astigmatism is zero. In the far vision area, astigmatism increases approximately in proportion to the way the curvature increases in the front part D1.

次に、不発明の効果について説明する。Next, the effect of non-invention will be explained.

第14図に、この実施例のレンズを眼鏡とするときの玉
取りを示している。レンズに、主子午線−4 曲線上の遠用中心Aより2〜3wg斗の位置に水平視し
たときの視iaがくるように約10度傾げて玉形状Fに
加工される。図中には、第13図に示した明視域と球n
c+城が描いてあり、図の右が真情である、この図から
明らかなように約10度傾けることにより先に説明した
視覚中心−土のa−b巌に主子午線曲縁Mが一致し、使
用〕考に艮好な中間視を得ることができる。
FIG. 14 shows the beading when the lens of this embodiment is used as eyeglasses. The lens is machined into a bead shape F by tilting it about 10 degrees so that the visual field ia when viewed horizontally is at a position 2 to 3 wg dots from the distance center A on the principal meridian -4 curve. In the figure, the clear vision area and sphere n shown in Figure 13 are shown.
c + A castle is drawn, and the truth is on the right side of the figure.As is clear from this figure, by tilting it by about 10 degrees, the principal meridian curved edge M coincides with the visual center-earth a-b rock described earlier. , use] You can obtain a good intermediate vision.

本発明による効果に、遠用部領域視覚中心−において顕
著である。つまり、遠用部領域に2いて視覚中心#a’
−a−Aに主子午縁曲1s力為ら2.5−以上の幅の球
面域にほぼ含まれ、この視覚中心練土の非点収差に零と
なる。それに、通常のillに、八 2いてa−−の距flktrl 12〜15 smm度
であることと、10度の傾きを考えると明らかである。
The effect of the present invention is noticeable in the distance vision center. In other words, the visual center #a' is located in the distance vision area.
-a-A is almost included in a spherical region with a width of 2.5 or more from the principal meridian curve 1s force, and the astigmatism of the visual center is zero. In addition, it is obvious that the normal illumination has a distance of 12 to 15 smm degrees and an inclination of 10 degrees.

遠くのもの會見ることが多い人にとってこのように最も
使用頻度が高く、注視作業に便われる視覚中心層上の非
点収差が零であることに、長時間の使用による眼の疲労
t@械することに菖うまでもない。また、本発明によれ
ば、王として使われる視覚中心層上の非点収差を除くた
めに、レンズを非対称にする必☆がなく、眼−の左右で
レンズの傾け15ヲ逆にするだけで、1檀類のレンズで
眼鏡の左右レンズとして使えるので、製造面および眼鏡
に仕上げるまでの管理間vc2いて大きな利益をもたら
す。
The fact that the astigmatism on the central visual layer, which is most frequently used by people who often see distant objects and which is useful for gaze work, is zero, reduces eye fatigue due to long-term use. There's no need to worry about doing it. Furthermore, according to the present invention, there is no need to make the lens asymmetrical in order to eliminate astigmatism on the central visual layer, which is used as a ruler, and the lens can be simply tilted 15 degrees in the opposite direction on the left and right sides of the eye. Since this type of lens can be used as the left and right lenses of eyeglasses, it brings great benefits in terms of manufacturing and management until the end of the eyeglasses.

更に、遠用部領域の側力域において主子午1蘭巌と直角
な方向の曲率を、先の説明の如く変化させることにエリ
、遠用S領域が全て球(2)であるものに比べ中間部領
域崗辺部の像の全曲を!!4λ、るとともに、中間明視
域の幅を広くし、酎−す−と主子午縁曲−の位置合せの
!f4Jfが緩和される。
Furthermore, in the lateral force region of the distance vision region, the curvature in the direction perpendicular to the main meridian 1 is changed as explained above, compared to the case where the distance vision S region is entirely a sphere (2). All songs of the statue in the middle part area! ! Along with 4λ, the width of the intermediate visual field is widened, and the position of the curvature and the main meridian curve is improved! f4Jf is relaxed.

−73,レンズのmm面でに、遠用部領域に球面部を設
けることにより、製造過程におけるレンズ屈折面の精#
1t−その球面部において代表させ、容易に光学的ある
いに機械的な力泳rCより測足することができる。
-73, By providing a spherical part in the distance region on the mm plane of the lens, the precision of the refractive surface of the lens during the manufacturing process can be improved.
It is represented by its spherical part and can be easily measured by optical or mechanical power stroke rC.

以上説明した如く、本発明による累進多焦虞レンズに、
使用者に対しては良好な静的視覚と動的視覚を与え、眼
鏡作製者に対しては眼鏡のフィッティングt−容易にし
、また、レンズ製造者に対して框その製造と管理の容易
場を与えるものである。
As explained above, the progressive multifocal lens according to the present invention has
It provides good static and dynamic vision for the user, facilitates the fitting of glasses for eyeglass makers, and provides easy manufacturing and management for lens manufacturers. It is something to give.

【図面の簡単な説明】[Brief explanation of the drawing]

第1・2=5+4図に、一般的な累進多焦点レンズの構
造、玉子千巌曲−上の曲屈折力の変化、非点収差分布、
格子像の全曲を説明する図。 第5.6.7.8図に、本発明管説明する図でそれぞれ
レンズ屈折面の正l1i1図、断叩曲−上の法−と玉子
平面との成す角度の変化、レンズ屈折面の一部の斜視図
、(laWr向曲層上に訃ける法−と玉子平面との成す
角度の変化を示す図。 第9図に、眼鏡上での視線の動きを示す図。 @10.11.12.14S図に、不発明の一実m儒で
あり第10図に、レンズ屈折面の正面図、第11図は主
子午−曲線土の曲屈折率の分布、第12.15図はそれ
ぞれ格子像の歪曲および非点収差を示す。 第14図に、眼−の玉取りに2ける本発明の効果を説明
する図。 2拳M・・・玉子千−曲線 A・・・遠用中心 B・・・近用中心 C1・・・遠用s′m城と中間部1域の境界曲−C2・
・・中間部vA域と近用部鎖酸の境界曲崖以   土 第9図 第10図 第11図 第挿図 第13図
Figures 1 and 2 = 5 + 4 show the structure of a general progressive multifocal lens, changes in bending refractive power on Tamako Sengan curve, astigmatism distribution,
A diagram explaining all the songs of the lattice image. Figures 5.6.7.8 are diagrams illustrating the tube of the present invention. Figure 9 shows the movement of the line of sight on the glasses. @10.11. Figure 12.14S shows the uninvented one-dimensional structure, Figure 10 shows the front view of the refractive surface of the lens, Figure 11 shows the curved refractive index distribution of the principal meridian-curve soil, and Figure 12.15 shows the curved refractive index distribution. Distortion and astigmatism of the grating image are shown. Fig. 14 is a diagram illustrating the effect of the present invention in removing the balls from the eye. Two fists M...Thousand balls of the eye - Curve A...Distance center B ... Center for near vision C1... Boundary curve between distance vision s'm castle and intermediate area 1 - C2.
・Below the boundary curve between the intermediate vA region and the near chain acid Figure 9 Figure 10 Figure 11 Inset Figure 13

Claims (1)

【特許請求の範囲】[Claims] 主子午線曲線上で、該王子午−曲−上の遠用中心から近
用中心の閣で所定の法則に従って曲率が変化し加入fを
付与するとと%に、aS己遠用中心に訃いてiIl]記
王子午mt曲−と交わる曲脚C1と、前記近用中心にお
いてfiJB己王子午巌曲巌と交わる曲dc2により、
レンズの屈折面f:遠遠用領領域中間部領域、近用部領
域のへ領域に分利し、前記主子午縁曲Iilヲ含む千l
と平行な任意の平面とレンズの屈折面のターである任意
の断面曲縁の各々において、該断面曲騙土の%点でのレ
ンズの屈折面の法−と111記王子午−曲#を含む平面
との成す角度が、1記遠用部領域および近用部領域でに
それぞれ一足であり、中間部領域でに前記王子午巌曲線
上の遠用中心と近用中心の間での曲率の変化の法則と同
じ法則に従って変化する累進多焦点レンズにおいて、I
I]記主子午線曲#に、@記遠用部領域においてHi!
il記遠用中心の曲率と同一の曲率を1記近用sv!A
域において框Ill記近用中心の曲率と同一の曲率含有
し、1III記手子午線曲−と直角に父わる平面とレン
ズの屈折面とのターである断面曲縁が、1紀遠用部領域
で@記王子午−曲線から最低2.5−の距離まで1記遠
用部領域における前記主子午線曲線の曲率と等しい曲率
の円形形状を有し、それ以外でに!1]記王子午li!
iIから遠ざかるに匠って曲率の増加する非円−形影状
を有することを脣惨とする累進多焦点レンズ。
On the principal meridian curve, the curvature changes according to a predetermined law from the distance center to the near center on the principal meridian curve. ] Due to the curved leg C1 that intersects with the kiojigo mt song - and the song dc2 that intersects with the fiJB kiojigowao kokuwao at the near center,
Refractive surface f of the lens: divided into a distance region, an intermediate region, a near vision region, and a front region, and includes the main meridian curve Iilwo.
For each arbitrary cross-sectional curved edge that is the intersection of an arbitrary plane parallel to The angle formed with the plane containing the distance vision area and the near vision area is one foot each, and the curvature between the center of distance vision and the center of near vision on the Oji Goan curve in the intermediate region. In a progressive multifocal lens that changes according to the same law as the law of change of I
I] Hi in the meridian curve # @ in the distance area!
The curvature that is the same as the center curvature for distance vision is 1 for near vision sv! A
In the area, the curved edge of the cross section that contains the same curvature as the curvature of the center of near vision, and is the center of the plane that is perpendicular to the meridian curve and the refractive surface of the lens, is the distance vision area of 1st century. At @jijiri - a distance of at least 2.5- from the curve 1. It has a circular shape with a curvature equal to the curvature of the principal meridian curve in the distance region, and otherwise! 1] Kijigo li!
A progressive multifocal lens that unfortunately has a non-circular shadow shape whose curvature increases as it moves away from iI.
JP8840582A 1982-05-25 1982-05-25 Progressive multifocus lens Pending JPS5824115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8840582A JPS5824115A (en) 1982-05-25 1982-05-25 Progressive multifocus lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8840582A JPS5824115A (en) 1982-05-25 1982-05-25 Progressive multifocus lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17560180A Division JPS5799613A (en) 1980-12-05 1980-12-12 Progressive multifocus lens

Publications (1)

Publication Number Publication Date
JPS5824115A true JPS5824115A (en) 1983-02-14

Family

ID=13941884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8840582A Pending JPS5824115A (en) 1982-05-25 1982-05-25 Progressive multifocus lens

Country Status (1)

Country Link
JP (1) JPS5824115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862618A (en) * 1981-10-08 1983-04-14 Nakanoume Lens Seizo Kk Multifocus lens and its production
JPS62180753A (en) * 1986-02-03 1987-08-08 コスタ−・コ−ポレ−シヨン Flask
JPS6463923A (en) * 1987-06-19 1989-03-09 Solar Internatl Holdings Ltd Improved progressive lens and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862618A (en) * 1981-10-08 1983-04-14 Nakanoume Lens Seizo Kk Multifocus lens and its production
JPS62180753A (en) * 1986-02-03 1987-08-08 コスタ−・コ−ポレ−シヨン Flask
JPS6463923A (en) * 1987-06-19 1989-03-09 Solar Internatl Holdings Ltd Improved progressive lens and manufacture thereof

Similar Documents

Publication Publication Date Title
US8162478B2 (en) Pair of progressive power lens and method for designing same
EP0809127B1 (en) Multifocal lens for eyeglasses and eyeglass lens
US4580883A (en) Progressive multifocal ophthalmic lenses
US4762408A (en) Progressive multifocal lens and spectacles using same
US7399080B2 (en) Bi-aspherical type progressive-power lens and method of designing the same
EP0809126A1 (en) Gradient index multifocal lens, spectacle lens, and manufacture of gradient index multifocal lens
GB2058391A (en) Ophthalmic lens having a progressively variable focal power
JPH0239768B2 (en)
JPS6230216A (en) Lens for multifocus spectacles having at least one cumulative frequency plane
JP3617004B2 (en) Double-sided aspherical progressive-power lens
EP0702257B1 (en) Progressive power presbyopia-correcting ophthalmic lenses
US3245745A (en) Post-operative multifocal cataract lenses with base-in prismatic nearvision segments
EP1468324B1 (en) Multifocal ophthalmic lenses
EP1158337A2 (en) Progressive power multifocal lens
JP4380887B2 (en) Progressive multifocal lens
US20140362340A1 (en) Non-progressive corridor bi-focal lens with substantially tangent boundary of near and distant visual fields
US8757799B2 (en) Progressive multifocal ophthalmic lens
US5510860A (en) Progressive multifocal lens
JPS5824115A (en) Progressive multifocus lens
JPH07294859A (en) Progressive multi-focus lens
JPS5988718A (en) Progressive focusing spectacle lens considering vergence of eye
JPS6061719A (en) Progressive multifocus lens
JPS6338688B2 (en)
JP4219148B2 (en) Double-sided aspherical progressive-power lens
JPH0239766B2 (en)