JPS5824044A - Construction of prestressed concrete building - Google Patents

Construction of prestressed concrete building

Info

Publication number
JPS5824044A
JPS5824044A JP12003481A JP12003481A JPS5824044A JP S5824044 A JPS5824044 A JP S5824044A JP 12003481 A JP12003481 A JP 12003481A JP 12003481 A JP12003481 A JP 12003481A JP S5824044 A JPS5824044 A JP S5824044A
Authority
JP
Japan
Prior art keywords
girder
rectangular frame
prestressed concrete
girders
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12003481A
Other languages
Japanese (ja)
Inventor
村川 睦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Construction Co Ltd
Original Assignee
Nissan Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Construction Co Ltd filed Critical Nissan Construction Co Ltd
Priority to JP12003481A priority Critical patent/JPS5824044A/en
Publication of JPS5824044A publication Critical patent/JPS5824044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Panels For Use In Building Construction (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明はプレストレストコンクリートによる主として
矩形又は環状平面をもつ多層建築の構築方法にかかわる
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of constructing a multi-story building with a primarily rectangular or annular plane using prestressed concrete.

今迄プレストレストコンクリート建造物は、鉄筋コンク
リート現場打の梁にプレストレスを導入するとき、柱に
曲げ2次応力が発生し、この処理に問題があった。プレ
キャストコンクリートもしくは、プレストレストコンク
リート部材による組立式の場合は、柱・梁の部材と部材
の接合部に問題があυ、我国のような地震国においては
、この接合部を剛接合にし、軸力・せん断応力の外に曲
げ応力や時にはねじり応力を伝達しなければならず、こ
のため支保工材を用いたり、接合部にコンクIJ−トを
打設、硬化後プレストレス導入をくり返す等、やっかい
な作業とそのための工期が別に必要であった。また桁方
向についてプレキャスト−7ンクリートパネルの耐力壁
を用いたとき、多くの場合、階高に限度があって、耐震
強度上、壁梁の厚さを厚くしないかぎり梁丈を大きくと
れば、開口部を通行できるほど充分内法高がとれないう
らみがあった。また地震時における眉間水平せん断力の
処理に、コツターや接合金物を設ける等特別の工夫が必
要であり、さらにこれらパネルの接合部の防水目地は、
ガスケントをはめ込みコーキングすること等で処理して
いた。この発明はこれらの問題を解決すると共に、部材
接合・建方の簡略化と耐震性能の向上を目的としたもの
である。
Until now, in prestressed concrete buildings, when prestress was introduced into reinforced concrete cast-in-place beams, secondary bending stress was generated in the columns, and there was a problem with this process. In the case of an assembly type using precast concrete or prestressed concrete members, there are problems with the joints between the columns and beams, and in earthquake-prone countries like Japan, these joints are rigidly connected to reduce the axial force and In addition to shear stress, bending stress and sometimes torsional stress must be transmitted, which requires the use of shoring materials, pouring concrete IJ at joints, and repeatedly introducing prestress after hardening. This required additional work and a separate construction period. In addition, when using load-bearing walls made of precast-7 concrete panels in the direction of the girder, there is often a limit to the floor height, and in terms of seismic strength, unless the wall beams are made thicker, increasing the beam length will result in openings. There was some frustration that he was not able to earn a high enough score to pass through the division. In addition, in order to handle the horizontal shear force between the eyebrows during an earthquake, special measures such as the installation of joints and joints are required, and the waterproof joints at the joints of these panels are
It was treated by fitting Gaskent and caulking. The present invention aims to solve these problems, simplify the joining and construction of members, and improve seismic performance.

この発明はプレストレストコンクリートの大梁と両端に
半柱をもつプレキャストコンクリート矩形フレームにょ
多構成するもので、矩形フレームの半柱が互に隣接して
1本の柱になり、それらが対向して2列に並び、これら
の柱の上に大梁を架は渡し、さらに大梁の上に矩形フレ
ームの柱の部分を載せることにょシ順次大梁と交互に矩
形フレームを積み上げ、この時これら柱と大梁に上下方
向に鋼棒を貫通させ、プレストレスを導入し、互に圧着
固定し、全体として梁間方向に多層フレームを構成し、
同時に矩形フレームの2本の半柱はそれぞれ大梁と圧着
固定することにより間接に連結して、全体として桁方向
に多層のフレーム壁面を構成し、この時矩形フレームの
上桁は内側に、その上階の矩形フレームの下桁は外側に
、平行に横に重ねることを特徴とするプレストレストコ
ンクリ−トm造物の構築方法にかかわるものである。
This invention consists of a precast concrete rectangular frame with a prestressed concrete beam and half columns at both ends.The half columns of the rectangular frame are adjacent to each other to form a single column, and they are arranged in two rows facing each other. The girders are placed on top of these pillars, and the column parts of the rectangular frames are then placed on top of the girders. A steel rod is passed through the frame, prestressed, and crimped to each other to form a multilayer frame in the direction between the beams.
At the same time, the two half-columns of the rectangular frame are indirectly connected by crimping and fixing them to the girder, and the whole frame forms a multilayer frame wall surface in the direction of the girder. At this time, the upper girder of the rectangular frame is inside and above it. The method of constructing prestressed concrete structures is characterized in that the lower girder of the rectangular frame of the floor is stacked horizontally and parallel to the outside.

この発明の実施例を図面により説明する。隣接する2組
のプレキャストコンクリートa形フv−ム2 (D 端
部各半柱4の上に、プレストレストコンクリートの大梁
lを架は渡し鋼棒7をこれらに通し、プレストレスを導
入後カブラ−で鋼棒をさらに接続延長し、次いでこれを
プレキャストコンクリートフレームの半柱に通し、この
上にプレストレストコンクリートの大梁を載せ同じよう
に鋼棒全通しプレストレスを導入する。以下これらをく
り返し上層へ積み上げながら、この間鋼棒を通した孔に
グラウトし、大梁の上にプレストレストコンクリート等
の床材うを架は互に連結し、さらに大梁と結合して1体
にし、各層に剛な床を構成する。
Embodiments of the invention will be described with reference to the drawings. On top of two adjacent sets of precast concrete A-shaped frames 2 (D), a large prestressed concrete beam 1 is placed on top of each half column 4 at the end, and a steel rod 7 is passed through these, and after prestressing is introduced, the cover is Further connect and extend the steel rod, then pass it through the half column of the precast concrete frame, place a prestressed concrete girder on top of this, and introduce prestress through the entire steel rod in the same way.Hereafter, these steps are repeated and piled up to the upper layer. During this time, the holes through which the steel rods were passed were grouted, and flooring materials such as prestressed concrete were connected to each other on top of the girders, and then connected to the girders to form a single body, creating a rigid floor on each layer. .

以上本発明を実施例について説明したが、このような実
施例に局限されるものでなく、本発明の精神を逸脱しな
い範囲で、種々の設計の改変をすることができる。
Although the present invention has been described above with reference to embodiments, it is not limited to such embodiments, and various design modifications can be made without departing from the spirit of the present invention.

この発明は次の効果がある。This invention has the following effects.

(11柱は2本の半柱からなり、各上下端を大梁に圧着
固定させ間接に互に接合しているので、桁方向の柱巾は
半分になり、短柱化することなく、地震時、桁方向の水
平せん断力によるせん断破壊を避けることができる。
(Column 11 consists of two half-columns, and the upper and lower ends are crimped and fixed to the girder and are indirectly connected to each other, so the width of the column in the direction of the girder is halved, and it is possible to avoid shortening the column in the event of an earthquake.) , shear failure due to horizontal shear force in the direction of the girder can be avoided.

(2)  大梁はその下の柱の両側の矩形フレームの間
にはめ込まれ、またその上の柱の両側の矩形フレームの
間に入り込んでいて、地震時、桁方向の層間水平せん断
力に対しコツターの役割をし、また大梁自体にねじれ応
力がおきない。
(2) The girder is fitted between the rectangular frames on both sides of the column below it, and also between the rectangular frames on both sides of the column above it, so that during an earthquake, the girder resists the interstory horizontal shear force in the direction of the girder. This function also prevents torsional stress from occurring on the girder itself.

(3)  桁方向に柱付外壁パネル、梁方向に大梁を架
は渡し床を設ける構築方法はすでに知られているが、特
に大スパンに有利なプレストレストコンクリート大梁を
用いることにより、中柱とそれらを繋ぐ中通り梁の両方
を省略、部材の種類を生滅でき、また梁の交差点の上下
に柱を銅接合するような複雑な構法を避けることができ
る。
(3) Construction methods are already known in which external wall panels with columns are installed in the direction of the girders, and girders are installed in the direction of the beams, and by using prestressed concrete girders, which are particularly advantageous for large spans, the central columns and their By omitting both the middle beams that connect the beams, it is possible to change the types of members, and it is also possible to avoid complicated construction methods such as joining columns with copper above and below the intersection of the beams.

(4)矩形フレームの上下の桁が、それぞれ上階の下桁
、下階の上桁と平行に横に重なっているので、その重な
りしるだけ開口部の内法高を大きくとれる。
(4) Since the upper and lower girders of the rectangular frame overlap horizontally in parallel with the lower girder on the upper floor and the upper girder on the lower floor, the internal height of the opening can be increased by the amount of overlap.

(5)矩形フレームは外部からの風雨に対し、開口部は
サツシ、扉等が取付けられるが、上下の接合部は上桁が
内側に下桁は外側に置かれるので、桁の重りしろが充分
であり防水が容易である。
(5) The rectangular frame is protected against wind and rain from the outside by attaching sashes, doors, etc. to the openings, but at the upper and lower joints, the upper girder is placed inside and the lower girder is placed outside, so there is sufficient room for the weight of the girder. It is easy to waterproof.

(6)  プレキャストコンクリート矩形フレームとプ
レストレストコンクリート大梁を交互に積み上げるとき
、梁間方向に柱巾が充分あり、また支点である柱下端の
高さが下桁の上部にあり重心に近いので安定し、これら
のため矩形フレームの自立が可能で、建方が容易に行な
える。
(6) When stacking precast concrete rectangular frames and prestressed concrete girders alternately, there is sufficient column width in the direction between the beams, and the height of the lower end of the column, which is the fulcrum, is above the lower girder and close to the center of gravity, so it is stable. This allows the rectangular frame to stand on its own, making erection easy.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第一図は立面図、
第2図は平面図、第う図は第1図のA−A線断面図、第
1図は部材の斜視図である。 1・・・プレストレストコンクリートの大梁2 ・両端
に半柱をもつプレキャストコンクリート矩形フレーム う ・・プレストレストコンクリートの床材J1・・プ
レキャストコンクリート矩形フレームの両端の半柱 5 ・プレキャスI・コンクリート矩形フレームの」二
桁 6 ・・プレキャストコンクリート矩形フレームの下桁 特許出願人 日産建設株式会社
The drawings show an embodiment of the present invention, and the first drawing is an elevational view;
FIG. 2 is a plan view, FIG. 1 is a sectional view taken along the line A--A in FIG. 1, and FIG. 1... Prestressed concrete girder 2 - Precast concrete rectangular frame with half columns at both ends... Prestressed concrete floor material J1... Half columns 5 at both ends of precast concrete rectangular frame - Precast I concrete rectangular frame. Two digits 6...Lower digit of precast concrete rectangular frame Patent applicant: Nissan Construction Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] プレストレストコンクリートの大梁(1)と両端に半柱
をもつプレキャストコンクリートa形フレーム(2)に
より構成するもので、矩形フレームの半柱が互に隣接し
て1本の柱になり、それらが対向して2列に並び、これ
らの柱の上に大梁を架は渡し、さらに大梁の上に矩形フ
レームの柱の部分を載せることにより順次大梁と交互に
矩形フレームを積み上げ、この時これら柱と大梁に上下
方向に鋼棒等を貫通させ、プレストレスを導入し、互に
圧着固定し、全体として梁間方向に多層フレームを構成
し、同時に矩形フレームの2本の半柱はそれぞれ大梁と
圧着固定することにより間接に連結して、全体として桁
方向に多層のフレーム壁面を構成し、この時矩形フレー
ムの上桁は内側に、その上階の矩形フレームの下桁は外
側に、平行に横に重ねることを特徴とするプレストレス
トコンクリート建造物の構築方法。
It consists of a prestressed concrete girder (1) and a precast concrete A-shaped frame (2) with half columns at both ends.The half columns of the rectangular frame are adjacent to each other to form a single column, and they are opposed They lined up in two rows, passed girders on top of these pillars, and then placed the column parts of the rectangular frames on top of the girders, stacking the rectangular frames alternately with the girders. Steel bars, etc. are penetrated in the vertical direction, prestress is introduced, and they are crimped and fixed to each other to form a multi-layered frame as a whole in the direction between the beams, and at the same time, the two half columns of the rectangular frame are each crimped and fixed to the girder. The upper girder of the rectangular frame is stacked horizontally in parallel, with the upper girder of the rectangular frame on the inside and the lower girder of the rectangular frame on the upper floor on the outside. A method for constructing a prestressed concrete building characterized by:
JP12003481A 1981-08-01 1981-08-01 Construction of prestressed concrete building Pending JPS5824044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12003481A JPS5824044A (en) 1981-08-01 1981-08-01 Construction of prestressed concrete building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12003481A JPS5824044A (en) 1981-08-01 1981-08-01 Construction of prestressed concrete building

Publications (1)

Publication Number Publication Date
JPS5824044A true JPS5824044A (en) 1983-02-12

Family

ID=14776261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12003481A Pending JPS5824044A (en) 1981-08-01 1981-08-01 Construction of prestressed concrete building

Country Status (1)

Country Link
JP (1) JPS5824044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101078828B1 (en) * 2008-11-28 2011-11-02 이소라 Structure using pre-cast panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101078828B1 (en) * 2008-11-28 2011-11-02 이소라 Structure using pre-cast panel

Similar Documents

Publication Publication Date Title
JPH10131516A (en) Reinforcing structure of existing building
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JPS6314937A (en) Reinforcing bar composite pillar
JPS5824044A (en) Construction of prestressed concrete building
JPS602462B2 (en) Precast concrete shear wall assembly method
JP2527975B2 (en) Building structure
SU949148A1 (en) Framing for seismically resistant many-storied building
JPH084195A (en) Panel for building
JPS61196035A (en) Construction of concrete building
JPS63103140A (en) Open structure of pillar and beam of multistoried building
JPH0350847B2 (en)
SU844749A1 (en) Multistorey earthquake-proof bulding
JP2518568Y2 (en) Connection structure of steel beams to concrete columns
JP2024074693A (en) Aseismic reinforcing structure and aseismic reinforcing method using the same
JPH01121425A (en) Post and beam joint structure of multistoried building
JPH09273317A (en) Vibration-resistant reinforcing method of existing concrete structure
RU2118430C1 (en) Framework of multistoried building
JPH10219827A (en) Framing structure of multistoried building
JPS60253636A (en) Building structure
JP2001020297A (en) Sc-structured footing beam method for building
JPH06229017A (en) Connecting part of frame, pillar and wall of building
JPS6311774A (en) Earthquake resistant structure
JPS60195241A (en) Body structure of multi-floor building
JPS6311499B2 (en)
JPS62170640A (en) Outer wall structure of building