JPS582397A - Oil and fat horizontal crystallizer - Google Patents

Oil and fat horizontal crystallizer

Info

Publication number
JPS582397A
JPS582397A JP10210981A JP10210981A JPS582397A JP S582397 A JPS582397 A JP S582397A JP 10210981 A JP10210981 A JP 10210981A JP 10210981 A JP10210981 A JP 10210981A JP S582397 A JPS582397 A JP S582397A
Authority
JP
Japan
Prior art keywords
cooling coil
cooling
fats
crystallizer
oils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10210981A
Other languages
Japanese (ja)
Other versions
JPS6365120B2 (en
Inventor
藤生 貞夫
星野 光久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP10210981A priority Critical patent/JPS582397A/en
Publication of JPS582397A publication Critical patent/JPS582397A/en
Publication of JPS6365120B2 publication Critical patent/JPS6365120B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は油脂の横型晶析装置、特に連続化の可能な油脂
の横型晶析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a horizontal crystallizer for fats and oils, and particularly to a horizontal crystallizer for fats and oils that can be operated continuously.

一般に、油脂中の結晶成分を、冷却によって純粋で且つ
巨大成長した結晶として得ることを目的とする場合、冷
却系内の温度分布を均一にするか或は分布の振れを極め
て小さくすることが必須条件である。この条件を遵守す
れば良品質で純粋に成長した、p別件良好な結晶成分が
得られることは明瞭である。
Generally, when the purpose is to obtain crystal components in fats and oils as pure, giant-grown crystals by cooling, it is essential to make the temperature distribution within the cooling system uniform or to make the fluctuations in the distribution extremely small. It is a condition. It is clear that by complying with these conditions, a crystal component of good quality, pure growth, and having good p characteristics can be obtained.

然るに、従来の、ジャケット冷却或は突起冷却面を有す
る軸冷却の如き結晶化方法に依る、短時間急速冷却法で
は、冷却壁外周部と軸中央部との温度差ΔTがいたずら
に大きなものとなり、冷却面壁にて結晶化した微細結晶
種晶成分が移動成長過程で再溶解したり、結晶部れを起
したり或は双晶などの現象などが起るため、良品質の結
晶を得ることは出来ない。
However, in the short-time rapid cooling method based on the conventional crystallization method such as jacket cooling or shaft cooling with a protruding cooling surface, the temperature difference ΔT between the outer circumference of the cooling wall and the center of the shaft becomes unnecessarily large. It is difficult to obtain high-quality crystals because phenomena such as fine crystal seed crystal components crystallized on the cooling surface wall may be redissolved during the moving growth process, crystal parts may be distorted, or twin crystals may occur. I can't.

又冷却系の分布温度差ΔTを可及的に小さくする為にし
ばしば外部具等により強制攪拌を行う必要を生′するが
、もし必要以上に強制攪拌を行なえば液層が乱れ、液断
面の翼エッヂによるせん断力が作用して結晶の破砕を生
じ、これ又望ましい結晶を得ることは困難となる。
In addition, in order to minimize the distribution temperature difference ΔT in the cooling system, it is often necessary to perform forced stirring using an external device, but if forced stirring is performed more than necessary, the liquid layer will be disturbed and the liquid cross section will be The shearing force exerted by the blade edges causes crystal fragmentation, which also makes it difficult to obtain desired crystals.

従って、温度分布の少ない均一冷却を行い良結晶を得る
為には被冷却系との温度差の小さい冷媒を用いたり或は
温度勾配め小さな緩かな長時間冷却が通常実施されてい
るが、か\る徐冷却は熱移行が遅く、冷却完了までに8
〜12時間に及ぶ多大の所要時間を要す上、第7図に示
す如く、結晶化の際発生する結晶熱の極大化現象を伴い
、冷却系全体が2〜4℃も上昇するため、好ましい結晶
を得ることがlli来ない。
Therefore, in order to achieve uniform cooling with less temperature distribution and obtain good crystals, it is common practice to use a refrigerant with a small temperature difference with the system to be cooled, or to carry out gradual long-term cooling with a small temperature gradient. \ Gradual cooling has a slow heat transfer, and it takes about 8 hours to complete cooling.
This method is preferable because it takes a long time, up to 12 hours, and as shown in Fig. 7, the heat of crystallization generated during crystallization is maximized, causing the entire cooling system to rise by as much as 2 to 4 degrees Celsius. I can't seem to get any crystals.

一方、従来、軸に固定1−た同心円コイル状の冷却面を
有し、コイル内に冷媒を通し且つ冷却面を軸と共に回転
させる横型晶析器が提案されているが(特公昭55−5
0442号、特公昭5f5−3081号参照)、これら
従来公知の、同心円1段での冷却面のものでは、被冷却
体に対し有効冷却面積が従来技術の壁冷却と比べ決して
太きいものとは云えず、従って結晶熱の除去作用も、迅
速冷却の目的からも有効なものとは云えない。
On the other hand, a horizontal crystallizer has been proposed which has a cooling surface in the form of a concentric coil fixed to a shaft, in which a refrigerant is passed through the coil and the cooling surface rotates together with the shaft (Japanese Patent Publication No. 55-5
0442, Japanese Patent Publication No. 5F5-3081), these conventionally known cooling surfaces with one stage of concentric circles have a larger effective cooling area for the object to be cooled than the conventional wall cooling method. Therefore, the action of removing crystal heat cannot be said to be effective for the purpose of rapid cooling either.

本発明の目的は、被冷却体の外周部と内周部との温度差
ΔTの小さい系での迅速な冷却を行い性状、品質の良好
なる結晶成分を得ることができる、油脂の横型晶析装置
を提供することにある。
The object of the present invention is to provide horizontal crystallization of fats and oils, which can quickly cool the object to be cooled in a system with a small temperature difference ΔT between the outer circumference and the inner circumference, and obtain crystalline components with good properties and quality. The goal is to provide equipment.

本発明者等は、結晶成長の際に発生する結晶熱の効率的
な除去作用を行ないながら結晶化を行なえば、性状、品
質の良好なる結晶が得られることを知見し、この知見を
基礎として、被冷却体液断面に於て1℃以内の均一温度
下での短時間急玲を行なわしめる様な晶析装置を種々検
討した結果、温度差の大なる冷媒を外周部より渦巻状に
流し且つ急速冷却が行なえる様に冷却面が回転軸を中心
に回転可能な熱移行性大なる晶析装置を発明するに致っ
た。
The present inventors have found that crystals with good properties and quality can be obtained by performing crystallization while efficiently removing the crystal heat generated during crystal growth, and based on this knowledge, As a result of investigating various crystallizers that perform rapid cooling for a short time at a uniform temperature of 1°C or less on the cross section of the body fluid to be cooled, we found that a refrigerant with a large temperature difference flows in a spiral shape from the outer periphery and In order to achieve rapid cooling, we invented a crystallizer with a large heat transfer property in which the cooling surface can be rotated around a rotating shaft.

即ち、本発明の晶析装置は、晶析槽内に、回転軸を中心
として冷却コイル管を渦巻状に巻いて形成した複数個の
冷却コイル束を、それらの表面を倒れも回転軸に対して
直交させて所定のピッチで以て取付けた回転軸を回転自
在に装備すると共に、上記冷却コイル束それぞれの外周
部から内周部に向けて上記冷却コイル管内に冷媒を連続
的に供給し得るよう番こなし、上記晶析槽内に供給され
た被冷却体を冷却することを特徴とするものである。
That is, the crystallizer of the present invention has a plurality of cooling coil bundles formed by spirally winding cooling coil tubes around a rotational axis in a crystallization tank, so that the surfaces of the cooling coils are not tilted or tilted relative to the rotational axis. Rotating shafts are rotatably mounted at a predetermined pitch so as to be orthogonal to each other, and refrigerant can be continuously supplied into the cooling coil tubes from the outer periphery to the inner periphery of each of the cooling coil bundles. The apparatus is characterized in that it cools the object to be cooled supplied into the crystallization tank.

以下、本発明の晶析装置を図面に示す実施例について説
明する。
Embodiments of the crystallizer of the present invention shown in the drawings will be described below.

第1図は本発明の晶析装置の一実施例の断面図で、図面
において1は、横型円筒形の晶析槽で、上部一端に原料
ミセラ供給口2を下部他端に結晶化完了スラリー排出口
3を有している。
FIG. 1 is a cross-sectional view of an embodiment of the crystallization apparatus of the present invention. In the drawing, 1 is a horizontal cylindrical crystallization tank, with a raw material micellar supply port 2 at one end of the upper part and a crystallized slurry at the other end of the lower part. It has a discharge port 3.

4は晶析槽1の軸心部に設けた回転軸で、シール用パツ
キン11を介して支承されている。また、上記回転軸4
は、冷媒プライン入口5′を有するプライン供給外管5
と戻りプライン出口6′を有する戻りプライン集合内管
6とからなる二重管となしてあシ、冷媒プライン入口5
′及び戻シブライン出口6′は、それぞれ上記晶析槽1
の右外側部及び左外側部に位置させである。7.7.7
.・・・は、それぞれ、上記回転軸4に、上記プライン
供給外管5に連通させて設けたブランチ管で、互いに適
宜の間隔を置いて上記回転軸4に対して垂直に設けであ
る。8.8.8.・・・は、上記ブランチ管7.7.7
.・・及び上記ブライン集合内管6に連通させた冷却コ
イル束で、冷却コイル管8′を上記回転軸4を中心に、
上記回転軸4に対して直角方向ζこ渦巻状に巻いて形成
し、互いに適宜な間隔即ち軸取付はピッチ80龍乃至3
00m1+の間隔dを置いて設けてあり、上記冷却コイ
ル管8′の外周部側の端口を上記ブランチ管7の他端口
屹接合し、上記冷却コイル管8′の内周部側の端口を上
記戻りプライン集合内管6に接合させである。この他、
図中9及び10は晶析槽1に装着した温度指示計、12
は回転軸の内径、13は冷却コイル束の外径、14は晶
析槽の外径、14′は晶析槽の長さである。
Reference numeral 4 denotes a rotating shaft provided at the axial center of the crystallization tank 1, and is supported via a sealing packing 11. In addition, the rotating shaft 4
is a pline supply outer pipe 5 having a refrigerant pline inlet 5'.
and a return pline collecting inner pipe 6 having a return pline outlet 6', and a refrigerant pline inlet 5.
' and the return sibling line outlet 6' are connected to the crystallization tank 1, respectively.
They are located on the right lateral part and the left lateral part of. 7.7.7
.. . . . are branch pipes provided on the rotating shaft 4 in communication with the pline supply outer pipe 5, and are provided perpendicularly to the rotating shaft 4 at appropriate intervals. 8.8.8. ... is the branch pipe 7.7.7 above.
.. . . . and a cooling coil bundle communicated with the brine collection inner pipe 6, the cooling coil pipe 8' is centered around the rotation axis 4,
It is formed by winding it in a spiral shape in the direction perpendicular to the rotating shaft 4, and the pitch is 80 to 3.
The outer end of the cooling coil pipe 8' is connected to the other end of the branch pipe 7, and the inner end of the cooling coil pipe 8' is connected to the other end of the branch pipe 7. The return pline is connected to the collecting inner pipe 6. In addition,
In the figure, 9 and 10 are temperature indicators attached to the crystallization tank 1, and 12
is the inner diameter of the rotating shaft, 13 is the outer diameter of the cooling coil bundle, 14 is the outer diameter of the crystallization tank, and 14' is the length of the crystallization tank.

又本発明装置は第2図に示す如く、冷却コイル束8によ
り効率的な熱移行を助勢すべく補助的手段として冷却コ
イル束8の表面に沿ってインペラ形状のパドルR15を
取付けることにより冷却をより一層効率的に行なうこと
が出来る。
Further, as shown in FIG. 2, the device of the present invention achieves cooling by installing an impeller-shaped paddle R15 along the surface of the cooling coil bundle 8 as an auxiliary means to assist in efficient heat transfer by the cooling coil bundle 8. This can be done even more efficiently.

このパドル翼15の巾の大きさは、単に冷却コイル管8
′の間隙ζζ液が第5図の矢標に示すように流れる程度
のもので良く、冷却コイル管8′の径とはソ同程度で充
分である。こあパドー翼15は、成長完了済結晶はまき
上げることなく結晶未成長の微細な粒子のみ緩かに上部
へまき上げる作用も行い、一層温度分布の少ない被冷却
系での急速冷却を可能にならしめるものである。
The width of the paddle blade 15 is determined simply by the width of the cooling coil pipe 8.
It is sufficient that the gap ζζ is such that the liquid flows as shown by the arrow in FIG. The Koapado blade 15 also has the effect of gently lifting up only fine particles that have not yet grown into crystals, without lifting up the crystals that have grown, thereby enabling rapid cooling in the cooled system with even smaller temperature distribution. It is something that makes you familiar.

更に、第3図に示す如く、本発明装置は各冷却コイル束
8に沿ってパドル翼15とは反対側にスクレーパー16
を取付ければ結晶が冷却コイル管8′に付着する事を防
止できる。即ち、スクレーパー16は、第3図に示す如
く、冷却コイル束8に対向した面に適宜の長さの多数の
スクレーパーブラシ16′を有しており、回転軸4に対
し固定されていない(但し、溝等を設けて軸方向には動
かない様になしである)スクレーパー取付はリング17
により回転軸4の回転と連動することなく設けられてい
る。尚、スクレーパー16ハ晶析槽1の内壁に固定する
事も可能である。
Furthermore, as shown in FIG.
By attaching this, it is possible to prevent crystals from adhering to the cooling coil tube 8'. That is, as shown in FIG. 3, the scraper 16 has a large number of scraper brushes 16' of appropriate length on the surface facing the cooling coil bundle 8, and is not fixed to the rotating shaft 4 (however, , there is no groove etc. to prevent it from moving in the axial direction) The scraper is attached using ring 17.
Therefore, it is provided without interlocking with the rotation of the rotating shaft 4. Incidentally, it is also possible to fix the scraper 16 to the inner wall of the crystallization tank 1.

次に、本発明装置の作用効果について説明するO 本発明装置を用いて油脂の結晶化を行なうには、まず原
料ミセラ械□′給口2から原料ミセラ(油脂類)を晶析
槽1内に連続的に供給すると共に、冷媒プライン入口5
′から冷媒プラインを注入する。而して、冷媒プライン
入口5′から注入された冷媒は、第1図に矢標で示す如
く、回転軸4の外管であるプライン供給外管5を通って
、ブランチ管7.7.7.・・・を介して冷却コイル束
8,8゜8、・・の最外周部へ導かれ冷却コイル管8L
、 $/、 g/、・・・中を廻り、この際供給口2か
ら供給された原料ミセラと熱交換を行ない、その後、回
転軸4の内管である戻りプライン集合内管6に集められ
、戻りプライン出口6′から排出される一方、供給口2
から供給された原料ミセラは、冷却コイル束8.8.8
.・・・を介して冷媒プラインと接触して結晶化され、
結晶化を完了したスラリーは結晶化完了スラリー排出口
3から連続的ζこ取出される。
Next, the function and effect of the apparatus of the present invention will be explained. In order to crystallize oils and fats using the apparatus of the present invention, firstly, raw material micella (oils and fats) is introduced into the crystallization tank 1 from the raw material micellar machine □' inlet 2. The refrigerant pline inlet 5
Inject the refrigerant pline from ’. Thus, the refrigerant injected from the refrigerant pline inlet 5' passes through the pline supply outer pipe 5, which is the outer pipe of the rotating shaft 4, and into the branch pipes 7.7.7, as shown by the arrow in FIG. .. The cooling coil tube 8L is guided to the outermost periphery of the cooling coil bundle 8,8゜8,... through...
, $/, g/, ..., and at this time exchanges heat with the raw material miscella supplied from the supply port 2, and is then collected in the return pline collection inner pipe 6, which is the inner pipe of the rotating shaft 4. , is discharged from the return pline outlet 6', while the supply port 2
The raw material miscella supplied from the cooling coil bundle 8.8.8
.. It is crystallized by contacting the refrigerant line through...
The crystallized slurry is continuously taken out from the crystallized slurry outlet 3.

この際、回転軸4の回転によυ、密なるピッチにて渦巻
状に形成された冷却コイル束8.8.8.・・・も回転
し、回転軸4より遠い外周部程周速度も早く、それだけ
熱移行がスムースとなるため、よシ効率的な冷却作用効
果が奏せられる。
At this time, the cooling coil bundle 8.8.8. is formed into a spiral shape with a dense pitch by the rotation of the rotating shaft 4. . . . rotates, and the peripheral speed is faster at the outer peripheral portion farther from the rotating shaft 4, and the heat transfer becomes smoother accordingly, so that a more efficient cooling effect can be achieved.

本発明装置では、壁冷却の従来の装置に比べ1.5倍か
ら3,0倍もの冷却面を有し、且つ冷却コイル管8′の
最外周部1と供給された冷媒が渦巻状に回転しながら軸
方向に移動し、この際冷却コイル管8′の間隙よりラジ
エーシヲン状に効率良く熱移行が行かわれ、しかも冷却
コイル束8自身が回転せる回転軸4と連動して回転する
為にはるかに熱移行が促進される。か\る熱移行の改善
により本発明装置によれば急速冷却が可能となり、結晶
成分の発生熱の除去作用効果も顕著でよシ均一な温度分
布態様での冷却が可能となった。
The device of the present invention has a cooling surface that is 1.5 to 3.0 times larger than that of conventional wall cooling devices, and the outermost circumference 1 of the cooling coil tube 8' and the supplied refrigerant rotate in a spiral shape. At this time, heat is efficiently transferred in a radial manner from the gap between the cooling coil tubes 8', and furthermore, since the cooling coil bundle 8 itself rotates in conjunction with the rotating shaft 4, it moves in the axial direction. heat transfer is promoted. By improving heat transfer, the apparatus of the present invention enables rapid cooling, has a remarkable effect of removing heat generated by crystalline components, and enables cooling with a more uniform temperature distribution.

加えて本発明装置は、冷却コイル束8のサポートも兼ね
たインペラ形状のパドル興15の取付けにより冷却コイ
ル管8′間の強制的な液流(第5図において矢標で示す
)を促し、且つ簡便にスクレーパー機構も設置が可能で
、スクレーパー16を取付けた場合にはスケーリングの
心配がなく、長時間運転してもコンスタントなる熱移行
能力を保つことが可能であり、極めて工業的でより実際
的な晶析装置と云える。
In addition, the device of the present invention promotes forced liquid flow (indicated by arrows in FIG. 5) between the cooling coil tubes 8' by attaching an impeller-shaped paddle 15 that also serves as a support for the cooling coil bundle 8. In addition, the scraper mechanism can be easily installed, and when the scraper 16 is installed, there is no need to worry about scaling, and it is possible to maintain a constant heat transfer ability even during long-term operation, making it extremely industrial and more practical. It can be said to be a typical crystallizer.

従って、本発明装置によれは差温太なる冷媒冷却が可能
となり、従来の装置の1/2乃至115の短時間で冷却
することが出来る等、極めて大きな経済的効果が奏せら
れる。
Therefore, the device of the present invention enables cooling of the refrigerant with a larger temperature difference, and achieves extremely large economical effects, such as being able to perform cooling in a short time of 1/2 to 115 times that of conventional devices.

本発明の晶析装置で結晶化される油脂類としては、カカ
オ代用脂が得られる結晶含量の多い原料、例えばサル脂
、コクム脂、シア脂などの粗原油、脱ガム油、脱酸或は
漂白等の精製過程及び脱臭油を用いることが出来、又ス
テアリン等高融点成分の除去の目的により用いられる動
植物油脂類、例えばパーム油、綿実油、こめ糠油、牛脂
、ラードなどの粗原油、脱ガム油、脱酸或は漂白等の精
製過程及び脱臭油を用いることが出来る。これ等以外の
油脂、例えばとうもろこし油、菜種油、サフラワー油、
ひまわり油、大豆油或はこれらの動植物油脂の水素添加
物或はこれらの混合油脂並びに上記動植物油脂を分別し
て得られる分画油、及びそれ等の水素添加物等も本発明
に於て使用することが出来る。又前記動植物油脂類の同
種或は異種品のエステル交換したものも原料として用い
ることが出来る。
The oils and fats to be crystallized in the crystallizer of the present invention include raw materials with a high crystal content from which cacao substitutes can be obtained, such as crude oils such as monkey fat, kokum butter, and shea butter, degummed oils, deoxidized oils, and Refining processes such as bleaching and deodorized oils can be used, and animal and vegetable oils and fats used for the purpose of removing high melting point components such as stearin, such as crude oil such as palm oil, cottonseed oil, rice bran oil, beef tallow, lard, and degumming. Oils, refining processes such as deacidification or bleaching, and deodorized oils can be used. Oils and fats other than these, such as corn oil, rapeseed oil, safflower oil,
Sunflower oil, soybean oil, hydrogenated products of these animal and vegetable oils, mixed fats and oils thereof, fractionated oils obtained by fractionating the above animal and vegetable fats, and hydrogenated products thereof, etc. are also used in the present invention. I can do it. Also, transesterified products of the same or different types of animal and vegetable oils and fats can also be used as raw materials.

本発明装置(こよる上記油脂の結晶化は、油脂単品或は
へキサン、アセトンの如き溶剤0.1乃至9倍量で希釈
配合せる混合系を用いて行なわれる0 以下に実験例によって本発明装置の効果を具体的に明ら
かにする。
The apparatus of the present invention (the crystallization of the above-mentioned fats and oils is carried out using a single oil or a mixing system in which the oil and fat are diluted and blended in 0.1 to 9 times the amount of a solvent such as hexane or acetone). Clarify the effectiveness of the device in detail.

実験例1 下記の如き本発明のベンチスケールでの晶析装置を用い
て、結晶成分含量の多いサル脂の3分割の2段目結晶化
分別の場合について中融点成分のバッチ冷却晶析を行な
った。
Experimental Example 1 Using a bench scale crystallizer of the present invention as described below, batch cooling crystallization of intermediate melting point components was carried out for the second stage crystallization fractionation of three divisions of monkey fat with a high content of crystalline components. Ta.

〔晶析装置〕[Crystallizer]

上記本発明装置の晶析槽に、60℃に加熱したサル脂1
部(重量)に対し溶剤ヘキサン3部(重量)の割合で調
合した40℃の混合ミセラ(油と溶剤との混合体)9s
ozを張込み満杯とした。
Sal fat 1 heated to 60°C was added to the crystallization tank of the apparatus of the present invention.
9s of mixed miscella (mixture of oil and solvent) at 40°C prepared at a ratio of 3 parts (by weight) to 3 parts (by weight) of solvent hexane
oz to make it full.

これを、冷却コイル束の回転15 r、p−m %混合
ミセラの仕込温度40℃、晶析終了温度−6℃、冷媒ブ
ライン入口における温度−12℃、冷媒プラインの出口
における温度−3℃、冷媒プラインの流量30001/
Hrで結晶化を行なった。冷却を開始してから45分後
のミセラ平均温度θ℃の時、軸中央部と外周部の各温度
はそれぞれ0.2℃、−0,1℃であり、液温分布差J
 T = 0.3℃かそれ以下の均一なるミセラ態を得
ることが出来た。
The rotation of the cooling coil bundle is 15 r, the charging temperature of the p-m% mixed micella is 40°C, the crystallization end temperature is -6°C, the temperature at the refrigerant brine inlet is -12°C, the temperature at the outlet of the refrigerant pline is -3°C, Refrigerant pline flow rate 30001/
Crystallization was performed with Hr. 45 minutes after the start of cooling, when the average temperature of the micella is θ°C, the temperatures at the center of the shaft and at the outer circumference are 0.2°C and -0.1°C, respectively, and the liquid temperature distribution difference J
It was possible to obtain a uniform micellar state at T = 0.3°C or lower.

上述の如き温度分布下にてミセラを最終温度−6℃まで
冷却したところ、その冷却所要時間は、第6図に示す如
く、1.5時間にて結晶化を完了し、結晶熱によるミセ
ラ態の温度極大値も1℃以下に押えられ、得られた結晶
成分は粒径200乃至400μ(ミクロン)で粒径は若
干小さいが、純粋で均一粒径に揃い、結晶が締まってい
るが故f過分離性も良く、極めて品質、性状の優れたも
のであった。
When the micella was cooled to a final temperature of -6°C under the temperature distribution described above, the cooling time was 1.5 hours, as shown in Figure 6, and the crystallization was completed in 1.5 hours. The maximum temperature value of is also suppressed to below 1℃, and the obtained crystal components have a particle size of 200 to 400μ (microns), and although the particle size is slightly small, the particle size is pure and uniform, and the crystals are tight, so f It had good over-separability and was of extremely excellent quality and properties.

表−1に本発明装置に依って得た分別サル脂中融点結晶
成分と液状油の性状と沢過分離性能を示す。
Table 1 shows the properties and filtration separation performance of the fractionated monkey fat medium melting point crystal component and liquid oil obtained by the apparatus of the present invention.

表−1 濾過time (秒)(表−2〜表−4においても同様
である)比較実験例 実験例1と同一寸法の晶析槽を用い攪拌翼をかい型4枚
羽根に変更し且つ槽壁にジャケット部を設けた壁冷却に
よる結晶化を行なった。ミセラ(原料油と溶剤)の配合
割合、張込温度、攪拌数等実験例1と同一条件とし、冷
媒プライン入口における温度−12℃、冷媒プラインの
流量30001/Hr で外壁に流した。この時、冷媒
プラインの出口における温度−6℃であった。系内ミセ
ラ平均温度0℃の時、軸中央部と外周部の各温度はそれ
ぞれ0.9°C1−0部7°Cであり、液温分布差ΔT
=1.6℃とや\大きな温度分布態の値を示した。
Table 1 Filtration time (seconds) (The same applies to Tables 2 to 4) Comparative Experiment Example A crystallization tank with the same dimensions as Experiment 1 was used, the stirring blade was changed to a paddle-shaped 4-blade, and the tank was Crystallization was performed by wall cooling with a jacket provided on the wall. The conditions were the same as in Experimental Example 1, such as the blending ratio of miscella (raw oil and solvent), charging temperature, and number of stirrings, and the temperature at the refrigerant pline inlet was -12°C, and the refrigerant pline flow rate was 30001/Hr. At this time, the temperature at the outlet of the refrigerant pline was -6°C. When the average temperature of the micella in the system is 0°C, the temperatures at the center and outer circumference of the shaft are 0.9°C1-07°C, respectively, and the liquid temperature distribution difference ΔT
It showed a rather large temperature distribution value of =1.6℃.

上述の如き温度分布下にてミセラを最終温度−6℃まで
冷却したところ、その冷却時間は第7図に示す如く6.
5時間を要し、ミセラ態の結晶化熱による温度極大値は
2.5℃まで上昇した。
When the micella was cooled to a final temperature of -6°C under the above-mentioned temperature distribution, the cooling time was 6.5°C as shown in Figure 7.
It took 5 hours, and the maximum temperature due to the heat of crystallization of the micellar state rose to 2.5°C.

表−2に従来技術に依る壁冷却結晶化法によって得た分
別結晶成分と液状油の性状とr過分離性能を示す。
Table 2 shows the fractionated crystal components obtained by the wall cooling crystallization method according to the prior art, the properties of the liquid oil, and the r-overseparation performance.

表−2 実験例2 実験例1と同一の装置に、さらに各冷却コイル束に巾2
5朋のパドル翼を第4図の如く取付けた晶析装置を用い
てサル脂の3分割の2段目バッチ結晶化を行なった。冷
却コイル束の回転15r、p、m、 60℃に加熱した
サル脂1部(重量)に溶剤ヘキサン3部(重量)を配合
せる混合ミセラの仕込温度40°C1品析終了温度−6
℃、冷媒プライン入口をこおける温度−12℃、冷媒プ
ラインの出口における温度−2゜5℃、冷媒プラインの
流量30001/Hrで結晶化を行なった。冷却を開始
してから40分後のミセラ平均温度0℃の時、軸中央部
と外周部の各温度はそれぞれ0.1℃、−0部1℃であ
り、液温分布差ΔT=0.2℃の均一ミセラ態を得るこ
とが出来た。
Table 2 Experimental Example 2 In addition to the same equipment as Experimental Example 1, each cooling coil bundle was
Using a crystallizer equipped with 5 paddle blades as shown in FIG. 4, the second stage batch crystallization of monkey fat was divided into three parts. Rotation of cooling coil bundle 15r, p, m, 1 part (weight) of sal fat heated to 60°C and 3 parts (weight) of solvent hexane Mixed micellar preparation temperature 40°C 1 Product analysis end temperature -6
The crystallization was carried out at a temperature of -12° C. at the inlet of the refrigerant pline, a temperature of -2.5° C. at the outlet of the refrigerant pline, and a flow rate of 30001/Hr through the refrigerant pline. When the average temperature of the micella is 0°C 40 minutes after the start of cooling, the temperatures at the center of the shaft and at the outer circumference are 0.1°C and -0 part 1°C, respectively, and the liquid temperature distribution difference ΔT = 0. It was possible to obtain a uniform micellar state at 2°C.

上述の如き温度分布下にてミセラを最終温度−6℃まで
冷却したところ、その冷却所要時間は1.2時間にて結
晶化を完了し、結晶熱によるミセラ態の温度極大値も1
℃以下と小さく、得られた結晶は純度良く且つ粒径20
0乃至300μ(ミクロン)の均一粒径に揃い、品質、
性状、沢過分離性共に優れたものであった。
When the micella was cooled to a final temperature of -6°C under the temperature distribution described above, crystallization was completed in 1.2 hours, and the maximum temperature of the micellar state due to the heat of crystallization was 1.
℃ or less, the obtained crystals have good purity and a particle size of 20
Uniform particle size from 0 to 300μ (microns), quality,
It was excellent in both properties and separation properties.

表−3にパドル翼を取付けた本発明装置に依って得た分
別サル脂中融点結晶成分と液状油の性状と沢過分離性能
の値を示す。
Table 3 shows the properties of the fractionated monkey fat medium melting point crystal component and liquid oil obtained by the apparatus of the present invention equipped with paddle blades, and the values of the sludge separation performance.

表−3 実験例3 実験例1で用いた装置と同一の晶析装置を用いて、パー
ム油の3分割の2段目連続結晶化分別の場合についてバ
ッチ冷却晶析を行なった。
Table 3 Experimental Example 3 Using the same crystallizer as the apparatus used in Experimental Example 1, batch cooling crystallization was performed for the second stage continuous crystallization fractionation of palm oil divided into three parts.

60℃に加熱したパーム漂白原油1部(′重量)に対し
溶剤へキサン2.0部(重量)の割合で調合した40℃
の混合ミセラを供給速度6601/Hrの割合にて晶析
槽の片側上部の供給口よシ連続供給し、冷却コイル束の
回転15 r−pm%冷媒プラインの入口における温度
−12℃、冷媒プラインの出口における温度−8℃、冷
媒プラインの流量3000J/Hrで急速冷却を行ない
、晶析槽反対側下部の排出口より結晶化完了績の、温度
−6℃のスラリー管660//Hrの割合にて連続的に
排出した。晶析槽内における外周部及び軸付近のミセラ
の各温度はそれぞれ−1,4℃、−2,0℃であり、液
温分布差ΔT=0.6℃ではソ均一の温度分布断面を示
していた。
Palm bleaching crude oil heated to 60°C was prepared at a ratio of 1 part (by weight) to 2.0 parts (by weight) of solvent hexane at 40°C.
The mixed miscella was continuously supplied from the supply port at the top of one side of the crystallization tank at a supply rate of 6601/Hr, and the temperature at the inlet of the refrigerant line was -12°C at a rotation rate of 15 r-pm% of the cooling coil bundle. The rate of slurry pipe 660//Hr at a temperature of -6°C where rapid cooling was performed at a temperature of -8°C at the outlet of the refrigerant pline and a flow rate of 3000 J/Hr, and crystallization was completed from the outlet at the bottom on the opposite side of the crystallization tank. It was continuously discharged. The temperatures of the micella at the outer periphery and near the axis in the crystallization tank are -1.4°C and -2.0°C, respectively, and a liquid temperature distribution difference ΔT = 0.6°C shows a uniform temperature distribution cross section. was.

上述の如き、均一温度分布帯にて最終温度−6℃まで連
続冷却して得た結晶成分は、本発明装置により急速熱移
行冷却を行える故に、結晶化熱による温度極大がなく且
つ結晶べたつきがかくなり、結晶が締まって居り、純粋
で均一粒径に揃い、極めて沢過分離性も良く且つ品質、
性状の優れたものであった。
As described above, the crystalline components obtained by continuous cooling to a final temperature of -6°C in a uniform temperature distribution zone can be cooled by rapid thermal transfer using the apparatus of the present invention, so that there is no temperature maximum due to heat of crystallization and the crystals are not sticky. As a result, the crystals are compact, pure, uniform in particle size, extremely easy to separate, and of high quality.
It had excellent properties.

表−4に本発明装置によって得た分別結晶成分と液状油
の品質、性状並びに連続結晶化で得たスラリーのf過分
離性能と、本発明装置−こ依らず比較実験例で用いた装
置(壁冷却、かい型4枚羽根)と同一の装置を用い、連
続冷却で冷媒プラインの流量を半減(1i500A’/
Hr ) した場合によって得た結晶成分と液状油の品
質性状とf過分離性能の値を示す。
Table 4 shows the quality and properties of the fractionated crystal components and liquid oil obtained by the apparatus of the present invention, as well as the f over-separation performance of the slurry obtained by continuous crystallization, and the apparatus used in the comparative experimental examples, regardless of the apparatus of the present invention. Using the same equipment as wall cooling, paddle type 4 blades), the flow rate of the refrigerant pline was halved (1i500A'/
The quality characteristics of the crystal components and liquid oil obtained in each case and the values of f-overseparation performance are shown.

表−4Table-4

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す縦断面図、第2図は
、パドル翼を取付けた本発明の他の実施例を示す縦断面
図、第3図は第2図に示す本発明装置にスクレーバーを
取付けた状態を示す一部縦断面図、第4図は第2図のA
−A’線線断断面図第5図はパドル翼取付けによる液流
のモデル図、第6図は本発明による急速冷却所要時間と
結晶熱の除去効果を示す図、第7図は従来法による冷却
所要時間と結晶熱の極大を示す図である。 1・・・晶析槽、2・・・原料ミセラ供給口、3・・・
結晶化完了スラリー排出口、4・・回転軸、5・・・プ
ライン供給外管、5′・・・冷媒プライン入口、6・・
・戻りプライン集合内管、6′・・・戻りプラ・fン出
口、7・・ブランチ管、8・・冷却コイル束、8′・・
・冷却コイル管、9,10・・・温度指示計、11・・
・シール用パツキン、12・・・回転軸の内径、13・
・・冷却コイル束の外径、14・・・晶析槽の外径、1
4′・・・晶析槽の長さ、15・・・パドル翼、16 
 スクレーバー、16′・・・スクレーパーブラシ、1
7・・・スクレーパー取付はリング、d・・軸取付はピ
ッチ 特許出願人 旭電化工業株式会社 手  続  補  正  書 昭和56年11月27日 1、事件の表示 特願昭56−102109号 2、発明の名称 油脂の横型晶析装置 3、補正をする者 事件との関係 特許出願人 (038)旭電化工業株式会社 4、代理人 自発補正(特許出願臼から1年3ケ月以内の補正〕6、
補正の対象 明細書の特許請求の範囲の欄及び 発明の詳細な説明の欄。 7、補正の内容 (1)  特許請求の範囲を別紙添付の通)補正。 (2)m8頁11行の「様になしである」を「様にしで
ある」と補正。 (3)第8頁下から2行の「油脂類」を「油脂類と溶剤
の混合物」と補正。 (4)第17頁下から10行の「バッチ」を削除。 (5)第18頁1〜2行の「晶析槽内における」を「晶
析槽内中央部における」と補正。 (6)第18頁下から4〜3行の「冷媒ブラインの流量
を半減(1500l /Hr ) Jを「原料ミセラの
流量を半減(33G、//Hr  ) Jと補正。 以    上 2、特許請求の範囲 (1)晶析槽内に、回転軸を中心として冷却コイル管を
渦巻状に巻いて形成した複数個の冷却コイル束を、それ
らの表面を何れも回転軸に対して直交させて所定のピッ
チで以て取付けた回転軸を回転自在に装備すると共に、
上記冷却コイル束それぞれの外周部から内周部に向けて
上記冷却コイル管内に冷媒を連続的に供給し得るように
なし、上記晶析槽内に供給された被冷却体を冷却するこ
とを特徴とする油脂の横型晶析装置。 (2)上記冷却コイル束の表面に沿ってインペラ形状の
パドル翼を上記回転軸に取付け、上記冷却コイル東間隙
間における被冷却体の液流を高めるようKなした、特許
請求の範囲第(1)項記載の油脂の横型晶析装置。 (3)冷却コイル束の表面に沿って、上記回転軸の回転
と連動しないスクレーバーを設け、連続的に上記冷却コ
イル管表面のスケール除去を行なわすようになした特許
請求の範囲第(1)項または第(2)項記載の油脂の横
型晶析装置。 (4)上記ピッチが801nM乃至300間である、特
許請求の範囲第(1)項記載の油脂の横型晶析装置。 (5)晶析槽の片側上部に供給口を、晶析槽の反対側下
部に排出口を設け、上記供給口よシ被冷却体を連続的に
供給し一上記排出口よシ結晶化完了スラリーを連続的に
取出すようになした特許請求の範囲第(1)〜(3)項
の何れかに記載の油脂の横型晶析装置。
FIG. 1 is a longitudinal cross-sectional view showing one embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view showing another embodiment of the present invention with paddle blades attached, and FIG. A partial longitudinal sectional view showing the state in which the scraper is attached to the invented device, Figure 4 is A of Figure 2.
-A' line cross-sectional view Figure 5 is a model diagram of liquid flow by attaching a paddle blade, Figure 6 is a diagram showing the required rapid cooling time and crystal heat removal effect according to the present invention, and Figure 7 is a diagram according to the conventional method. FIG. 3 is a diagram showing the required cooling time and the maximum of crystal heat. 1... Crystallization tank, 2... Raw material micella supply port, 3...
Crystallization completed slurry discharge port, 4...rotating shaft, 5...pline supply outer pipe, 5'...refrigerant pline inlet, 6...
・Return pline collection inner pipe, 6'...Return pline fn outlet, 7...Branch pipe, 8...Cooling coil bundle, 8'...
・Cooling coil tube, 9, 10...Temperature indicator, 11...
・Packskin for sealing, 12... Inner diameter of rotating shaft, 13.
... Outer diameter of the cooling coil bundle, 14... Outer diameter of the crystallization tank, 1
4'... Length of crystallization tank, 15... Paddle blade, 16
Scraper, 16'...Scraper brush, 1
7...Scraper mounting is by ring, D...shaft mounting is by pitch Patent applicant Asahi Denka Kogyo Co., Ltd. Procedures Amendment Document November 27, 1981 1, Incident indication patent application No. 102109/1982 2, Name of the invention: Horizontal crystallizer for oils and fats 3. Relationship with the person making the amendment: Patent applicant (038) Asahi Denka Kogyo Co., Ltd. 4, agent's voluntary amendment (amendment made within 1 year and 3 months from the filing of the patent application) 6 ,
Claims column and Detailed Description of the Invention column of the specification to be amended. 7. Contents of the amendment (1) Amendment of the scope of claims as attached. (2) On page m8, line 11, "Sama ni nashi de deru" was corrected to "sama ni shishida deru." (3) “Oils and fats” in the bottom two lines of page 8 have been corrected to “mixtures of oils and fats and solvents.” (4) Delete 10 lines of “Batch” from the bottom of page 17. (5) On page 18, lines 1 and 2, "inside the crystallization tank" was corrected to "in the center of the crystallization tank." (6) In lines 4-3 from the bottom of page 18, "Refrigerant brine flow rate is halved (1500l/Hr) J" is corrected to "Raw material miscella flow rate is halved (33G, //Hr) J." Above 2, patent Claims (1) A plurality of cooling coil bundles formed by spirally winding cooling coil tubes around a rotational axis in a crystallization tank, all of whose surfaces are perpendicular to the rotational axis. Equipped with rotatable shafts mounted at a predetermined pitch,
A refrigerant can be continuously supplied into the cooling coil tubes from the outer periphery to the inner periphery of each of the cooling coil bundles, thereby cooling the object to be cooled supplied into the crystallization tank. A horizontal crystallizer for oils and fats. (2) Impeller-shaped paddle blades are attached to the rotating shaft along the surface of the cooling coil bundle to increase the liquid flow of the object to be cooled in the gap between the east of the cooling coils. ) Horizontal crystallizer for oils and fats as described in item ). (3) A scraper that does not operate in conjunction with the rotation of the rotating shaft is provided along the surface of the cooling coil bundle to continuously remove scale from the surface of the cooling coil tube. The horizontal crystallizer for oils and fats according to item (2) or item (2). (4) The horizontal crystallizer for fats and oils according to claim (1), wherein the pitch is between 801 nM and 300 nM. (5) A supply port is provided at the top of one side of the crystallization tank, and a discharge port is provided at the bottom of the opposite side of the crystallization tank, and the object to be cooled is continuously supplied through the supply port, and crystallization is completed through the discharge port. A horizontal crystallizer for fats and oils according to any one of claims (1) to (3), wherein the slurry is continuously taken out.

Claims (5)

【特許請求の範囲】[Claims] (1)晶析槽内に、回転軸を中心として冷却コイル管を
渦巻状に巻いて形成した複数個の冷却コイル束を、それ
らの表面を何れも回転軸tこ対して直交させて所定のピ
ッチで以て取付けた回転軸を回転自在に装備すると共に
、上記冷却コイル束それぞれの外周部から内周部に向け
て上記冷却コイ・ル管内(こ冷媒を連続的に供給し得る
ようにカし、上記晶析槽山番こ供給された被冷却体を冷
却することを特徴とする油脂の横型晶析装置。
(1) A plurality of cooling coil bundles formed by spirally winding cooling coil tubes around the rotation axis are placed in a crystallization tank with their surfaces perpendicular to the rotation axis t. Rotating shafts mounted at pitches are rotatably provided, and the cooling coil bundles are provided with a shaft extending from the outer circumference to the inner circumference of each of the cooling coil bundles (so that refrigerant can be continuously supplied thereto). A horizontal crystallizer for fats and oils, characterized in that the object to be cooled supplied to the crystallizer tank is cooled.
(2)上記冷却コイル束の表面に沿ってインペラ形状の
パドル翼を上記回転軸に取付け、上記冷却コイル束隙間
間1こおける被冷却体の液流を高めるよう番こなした、
特許請求の範囲第(1’)項記載の油脂の横型晶析装置
(2) impeller-shaped paddle blades are attached to the rotating shaft along the surface of the cooling coil bundle, and arranged to increase the liquid flow of the object to be cooled in one gap between the cooling coil bundles;
A horizontal crystallizer for fats and oils according to claim (1').
(3)冷却コイル束の表面をこ沿って、上記回転軸の回
転と連動しないスクレーパーを設け、連続的に上記冷却
コイル管表面のスケール除去を行なわすようになした特
許請求の範囲第(り1項または第(2)項記載の油脂の
横型晶析装置。
(3) A scraper that does not operate in conjunction with the rotation of the rotating shaft is provided along the surface of the cooling coil bundle to continuously remove scale from the surface of the cooling coil tube. The horizontal crystallizer for fats and oils according to item 1 or item (2).
(4)上記ピッチが80龍乃至300mmである、特許
請求の範囲第(1>項記載の油脂の横型晶析装置。
(4) The horizontal crystallizer for fats and oils according to claim 1, wherein the pitch is from 80 mm to 300 mm.
(5)晶析槽の片側上部に供給口を、晶析槽の反対側下
部に排出口を設け、」二記供給口より被冷却体を連続的
に供給し上記排出口より結晶化完了スラリーを連続的に
取出すようになした特許請求の範囲第(1)〜(3)項
の何れかに記載の油脂の横型晶析装置。
(5) A supply port is provided at the top of one side of the crystallization tank, and a discharge port is provided at the bottom of the opposite side of the crystallization tank, and the object to be cooled is continuously supplied from the second supply port, and the crystallized slurry is made from the above discharge port. A horizontal crystallizer for fats and oils according to any one of claims (1) to (3), which is configured to continuously take out oil and fat.
JP10210981A 1981-06-30 1981-06-30 Oil and fat horizontal crystallizer Granted JPS582397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10210981A JPS582397A (en) 1981-06-30 1981-06-30 Oil and fat horizontal crystallizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10210981A JPS582397A (en) 1981-06-30 1981-06-30 Oil and fat horizontal crystallizer

Publications (2)

Publication Number Publication Date
JPS582397A true JPS582397A (en) 1983-01-07
JPS6365120B2 JPS6365120B2 (en) 1988-12-14

Family

ID=14318628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10210981A Granted JPS582397A (en) 1981-06-30 1981-06-30 Oil and fat horizontal crystallizer

Country Status (1)

Country Link
JP (1) JPS582397A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030295A (en) * 2000-07-18 2002-01-31 Kanegafuchi Chem Ind Co Ltd Fractionating method for edible oil and fat
KR101074831B1 (en) 2010-11-15 2011-10-19 (주) 라미나 Reactor capable of cooler injection with no power

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030295A (en) * 2000-07-18 2002-01-31 Kanegafuchi Chem Ind Co Ltd Fractionating method for edible oil and fat
KR101074831B1 (en) 2010-11-15 2011-10-19 (주) 라미나 Reactor capable of cooler injection with no power

Also Published As

Publication number Publication date
JPS6365120B2 (en) 1988-12-14

Similar Documents

Publication Publication Date Title
Timms Fractionation
KR101486303B1 (en) Process for producing a palm oil product
JPS6138958B2 (en)
JPS582397A (en) Oil and fat horizontal crystallizer
US9051533B2 (en) Continuous fractionation of triglyceride oils
US4161484A (en) Fractionation of glyceride oils by cooling and under homogeneous agitation
US2592224A (en) Method of making margarine and the resulting product
US2823242A (en) Process and apparatus for crystal purification and separation
EP3425034A1 (en) Crystallizer, fractionation system for edible oils and fats and method for fractionation of edible oils and fats
EP3227418B1 (en) Continuous process for dry fractionation of glyceride oils
US4228089A (en) Method and apparatus for fractional crystallization separation
US3395023A (en) Preparation of liquid shortening
EP0366774A1 (en) Method and plant for production of a fat product based on milk fat.
EP2395069B1 (en) Dry oil-and-fat separation method
AU2021234620B2 (en) Dry fractionation of edible oil
JPH069465B2 (en) Hard butter manufacturing method
US3245801A (en) Process for preparing fatty compositions
FI63055B (en) PROFESSIONAL EFFECTIVENESS FOR AVAILABILITY OF FAST PARTICLE FORMATED MATERIAL FREON FETTMATERIAL
US3568463A (en) Apparatus for fatty materials
EP0354433A2 (en) Process for separating substances by cool chrystallization
GB2180253A (en) Method and plant for cooling of fatty oils
JPH11106780A (en) Solvent fractionation method for oil and fat
US2296456A (en) Separation of different melting point materials
JP2001505582A (en) Method for crystallizing D-α-tocopheryl succinate
JP7255758B2 (en) Crystallization method of fats and oils