JPS5823836B2 - Cooling system - Google Patents

Cooling system

Info

Publication number
JPS5823836B2
JPS5823836B2 JP9416476A JP9416476A JPS5823836B2 JP S5823836 B2 JPS5823836 B2 JP S5823836B2 JP 9416476 A JP9416476 A JP 9416476A JP 9416476 A JP9416476 A JP 9416476A JP S5823836 B2 JPS5823836 B2 JP S5823836B2
Authority
JP
Japan
Prior art keywords
workpiece
furnace
jig
cooling
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9416476A
Other languages
Japanese (ja)
Other versions
JPS5319114A (en
Inventor
田中荘二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9416476A priority Critical patent/JPS5823836B2/en
Publication of JPS5319114A publication Critical patent/JPS5319114A/en
Publication of JPS5823836B2 publication Critical patent/JPS5823836B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【発明の詳細な説明】 本発明は、被加工物の加熱加工を行なう炉に設置して加
熱加工後の被加工物の冷却を行なう冷却装置に関し、特
に、無酸素状態で加熱加工がなされる被加工物に使用し
て好適なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device installed in a furnace for heat-processing a workpiece to cool the workpiece after heat-processing. It is suitable for use in workpieces.

一般に、炉により被加工物の加熱加工を行なう際には、
その加工サイクルを短縮するために加熱加工後の被加工
物ヲ冷却することが行なわれているが、加熱加工時にお
ける被加工物が酸化を嫌う場合には、無酸素状態で加熱
加工を行なう必要があり、このために真空熱処理炉や真
空ブレージング炉等が使用されている。
Generally, when heating a workpiece in a furnace,
In order to shorten the processing cycle, the workpiece is cooled after heat processing, but if the workpiece does not like oxidation during heat processing, it is necessary to perform heat processing in an oxygen-free condition. For this purpose, vacuum heat treatment furnaces, vacuum brazing furnaces, etc. are used.

このような被加工物によると、加熱加工後の冷却も無酸
素状態で行なわなければならず、上述の真空熱処理炉や
真空ブレージング炉等に使用されている従来の冷却装置
は、その概略構造を表わす第2図a、b及びCに示すよ
うなものである。
According to such workpieces, cooling after heating processing must also be performed in an oxygen-free state, and the conventional cooling devices used in the above-mentioned vacuum heat treatment furnaces, vacuum brazing furnaces, etc. have a rough structure. As shown in FIGS. 2a, b and c.

すなわち、第2図aは酸素を含まない冷却済みのガス、
例えばアルゴン等の不活性ガスや水素ガス等を冷却ガス
導入管1aから開閉弁2aを介して炉3a内に導入する
一方、冷却器4aから循環パイプ5ak経て熱交換器6
aに送給される冷却液により熱交換器6aの周囲のガス
が冷却され、送風機7aによって炉3a内に設置された
被加工物8aに向けてこの冷却されたガスを吹き付ける
ようにしたものである。
That is, Fig. 2a shows a cooled gas that does not contain oxygen;
For example, inert gas such as argon, hydrogen gas, etc. are introduced into the furnace 3a from the cooling gas introduction pipe 1a via the on-off valve 2a, while the heat exchanger 6 is introduced from the cooler 4a through the circulation pipe 5ak.
The gas around the heat exchanger 6a is cooled by the cooling liquid supplied to the furnace 3a, and the cooled gas is blown by the blower 7a toward the workpiece 8a installed in the furnace 3a. be.

しかし、実際の装置においては被加工物8aの周囲に加
熱用ヒータ、断熱材、或いは被加工物8aの支持部材(
ジグ)等が配置されており、このままでは被加工物8a
を効率よく冷却することができないので、被加工物8a
の冷却時にこれらの部材を後退させ、送風機7aからの
冷却ガスが直接被加工物8aに吹き付けられるようにし
たものもあるが、機構が複雑化する欠点がある。
However, in an actual device, a heater, a heat insulating material, or a support member for the workpiece 8a (
jig) etc. are placed, and if it remains as it is, the workpiece 8a
The workpiece 8a cannot be cooled efficiently.
There is also a method in which these members are moved back during cooling of the workpiece 8a so that the cooling gas from the blower 7a is directly blown onto the workpiece 8a, but this has the disadvantage of complicating the mechanism.

又、第2図すは上述の例と同様に酸素を含まない冷却済
みのガスを冷却ガス導入管1bから開閉弁2bt−介し
て炉3b内に導入する一方、炉3bの周囲に冷却液を流
した管路9bを多数配設して炉3b全体を冷却するよう
にしたものであり、構造が簡単であるので小形の炉や試
験用の炉等に多用されているが、被加工物8bを効率よ
く冷却することができない欠点を有している。
Similarly to the above-mentioned example, FIG. 2 shows that a cooled gas not containing oxygen is introduced into the furnace 3b from the cooling gas introduction pipe 1b through the on-off valve 2bt, while a cooling liquid is supplied around the furnace 3b. A large number of flow pipes 9b are arranged to cool the entire furnace 3b, and since the structure is simple, it is often used in small furnaces, test furnaces, etc., but the workpiece 8b It has the disadvantage that it cannot be cooled efficiently.

更に、第2図Cは仕切り弁10cを介して炉3cに連通
ずる冷却室11cを設けたものであり、加熱加工後の被
加工物8cは冷却室11cに搬出されるので炉3cの連
続操業が可能となり、加工サイクルの短縮を図ることが
できる。
Furthermore, FIG. 2C is provided with a cooling chamber 11c that communicates with the furnace 3c through a gate valve 10c, and since the workpiece 8c after heat processing is carried out to the cooling chamber 11c, continuous operation of the furnace 3c is possible. This makes it possible to shorten the machining cycle.

反面、本例においては作業床面積或いは装置の占有空間
が少なくとも被加工物8cの二倍以上必要であり、従っ
て大形の被加工物8cの場合には装置全体が極端に大形
化してしまう欠点があった。
On the other hand, in this example, the working floor area or the space occupied by the apparatus is required to be at least twice as large as the workpiece 8c, and therefore, in the case of a large workpiece 8c, the entire apparatus becomes extremely large. There were drawbacks.

このように、無酸素状態で被加工物の加熱加工を行なう
真空熱処理炉や真空ブレージング炉等に使用されている
従来の冷却装置は、上述したようにガスを媒体として被
加工物の冷却を行なっていたため、効率よく冷却するこ
とができず、これは特に被加工物が大形となった場合に
大きな欠点となって表われる。
In this way, conventional cooling devices used in vacuum heat treatment furnaces, vacuum brazing furnaces, etc. that heat workpieces in an oxygen-free state cool the workpieces using gas as a medium, as described above. This makes it impossible to cool the workpiece efficiently, and this becomes a major drawback especially when the workpiece is large.

つまり、熱伝導率が低いのがガスの一般的な特性であり
、しかも被加工物が大形化するに従ってその表面積に比
して熱容量が大きくなってくる傾向があるためである。
In other words, it is a general characteristic of gas that the thermal conductivity is low, and furthermore, as the size of the workpiece increases, the heat capacity tends to increase relative to its surface area.

又、第1図に示すように二枚以上の被加工物1゜1′ヲ
炉2内で重ね合わせて適当なジグ3,3′で固定する一
方、アルゴンや水素等の無酸素状態のガス下でヒータ4
,4′によりこの被加工物1,1′を加熱し、これらの
被加工物1,1′の相互拡散によって接合を行なう炉中
圧接は、金属とセラミック等との溶接し難い異種材料の
接合や、チタン或いはジルコニウム等の高級金属のクラ
ツド鋼板を製造するのに特に適していることが認識され
、その将来性が太いに期待されているが、この炉中圧接
も被加工物1.I’a互の接合(加熱加工)を無酸素状
態下で行なう必要があるため、接合後の被加工物1,1
′に対して行なう冷却効率いかんが加工サイクルの短縮
ひいては炉中圧接の工業的実用化に大きく関与してくる
重要な問題の−っである。
In addition, as shown in Fig. 1, two or more workpieces 1゜1' are stacked in the furnace 2 and fixed with appropriate jigs 3, 3', while oxygen-free gas such as argon or hydrogen is Heater 4 below
, 4' to heat the workpieces 1, 1' and join them by mutual diffusion. Furnace pressure welding is a method for joining dissimilar materials that are difficult to weld, such as metal and ceramic. It has been recognized that it is particularly suitable for manufacturing clad steel plates made of high-grade metals such as titanium or zirconium, and there are great expectations for its future potential. Since it is necessary to bond I'a to each other (heat processing) under an oxygen-free condition, the workpieces 1 and 1 after bonding must be
The efficiency of cooling is an important issue that greatly affects the shortening of the processing cycle and the commercialization of furnace pressure welding.

この炉中圧接においては、被加工物1,1とほぼ同温度
になるジグ3,3′が熱保有物として存在し、多くの場
合これが被加工物1,1の上下二面を覆い隠す状態で炉
2内に配置されているので、被加工物1,1に対する冷
却効率がいっそう悪化しており、これらの炉における加
熱加工後の被加工物の冷却、特に大形の被加工物を効率
よく冷却できる冷却装置の開発が望まれていた。
In this furnace pressure welding, jigs 3 and 3', which have almost the same temperature as the workpieces 1 and 1, exist as heat retainers, and in many cases, these jigs cover the upper and lower surfaces of the workpieces 1 and 1. Since the workpieces 1 and 1 are placed in the furnace 2, the cooling efficiency for the workpieces 1 and 1 is further deteriorated. There was a desire to develop a cooling device that could provide good cooling.

本発明は、被加工物に直接接触しているジグを冷却する
ことによって、ジグを媒体として被加工物を効果的に冷
却できることに着目して、こうした従来のかかる要求に
応えたものであり、無酸素状態下の炉において加熱加工
を行なう被加工物に対して加熱加工後の冷却を効率よく
行なうことができる冷却装置を提供することを目的とし
、特に炉中圧接における大形の被加工物を効率よく冷却
しようとするものである。
The present invention addresses these conventional demands by focusing on the fact that by cooling the jig that is in direct contact with the workpiece, the workpiece can be effectively cooled using the jig as a medium. The purpose of the present invention is to provide a cooling device that can efficiently cool workpieces subjected to heat processing in an oxygen-free furnace after heat processing. The aim is to efficiently cool the

この目的を達成するための本発明の構成は、被加工物を
加熱加工する炉の内部に前記被加工物を支持するジグを
設置し、このジグ及び前記被加工物を冷却する冷却ガス
の通路を当該ジグ内の前記被加工物と対向する方向及び
前記炉内と連通ずるようにこれと交差する方向に穿設し
、冷却し終えた前記冷却ガスを前記炉の外部へ導く炉内
ガス排出管を前記炉に装着したことを特徴とするもので
あり、以下、本発明を炉中圧接において応用したー具体
例について、この具体例の概略構造を表わす第3図を参
照しながら詳細に説明する。
In order to achieve this object, the present invention has a structure in which a jig for supporting the workpiece is installed inside a furnace for heating and processing the workpiece, and a cooling gas passage for cooling the jig and the workpiece. A furnace gas discharge is provided in the jig in a direction facing the workpiece and in a direction intersecting with the workpiece so as to communicate with the inside of the furnace, and guides the cooling gas that has been cooled to the outside of the furnace. A specific example in which the present invention is applied to pressure welding in a furnace will be described in detail with reference to FIG. 3 showing the schematic structure of this specific example. do.

炉21中には、互いに他方に向けて相対移動自在の上下
一対からなる加圧ジグ22a、22bが取り付けられて
おり、被加工物23はこの加圧ジグ22 a t 22
bに加圧挾持されて炉21中に固定された状態となっ
ている。
In the furnace 21, a pair of pressurizing jigs 22a and 22b, consisting of an upper and a lower member, which are movable relative to each other toward the other, are attached.
b and is clamped under pressure and fixed in the furnace 21.

加圧ジグ22 a 、22b内には、この加圧ジグ22
,22bの炉21外に突出した一端から被加工物23に
向けて冷却ガス第一通路24が穿設されており、更に第
3図aのA−A矢視線方向の断面を表わす第3図すに示
すように、この冷却ガス第一通路24から直角に延びて
冷却ガス第一通路24と炉21内とを連通ずる冷却ガス
第二通路25が放射状に穿設されている。
This pressure jig 22 is inside the pressure jig 22a, 22b.
, 22b, a first cooling gas passage 24 is bored from one end protruding outside the furnace 21 toward the workpiece 23, and FIG. As shown in the figure, a second cooling gas passage 25 is radially bored extending perpendicularly from the first cooling gas passage 24 and communicating the first cooling gas passage 24 with the inside of the furnace 21 .

この加圧ジグ22a、22bの一端の冷却ガス第一通路
24には炉21外に設置されたガス冷却器26に連通し
、可動シールを具えるかもしくは可撓性の冷却ガス導入
管27が開閉弁28を介して接続している。
The first cooling gas passage 24 at one end of the pressurizing jigs 22a, 22b is connected to a gas cooler 26 installed outside the furnace 21, and has a movable seal or a flexible cooling gas introduction pipe 27. They are connected via an on-off valve 28.

又、炉21内とガス冷却器26とを接続する炉内ガス排
出管29には、開閉弁30及び炉21内のガスをガス冷
却器26に向けて吸引すると共にこれを再び加圧ジグ2
2a。
Further, an in-furnace gas exhaust pipe 29 that connects the inside of the furnace 21 and the gas cooler 26 is provided with an on-off valve 30 and a pressurizing jig 2 that sucks the gas in the furnace 21 toward the gas cooler 26 and returns it to the gas cooler 26 .
2a.

22b内の冷却ガス第二通路25から炉21内に導入さ
せるバキュームポンプ31が取り付けられている。
A vacuum pump 31 is attached to introduce the cooling gas into the furnace 21 from the second passage 25 in the second passage 22b.

更に、加圧ジグ22a 、22bの外周面にはバキュー
ムポンプ31によりガス冷却器26、冷却ガス導入管2
7、加圧ジグ22 a 、22 b内の冷却ガス第一通
路24を経て冷却ガス第二通路25から炉21内に吹き
出される冷却ガスが被加工物23の外周面に沿い他方の
加圧ジグ22b。
Furthermore, a gas cooler 26 and a cooling gas introduction pipe 2 are installed on the outer peripheral surfaces of the pressurizing jigs 22a and 22b by a vacuum pump 31.
7. Cooling gas blown into the furnace 21 from the second cooling gas passage 25 through the first cooling gas passage 24 in the pressurizing jigs 22 a and 22 b pressurizes the other side along the outer peripheral surface of the workpiece 23 Jig 22b.

22aに向けて流れるように案内板32が固設されてい
る。
A guide plate 32 is fixedly provided so as to flow toward 22a.

被加工物23の接合(加熱加工)が終了すると開閉弁2
8,30が開き、同時にバキュームポンプ31が作動し
てガス冷却器26により冷却された酸素を含まないガス
が加圧ジグ22 a t 22 b内の冷却ガス第−及
び第二通路24.25を通過する際に、この部分での冷
却ガスの流速が非常に大きくなるため表面熱伝達係数が
大きくなり、この加圧ジグ22a、22bを効果的に冷
却すると共にこの冷却ガスは案内板32により冷却ガス
第二通路25から被加工物23の外周面に沿うように炉
21内に流出して被加工物23を周りから冷却する。
When the welding (heat processing) of the workpiece 23 is completed, the on-off valve 2
8 and 30 are opened, and at the same time, the vacuum pump 31 is activated, and the oxygen-free gas cooled by the gas cooler 26 flows through the cooling gas first and second passages 24 and 25 in the pressurizing jig 22 a t 22 b. When passing through, the flow velocity of the cooling gas in this part becomes very high, so the surface heat transfer coefficient becomes large, and the pressure jigs 22a and 22b are effectively cooled, and the cooling gas is cooled by the guide plate 32. The gas flows out from the second passage 25 into the furnace 21 along the outer peripheral surface of the workpiece 23 and cools the workpiece 23 from its surroundings.

炉21内に吹き出た冷却済みのガスはバキュームポンプ
31により炉内ガス排出管29からガス冷却器26に送
給され、再び加圧ジグ22a。
The cooled gas blown into the furnace 21 is fed by the vacuum pump 31 from the furnace gas discharge pipe 29 to the gas cooler 26, and then again to the pressurizing jig 22a.

22b及び被加工物23に向けて循環供給される。22b and the workpiece 23.

前記冷却ガスにより加圧ジグ22a 、22bの温度が
下がると、この加圧ジグ22a、22bは加圧ジグ22
a、22bと被加工物23との接触面から被加工物23
の熱を直接的に吸収し、被加工物23の温度をすみやか
に下げる。
When the temperature of the pressurizing jigs 22a, 22b decreases due to the cooling gas, the pressurizing jigs 22a, 22b
a, 22b and the workpiece 23 from the contact surface with the workpiece 23
directly absorbs the heat, and quickly lowers the temperature of the workpiece 23.

このように本具体例では、被加工物23を冷却するのに
、加圧ジグ22a、22bを冷却して加圧ジグ22a
、22bと被加工物23との接触面での熱伝導を利用し
ているため、加圧ジグ22a。
In this specific example, in order to cool the workpiece 23, the pressure jigs 22a and 22b are cooled and the pressure jig 22a is cooled.
, 22b and the workpiece 23 because the heat conduction at the contact surface is utilized.

22bkより効果的に冷却するために冷却ガス第−及び
第二通路24.25を小径にすると共にこれを多数加圧
ジグ22a 、22b内に設け、更に加圧ジグ22a
、22bや被加工物23の形状に合わせて最適の形状に
穿設し、ここを流れる冷却ガスの流速を太きくし表面熱
伝達係数を大きくすることが賢明である。
In order to cool the cooling gas more effectively than 22bk, the diameters of the first and second cooling gas passages 24, 25 are made smaller, and a large number of them are provided in the pressurizing jigs 22a and 22b.
, 22b and the workpiece 23, and it is wise to increase the flow rate of the cooling gas flowing therethrough to increase the surface heat transfer coefficient.

第4図は、上記具体例における加圧ジグ22a。FIG. 4 shows a pressurizing jig 22a in the above specific example.

22b内の冷却ガス第−及び第二通路24 、25の部
分を被加工物23′の形状に対応させて変形した本発明
による冷却装置の他の一具体例の概略構造を示している
This figure shows a schematic structure of another example of the cooling device according to the present invention, in which the first and second cooling gas passages 24 and 25 in the cooling gas passage 22b are modified to correspond to the shape of the workpiece 23'.

本具体例では、複数組の被加工物23′ヲ一度に接合し
ようとするものであり、被加工物23′ヲ一定間隔で支
持固定する取り付はジグ33には、被加工物23′によ
り形成される溝状の通路34と炉内とを連通ずる冷却ガ
ス第二通路25が穿設されており、この取り付はジグ3
3は加圧ジグ33は加圧ジグ22a’、22b’に加圧
挾持された状態となっている。
In this specific example, multiple sets of workpieces 23' are to be joined at the same time, and the jig 33 is designed to support and fix the workpieces 23' at regular intervals. A second cooling gas passage 25 is bored through which the groove-shaped passage 34 to be formed communicates with the inside of the furnace, and this installation is done using a jig 3.
3, the pressurizing jig 33 is in a state of being pressurized and clamped by the pressurizing jigs 22a' and 22b'.

加圧ジグ22a’。22b′内には取り付はジグ33に
設けた接続口35を介して取り付はジグ33内の被加工
物23′により形成される通路34に連通ずる冷却ガス
第一通路24′が穿設されている。
Pressure jig 22a'. A first cooling gas passage 24' is bored in 22b' and communicates with a passage 34 formed by the workpiece 23' in the mounting jig 33 through a connection port 35 provided in the mounting jig 33. has been done.

本具体例では、前記具体例のように加圧ジグ22a’、
22b’内に冷却ガス第二通路25を設けていないが、
加圧ジグ22a。
In this specific example, as in the above specific example, the pressure jig 22a',
Although the cooling gas second passage 25 is not provided in 22b',
Pressure jig 22a.

22b′の冷却を促進させるために、これと同じ冷却ガ
ス第二通路を設けてもよい。
A second, identical cooling gas passage may be provided to facilitate cooling of 22b'.

冷却ガスは加圧ジグ22a’、22b’内冷却ガス第一
通路24′から取り付はジグ33の接続口35を介して
、被加工物23′間の通路34及び冷却ガス第二通路2
5′から炉内に排出される。
The cooling gas is supplied from the first cooling gas passage 24' in the pressurizing jigs 22a' and 22b' to the passage 34 between the workpieces 23' and the second cooling gas passage 2 through the connection port 35 of the mounting jig 33.
5' into the furnace.

従って、被加工物23′は冷却ガスによる冷却のほかに
、この被加工物23′より低温となる加圧ジグ22a。
Therefore, in addition to being cooled by the cooling gas, the pressurizing jig 22a has a lower temperature than the workpiece 23'.

22b′により取り付はジグ33を介して直接的に加圧
ジグ22a’、22b’と取り付はジグ33、被加工物
23′との接触部から被加工物23′の熱を吸収する。
The mounting jig 22b' directly absorbs the heat of the workpiece 23' through the contact portion between the pressure jigs 22a' and 22b' and the mounting jig 33 and the workpiece 23'.

上述の具体例では、炉中圧接における場合について本発
明による冷却装置を応用したが、真空熱処理炉や真空ブ
ルージング炉等のようなものについては、これらの炉中
で被加工物を支持するジグに上述した冷却ガス第−及び
第二通路を穿設し、まずジグの温度を被加工物の温度よ
り下げて、このジグと被加工物との接触部分から被加工
物の熱をジグに吸収させるようにすれば上記具体例と全
く同じような効果を期待することが可能である。
In the above-mentioned specific example, the cooling device according to the present invention was applied to pressure welding in a furnace, but in the case of a vacuum heat treatment furnace, a vacuum bruising furnace, etc., a jig that supports the workpiece in these furnaces may be used. First, the temperature of the jig is lowered than that of the workpiece, and the heat of the workpiece is absorbed into the jig from the contact area between the jig and the workpiece. If this is done, it is possible to expect exactly the same effect as in the above specific example.

従来のように、大きな体積を有する被加工物やこれを支
持するジグ等をそれらの外周から冷却ガスによって冷却
しても効率よく冷却できないが、このように本発明によ
ると、一般的に被加工物より大きいジグ内に冷却ガスを
流してここを流れる冷却ガスの流速を高めその表面熱伝
達係数を大きくしているので、このジグを少ないガス量
でも大きな除熱を行なうことができ、又、被加工物はジ
グの温度降下により被加工物とジグとの接触部からその
熱をジグに吸収されるので、従来のように冷却ガスを媒
体とせずに固体同志の直接的な熱伝導が行なわれ、被加
工物をすみやかに冷却することが可能である。
Conventionally, it is not possible to efficiently cool a large-volume workpiece or a jig that supports it by using cooling gas from the outer periphery of the workpiece, but according to the present invention, it is possible to The cooling gas is passed through a larger jig, increasing the flow rate of the cooling gas and increasing its surface heat transfer coefficient, so this jig can remove a large amount of heat even with a small amount of gas. As the temperature of the workpiece decreases, the heat is absorbed by the jig from the contact area between the workpiece and the jig, so direct heat conduction between solids occurs without using cooling gas as a medium as in the past. This makes it possible to quickly cool down the workpiece.

又、本発明の冷却装置は従来の冷却装置と比較すると構
造が単純となり、その製作コストも低床となる等の効果
がある。
Furthermore, the cooling device of the present invention has a simpler structure than conventional cooling devices, and has advantages such as lower manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炉中圧接を説明する概略構造図であり、第2図
a、b、cは従来の冷却装置を説明する概略構造図であ
る。 又、第3図a、bは本発明による冷却装置の一具体例を
示す概略構造図であり、第4図は本発明による冷却装置
の他の具体例の被加工物及びジグの部分を示す概略構造
図である。 図面中、21は炉中圧接における炉、22a。 22b 、22a’、22b’は加圧ジグ、23.23
’は被加工物、24.24’は冷却ガス第一通路、25
,25’は冷却ガス第二通路、26はガス冷却器、29
は炉内ガス排出管、31はバキュームポンプ、32は案
内板、33は被加工物の取り付はジグ、34は被加工物
によって形成される通路、35は冷却ガス第一通路24
′と通路34とを連通ずる接続口である。
FIG. 1 is a schematic structural diagram illustrating pressure welding in a furnace, and FIGS. 2 a, b, and c are schematic structural diagrams illustrating a conventional cooling device. Further, FIGS. 3a and 3b are schematic structural diagrams showing one specific example of the cooling device according to the present invention, and FIG. 4 shows the workpiece and jig portion of another specific example of the cooling device according to the present invention. It is a schematic structural diagram. In the drawing, 21 is a furnace in pressure welding in a furnace, and 22a. 22b, 22a', 22b' are pressure jigs, 23.23
' is the workpiece, 24.24' is the first cooling gas passage, 25
, 25' is a second cooling gas passage, 26 is a gas cooler, 29
31 is a vacuum pump, 32 is a guide plate, 33 is a jig for mounting the workpiece, 34 is a passage formed by the workpiece, 35 is the cooling gas first passage 24
' is a connection port that communicates with the passage 34.

Claims (1)

【特許請求の範囲】[Claims] 1 被加工物を加熱加工する炉の内部に前記被加工物を
支持するジグを設置し、このジグ及び前記被加工物を冷
却する冷却ガスの通路を幽該ジグ内の前記被加工物と対
向する方向及び前記炉内と連通ずるようにこれと交差す
る方向に穿設し、冷却し終えた前記冷却ガスを前記炉の
外部へ導く炉内ガス排出管を前記炉に装着したことを特
徴とする冷却装置。
1. A jig that supports the workpiece is installed inside a furnace in which the workpiece is heat-processed, and a cooling gas passage for cooling the jig and the workpiece is arranged opposite to the workpiece inside the jig. The furnace is equipped with a furnace gas exhaust pipe which is bored in the direction of the furnace and in the direction that intersects with the inside of the furnace so as to communicate with the inside of the furnace, and guides the cooling gas that has been cooled to the outside of the furnace. cooling device.
JP9416476A 1976-08-07 1976-08-07 Cooling system Expired JPS5823836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9416476A JPS5823836B2 (en) 1976-08-07 1976-08-07 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9416476A JPS5823836B2 (en) 1976-08-07 1976-08-07 Cooling system

Publications (2)

Publication Number Publication Date
JPS5319114A JPS5319114A (en) 1978-02-22
JPS5823836B2 true JPS5823836B2 (en) 1983-05-17

Family

ID=14102718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9416476A Expired JPS5823836B2 (en) 1976-08-07 1976-08-07 Cooling system

Country Status (1)

Country Link
JP (1) JPS5823836B2 (en)

Also Published As

Publication number Publication date
JPS5319114A (en) 1978-02-22

Similar Documents

Publication Publication Date Title
EP0145975B1 (en) Apparatus and method for heating objects eg chips during soldering, to and maintaining them at a desired temperature
CN104284749B (en) Welder and the manufacture method of welded articles
TW554419B (en) Heating furnace, assembly of carrying fixture for semiconductor substrate, and the manufacturing method for semiconductor device
US3070880A (en) Method of bonding the abutted edges of metal members
JP2019516563A (en) Method and apparatus for manufacturing a brazed heat exchanger
JPH07112283A (en) Method and device for diffused junction
US7528347B2 (en) Cooling device and heat treating device using the same
JPS5823836B2 (en) Cooling system
US6511759B1 (en) Means and method for producing multi-element laminar structures
JPH0825068A (en) Welding method for laminated structure, laser welding method and working table device
CN218498985U (en) Thermal jacket device and processing equipment
JP4411341B2 (en) Heat exchanger for vertical heat treatment apparatus and vertical heat treatment apparatus
US3601878A (en) Method for fabricating a heat exchanger
JP6062211B2 (en) Brazing method and brazing apparatus
CN112171167B (en) Multi-station workbench and welding method
TWI537083B (en) Heating unit and vacuum welding machine including the same
JPS6320661B2 (en)
JP3255025B2 (en) Thermocompression bonding equipment
JPH0152114B2 (en)
US4701127A (en) Controlled atmosphere capsule for fluxless brazing
JP7273369B2 (en) Brazing method and brazing apparatus for aluminum
CN215238673U (en) Laser welding fixture for contactor
JPH0248472A (en) Method and apparatus for bonding large dimension processed product composed of silicon carbide
JP4289598B2 (en) Brazing treatment method and apparatus using halogen lamp in combination with induction heating
JPS59199186A (en) Solid phase joining device