JPS5823804A - Polymer processability improvement and polymer composition - Google Patents

Polymer processability improvement and polymer composition

Info

Publication number
JPS5823804A
JPS5823804A JP57102925A JP10292582A JPS5823804A JP S5823804 A JPS5823804 A JP S5823804A JP 57102925 A JP57102925 A JP 57102925A JP 10292582 A JP10292582 A JP 10292582A JP S5823804 A JPS5823804 A JP S5823804A
Authority
JP
Japan
Prior art keywords
disintegration
accelerator
disintegration accelerator
molecular weight
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57102925A
Other languages
Japanese (ja)
Other versions
JPH0443924B2 (en
Inventor
マイケル・テイ・モ−マン
トニ−・ジエイ・ウイズネスキ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Corp
Original Assignee
Kimberly Clark Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly Clark Corp filed Critical Kimberly Clark Corp
Publication of JPS5823804A publication Critical patent/JPS5823804A/en
Publication of JPH0443924B2 publication Critical patent/JPH0443924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/30Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/10Chemical modification of a polymer including a reactive processing step which leads, inter alia, to morphological and/or rheological modifications, e.g. visbreaking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 Iリブ曽ビレン4リマ−(レットを得る方法に関すると
共に上記の改良改工性を有するぼりデセピレンヂリマー
イレットに関する。#維やフィルムに加工するための良
好な加工性を有するポリプロピレン4リマーは下肥の一
属性を持つことが好ましいO /)flIl軟融から繊細化する際に破断しないこと。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for obtaining an I-rib sobilene 4-rimer eyelet, and also to the above-mentioned improved processability. It is preferred that the polypropylene 4-limer has one of the attributes of a manure, that it does not break during attenuation from softening.

この特性を有するポリマーは未繊細化材料に比較して高
い強度を有する微細フィラメントや薄いフィルムに加工
される時に単位時間の生産量が高い。
Polymers with this property have a high throughput per unit time when processed into fine filaments or thin films with high strength compared to non-attenuated materials.

一)配管や細管を通して圧送できること及び/又は繊維
やフィルムに繊細化する際に要するエネルギーが量小で
よいこと。この特性は溶融状ポリマーの剪断応力と鷺伸
粘度が低いことを意味する。
1) It can be pumped through piping or thin tubes, and/or the amount of energy required to decompose it into fibers or films can be small. This property means that the shear stress and elongational viscosity of the molten polymer are low.

この量初の属性(高繊細度)は分子量分布(重量平均分
子量と数平均分子量の比で定義される)が小さい/ I
Jデロピレン/ 17 −v−を用いれば達成できるこ
とが証明されている。また一番目の属性(低剪断応力と
低蔦伸粘度)については重量平均分子量の低いポリマー
を用いれは達成できる。
The first attribute of this quantity (high sensitivity) is that the molecular weight distribution (defined as the ratio of weight average molecular weight to number average molecular weight) is small / I
It has been demonstrated that this can be achieved using J delopyrene/17-v-. The first attribute (low shear stress and low elongational viscosity) can be achieved using polymers with low weight average molecular weights.

現在市販用−+7 7”ロピレンの生産に使われている
チーグラーナツタ触媒を用いて微細繊維や薄いフィルム
を製造すると重合反応器から分子量分布が過大なぼりマ
ーが出てきてしまう。従ってかかる反応器で製造した低
重量平均分子量/ リマーは加工するのに好ましい低粘
度を有するが、所望の繊細化を達成することができない
。それ故、ぼりプロピレン製造業界では分子量分布を小
さくすると同時に重量平均分子量を所望のレベルまで下
げる固有の作用を有するランダム分子分断工S(熱崩壊
もしくは化学崩壊)の後、重量平均分子量が非常に高い
ぼりマ一を製造することが要求されている。
If fine fibers or thin films are produced using the Ziegler-Natsuta catalyst currently used in the production of commercially available -+7 7" lopyrene, polymers with an excessive molecular weight distribution will come out of the polymerization reactor. Low Weight Average Molecular Weight/Remers produced with low viscosity that are favorable for processing, but are unable to achieve the desired fineness.Therefore, the propylene production industry has sought to reduce the molecular weight distribution while at the same time reducing the weight average molecular weight. There is a need to produce polymers with very high weight average molecular weights after random molecular cleavage (thermal or chemical decay) which has the inherent effect of reducing it to the desired level.

lリプ四ビレンは分解して遊離基を形成する化合11に
添加するととによって化学的に崩壊する。
When added to compound 11, it decomposes to form free radicals and is chemically degraded.

−リプロピレンの最終用途安定性を高めるために添加さ
れる化学安定剤は遊離基発生剤の作用を妨害することが
ある。
- Chemical stabilizers added to increase the end-use stability of lipropylene may interfere with the action of free radical generators.

しかし例えば英国特許第1ダダユ6ざ7号に記1されて
いる特定種類の有機過酸化物郷のいくつかの遊離基発生
剤型化学薬品は一般に用いられる安!剤による影響が最
小限で済み、従って好ましい崩壊促進剤となりうる。
However, some of the free radical generator type chemicals of the specific class of organic peroxides described in British Patent No. 1 Dadayu No. 6-7, for example, are commonly used cheap! The influence of the agent is minimal and therefore it can be a preferred disintegration promoter.

しかい1マーを崩壊できる度合は4すi−製造機が非常
に粘度の低い/ IJママ−らベーレットを形成できな
いために隈られている。従って、フィルムや峻−を製造
するぼりプロピレン加工機にはフィルムや繊維に加工す
るKは最適ではない/ リデロビレyを材料に用いなけ
ればならないという間順がある。かくしてペレット化す
るために高粘F!特性を、また最終用途加工のために低
粘度を有するポリマーが必要とされてきたのである。
However, the degree to which the 1mer can be broken down is limited by the fact that the 4S I-maker cannot form a velvet with a very low viscosity. Therefore, K for processing into films and fibers is not optimal for a propylene processing machine that produces films and fibers, and there is an order in which K to be processed into films and fibers must be used as a material. Thus, high viscosity F! There has been a need for polymers with improved properties and low viscosity for end-use processing.

$ +7マ一加工業者にとって好ましい低粘度?す□ プロビレンーリマーをぼり!−製造業者が商業的にペレ
ット化する時はどうしても過大な「糸曳き」(長い尾を
持ったペレット)を生じてしまい、これが製造業者や加
工業者の装置をつまらせる原因でもあった。
$ +7 Low viscosity preferred by processors? □ Climb the Provirene Rimer! - When manufacturers commercially pelletize, they inevitably produce excessive stringiness (pellets with long tails), which can clog manufacturers' and processors' equipment.

ポリマーをペレット化するためKその粘度を上ケルニは
一リゾ。ロビレンlリマーの融点より少し上の温度でペ
レタイザーを操作してペレットの切断特性を改善するこ
とが梯案されている。これは(レット化@雪における剪
断応力によって発生する熱を下げるために単位生産量を
下げるか、モして/又は溶融状ポリマーを冷却しないと
達成でtない。しかしこの方法は両方とも工程の経費を
増し工程をさらに複雑にしてしまう。
In order to pelletize the polymer, the viscosity is increased to one viscosity. It has been proposed to operate the pelletizer at a temperature slightly above the melting point of Robylene l remer to improve the cutting properties of the pellets. This can only be achieved by lowering the unit production to reduce the heat generated by shear stress in the snow and/or by cooling the molten polymer. However, both of these methods This increases costs and complicates the process.

また最終用途加工において/ IJママ−繊維やフィル
ムに形成される前に化学崩壊促進剤を付加的に?リデロ
ピレンペレットに添加してポリマーの粘度を下げること
も提案されて〜する。しかしこの方法にはいくつかの不
都合がみられる。それは/)これらの過酸化物型崩壊促
進剤は着火爆発の危険があるため特殊な取扱い工程と装
置を必要とすること。
Also in end-use processing/IJ Mama - Addition of chemical disintegration accelerators before formation into fibers or films? It has also been proposed to add it to rideropyrene pellets to reduce the viscosity of the polymer. However, this method has some disadvantages. /) These peroxide-type disintegration accelerators require special handling processes and equipment due to the risk of ignition and explosion.

コ)過酸化物が矛も効果的に作用するために、過酸化物
を分解して反応させる前にポリマー中に均一に分散させ
なければならない。こうしないと、粘度ムラを持った/
 IJ w−が生じ、加工前のポリマーよりもさらに大
鎗な分子量分布になってし重う。特殊な装置を甲いてベ
レットというよりも做細な薄片を反応器で製造できる一
すマー製造業者は上記の均一分布を達成するのに非常K
tFF@合な条件にある。
c) For peroxide to be effective, it must be uniformly dispersed in the polymer before decomposition and reaction. If this is not done, the viscosity will be uneven/
IJ w- is generated, resulting in a molecular weight distribution that is even wider than that of the polymer before processing. A consumer manufacturer that uses special equipment to produce flakes that are smaller than pellets in a reactor is very helpful in achieving the above-mentioned uniform distribution.
tFF@ is in the correct condition.

3)加工業者の装置が粘度ムラを有する4リマーによっ
て破損することがある。
3) Processors' equipment may be damaged by 4 remers with uneven viscosity.

ダ)反応する前に/リマーによく分散されると過酸化物
は崩壊促進剤としての機能の方が効率的に作用してしま
う。
D) Before the reaction/If well dispersed in the remer, peroxide functions more efficiently as a disintegration promoter.

S)過酸化物をペレットの中よりもただ単にベレットの
上に添加した場合、過酸化物は押出機の供給部において
循滑剤として作用するので与えられた毎分回転数に対す
る単位生産量が減少しズし重う。
S) If peroxide is added simply onto the pellets rather than into the pellets, the peroxide acts as a circulating lubricant in the feed section of the extruder, reducing unit production for a given revolutions per minute. It's heavy and heavy.

また加工工程において非常に高い温度を用いてIリプロ
ピレンを熱崩壊することによって分子量を減少させるこ
とができる。しかし温度を異常に高く上げると下記の不
都合を生じる。
The molecular weight can also be reduced by thermally disintegrating I-lipropylene using very high temperatures in the processing step. However, if the temperature is raised to an abnormally high temperature, the following problems will occur.

/)装置の喪命が短くなる。/) The lifespan of the device is shortened.

2)急冷が自由にで鎗ないので単位生産量にwltがあ
る。
2) Since quenching is not possible freely, there is a wlt in unit production.

3)過大なエネルギー消費を必要とする◎リ 高温を用
いるために危険な工程―場になる。
3) Requires excessive energy consumption ◎Requires high temperatures, making it a dangerous process.

S)その他の間頼。S) Other requests.

その使の問題とは以下の間傾を含む。The question of the envoy includes the following inclinations.

/)過度な崩壊を起すため、最終製品が必要とする量よ
りも多くの添加剤をポリマーに添加する必要がある。
/) Excessive disintegration requires adding more additive to the polymer than the final product requires.

2)使用できる添加剤の範囲が限られているため、さら
に高価なもしくは最適でない添加剤を使う必要がある。
2) The range of additives that can be used is limited, requiring the use of more expensive or suboptimal additives.

3)/リマーを配管や細管で圧送したりダイス濡に適用
する際に崩壊生成物でつまってしまう。
3) When the remer is pumped through piping or thin tubes or applied to wet the die, it becomes clogged with decay products.

以下の従来特許によってさらに情報が得られる。Further information is provided by the following prior patents:

英国特許第1’14tユ6ざ7号には過酸化物型崩壊促
進剤で崩壊して分子量分布の小さいぼりプロビレンIリ
マーを製造する工程を含むポリプロピレンの製造法がr
I!されている。米国特許第3にA7.!t3+号には
4リプロピレンに対する崩壊促進剤として脂肪族過酸化
物を使用することを11i’#L、ており、またこれに
関連する問題について論じており、さらにこの問題に対
する解決法として未反応の崩壊促進剤を避けることを提
案している。米国特許第3. / 4t4<936号に
は遊離基開始剤の使用を含む立体規則性/ IJママ−
崩壊方法が1斂されている。7つの実施例に押出機の溶
融領域に崩壊促進剤を注入する作業を制御している二段
階方法が記載されている。米国特許第3、ざ1Iq24
Ii号及び′米国特許第3.9 ’7 & /gS号に
はプリマーの崩壊を制御することによって改良された溶
拳吹込法が記載されている。同様にして米国特許篇、7
: ? 、t 3. jコク号にはポリマー崩壊の利点
が記載されている。
British Patent No. 1'14t U6Z7 describes a method for producing polypropylene that includes a step of disintegrating it with a peroxide-type disintegration promoter to produce propylene I remer with a small molecular weight distribution.
I! has been done. U.S. Patent No. 3 A7. ! Issue 11i'#L describes the use of aliphatic peroxides as disintegration accelerators for 4-lipropylene, discusses the problems associated with this, and further discusses the use of unreacted peroxides as a solution to this problem. suggests avoiding disintegration accelerators. U.S. Patent No. 3. / 4t4<936 contains stereoregularity including the use of free radical initiators / IJ Mama-
One method of collapse has been changed. Seven examples describe a two-step process controlling the injection of disintegration promoter into the melt zone of the extruder. U.S. Patent No. 3, Za1Iq24
No. Ii and 'U.S. Pat. No. 3.9'7&/gS describe an improved melt blowing process by controlling the disintegration of the primer. Similarly, U.S. Patent Edition, 7
: ? ,t3. The advantages of polymer disintegration are described in the J-Koku issue.

本発明は/)加熱してさらに崩壊すると高質フィルムや
繊維に都合よく加工できる低粘度ポリマーを生成するペ
レッ)Kたやすく形成されるポリマーを最初′に製造す
る工程を含む段階的−リマー崩壊方法、及び、2)該方
法によって得られるベレットヌは他の形状の崩壊促進剤
含有プリプロピレンぼり實−に関する。
The present invention consists of stepwise-remer disintegration involving the initial production of a readily formed polymer; and 2) the berette obtained by the method relates to other forms of disintegration accelerator-containing propylene fibers.

本発明はプリプロピレンの崩壊促進剤として作用する特
定の遊離基発生化学剤をポリマーに添加してペレット化
装電を知宇の方法で作動させた時に、上記の化学剤の一
部がペレット化工程が終っても未反応のまま残るという
発見に基づいている。
The present invention discloses that when a specific free radical generating chemical agent that acts as a disintegration accelerator for propylene is added to the polymer and the pelletizing equipment is operated in the known manner, a portion of the above chemical agent is added to the polymer during the pelletizing process. This is based on the discovery that the reaction remains unreacted even after the

すなわち4レツトを形成する押出工程の後、反応を中断
させてから再び押出を行なうとこの残りの崩壊促進剤が
反応して加工しやすい且つ特性の透れたフィルムや##
に製造できるプリマーを生成する。製造工程においてペ
レット化した後の崩壊促進剤の正確な残存率Nま(レッ
ト化温度、該温度忙おける崩壊促進剤の滞留時間、及び
崩壊剤の種類に依存する。しかし初めに添加した量の半
分から90%までが好ましい。理想的には(レット化中
に崩壊が起らない方が良いが実際にはペレット化中に一
部分の崩壊促進剤が反応する。この初期的に反応する崩
壊促進剤の量は/θ%程度と少ないものでありイレタイ
デーにおけるポリマーの粘度をわずかに下げるだけなの
で良く形成された易流動性のペレットが製造できる。ペ
レット化工程後、満足する結果を得るために/リマーの
重量に対して少くとも0107%の崩壊併進剤が残留し
ていることが必要である。かくして従来特許に関連して
述べた一段階崩壊添加方法の利点は保持され、また不利
益は実質的に解消され金のである。
In other words, after the extrusion process to form 4lets, if the reaction is interrupted and extrusion is performed again, the remaining disintegration accelerator reacts to form a film that is easy to process and has transparent properties.
Generates a primer that can be manufactured to The exact residual rate N of the disintegration accelerator after pelletizing in the manufacturing process (depends on the pelletizing temperature, the residence time of the disintegration accelerator at that temperature, and the type of disintegrant. It is preferably from half to 90%.Ideally, it is better that no disintegration occurs during pelletization, but in reality, some of the disintegration accelerator reacts during pelletization. The amount of agent is as small as /θ%, which only slightly lowers the viscosity of the polymer at the time of retardation, so that well-formed, free-flowing pellets can be produced.After the pelletizing process, in order to obtain a satisfactory result, / It is necessary that at least 0.1% of the disintegration accelerator remains based on the weight of the remer.Thus, the advantages of the one-step disintegration addition method described in connection with the prior patents are retained, and the disadvantages are substantial. It was canceled and the money was lost.

本発明はぎりプロピレンの製造及び加工に適用できる。The present invention can be applied to the production and processing of propylene.

本発明はまた廃プリプロピレン材を加工してフィルムや
繊維形成に再使用することにも適用できる。当業者には
明らかであるが、最適作動条件及び濃度は使われている
ポリマーの特性と加工業者が所望する極限の性質に依存
することは言うまでもない。
The present invention is also applicable to processing waste polypropylene materials for reuse in film and fiber formation. It will be appreciated by those skilled in the art that optimal operating conditions and concentrations will depend on the properties of the polymer used and the extreme properties desired by the processor.

製造された/IJプロピレンは一般的に約2 !; O
M乃至300Mの範囲の高い麺量平均分子量と約IO乃
至/!fの分子量分布を有する。高速紡糸及び繊維形成
用の(IJグロビレンの場合は約λ、S乃至4.5の重
量平均分子量分布を有する。しかし、分子量が減少して
130M以下になると、ポリプロピレン樹脂を商業的レ
ベルでベレットに加工することが困l#になる。粘度の
恢いポリマーを片いると輸送や取扱いがむずかしい形成
不94レツトが生成される。従って、製造業者は分子量
が約760Mを下回らないように輸送前に行なうポリプ
ロピレンの崩壊作用を制限する傾向にある。多くの崩壊
促進剤を用いてRレット化装置における崩壊の上記の度
合が達成される。そしてこれらはとんと全ての崩壊促進
剤は過酸化物型崩壊剤が温度と周囲に依存する種々の速
度で分解する条件下で全面的忙反応する。分解速度は半
減期によって定義される。
The /IJ propylene produced is generally about 2! ; O
High noodle weight average molecular weight ranging from M to 300M and about IO to /! It has a molecular weight distribution of f. For high-speed spinning and fiber formation (IJ globylene has a weight average molecular weight distribution of approximately λ, S to 4.5. However, as the molecular weight decreases below 130M, polypropylene resins can be made into pellets at a commercial level. It becomes difficult to process. When the viscosity of the polymer is removed, unformed particles are created that are difficult to transport and handle. Therefore, manufacturers have to prepare the polymer before shipping to ensure that the molecular weight does not fall below approximately 760M. A number of disintegration promoters are used to achieve the above degrees of disintegration in the R-letting equipment, and these tend to limit the disintegration action of the polypropylene. It undergoes a full-scale reaction under conditions in which the agent decomposes at varying rates depending on temperature and surroundings. The rate of decomposition is defined by the half-life.

本発明によるとポリプロピレン中での半減期が/ qO
,6℃において30秒を超える値′を有する遊離基源崩
壊促進剤をポリマー加工業者が所望する最終4リマー特
性を出すのに十分な量だけ、反応器によって生成した薄
片状の島分子量−リプロピレンIリマーに添加する。短
かい半減ル1を有する崩壊促進剤を用いるか、もしくは
大量の崩壊促進剤を(レット化工程を通して未反応のま
まにすることが必要な場合は、崩壊促進剤を溶融状、j
P IJママ−流れに注入すればよい。崩壊促進剤を均
一に分散して最高の効果を得る必やかあるため、崩壊併
進剤を注入した後は混合工sKかける必要がある。櫃し
て崩壊促進剤は一般的に使用されている/ リデロビレ
ン安定剤を妨害したり逆に妨害されたりするものであっ
てはならずまた分解する際にポリプロピレンの崩壊を開
始する遊離基を効果的に生成するものでなければならな
い。しかし崩壊促進剤は押出機を出る前に実質的に全体
的に反応するように一すマー加工業者での再押出温度に
おける半減期が十分Kmかくなければならない。崩壊促
進剤の/ IJグロピレン中における半減期は−tり1
g℃においてデ秒より少くしてペレット中の崩壊促進剤
の少く之も99%がこの温度における7分の押出棒滞留
時間が軽週す゛る□までに反応するようKしなければな
らない。かかる崩壊併進剤は隈定しない例として以下の
化合物を含む。すなわち、ユ3−ジメチルλSビス−(
t−ブチルペロキシ)ヘキシン−3及びグーメチル<4
t−7”チルイロキシ−24ンタノン(例えH’ Pe
nws l tCorporat tonのLucld
ol r)lvlslon から阪売されているルーツ
ターシルア、30及びルーツクーゾル/、2θ)、3、
ムム9?−−eンタメチルー3−(酢酸エチル)−1L
ll、!;−テキシトラオキシ シクロノナン(Wlf
eo Chemlcal CorporsNon g売
のusp−73g)、ユS−ジメチル−,2,5ビス−
(t−ブチルイロキシ)ヘキサン(例★げルーノーゾル
/θ/)及び/−3−ビス−(タート−ブチルイロキシ
イソプロビル)−ベンゼン(Hereuies、 In
c。
According to the present invention, the half-life in polypropylene is /qO
The flaky islands produced by the reactor have a molecular weight - reamer of a free radical source disintegrator with a value of greater than 30 seconds at , 6°C in an amount sufficient to produce the final four-reamer properties desired by the polymer processor. Add to Propylene I remer. Either a disintegration accelerator with a short half-life of 1 is used, or a large amount of disintegration accelerator (if it is necessary to remain unreacted throughout the retization process, the disintegration accelerator can be used in molten form,
P IJ Mama - just inject into the flow. Since it is necessary to uniformly disperse the disintegration accelerator to obtain the best effect, it is necessary to perform a mixing process after injecting the disintegration accelerator. Disintegration accelerators are commonly used and should not interfere with or conversely interfere with the riderovirene stabilizer and should not affect the free radicals that initiate polypropylene disintegration upon decomposition. It must be something that can be generated in a realistic manner. However, the disintegration accelerator must have a half-life of sufficient Km at the re-extrusion temperature at the processor to be substantially totally reacted before exiting the extruder. The half-life of the disintegration accelerator in /IJ glopyrene is -t1
The disintegration promoter should be heated in less than 10 seconds at 100 g° C. so that at least 99% of the disintegration promoter in the pellets has reacted by the time the extruder rod residence time of 7 minutes at this temperature is less than 10 seconds. Such decay accelerators include, by way of non-limiting example, the following compounds: That is, 3-dimethyl λS bis-(
t-butylperoxy)hexyne-3 and goomethyl<4
t-7” tyloyloxy-24tanone (e.g. H'Pe
nws l tCorporat ton's Lucld
ol r) lvlslon Rootstersilua, 30 and Rootskusol/, 2θ), 3, sold by Hansei.
Mum 9? --e enthamethyl-3-(ethyl acetate)-1L
ll,! ;-Texitroxy cyclononane (Wlf
USP-73g sold by Chemical Corporation Non-g), U-S-dimethyl-,2,5-bis-
(t-butylyloxy)hexane (e.g. Gelunosol/θ/) and /-3-bis-(tert-butylyloxyisopropyl)-benzene (Hereuies, In
c.

鈑売のヴアルカツデR)である。手配の化合物の中では
WlfCOUSP−/3g及びルーツクーゾル/30が
最も好まじい。遊鹸基源崩壊促進剤の好ましい濃度はポ
リi−の重量に対して約0.0 /%乃至O,lI%の
範囲にある。ベレタイデーはペレットに添加された崩壊
促□進剤の少くともり5%を保持するように作動するこ
とが望ましい。ポリマーの使用者がポリマーを押出機に
かけると、その連管によって4リマーの崩壊が再開し所
望の程度まで進行して再押出工程において実質的に完全
に反応する。一般的にがかる押出機温度&1約237.
g℃乃至2gり6g℃の範囲にある。またこれらの条件
は押出機のダイアセンブリ−における崩壊作用に適用で
鎗る。
This is Valukatsude R), a carpenter. Among the compounds in question, WlfCOUSP-/3g and Rootskusol/30 are most preferred. Preferred concentrations of the saponified base disintegration promoter range from about 0.0% to O.lI% based on the weight of the poly-i-. Preferably, the pelletizer operates to retain at least 5% of the disintegration promoter added to the pellet. When the polymer user applies the polymer to the extruder, the conduit restarts the disintegration of the 4-rimer and proceeds to the desired extent to substantially complete reaction in the re-extrusion step. The extruder temperature generally takes about 237.
It ranges from g°C to 2g/6g°C. These conditions also apply to disintegration effects in the extruder die assembly.

以下の実施例では重量コ/602のm険g0.6℃で作
動するメルトインデックス測定装[(^STM723g
’)を用いてメルトインデックスを求めている。試料は
試験の前にS分間加熱して平衡に到遣せしめた。メルト
インデックスは1r得2./ lII+の細管から70
分間に出される量の9#jで表わす。
In the following example, a melt index measurement device [(^STM723g
') is used to find the melt index. The samples were heated for S minutes to reach equilibrium before testing. Melt index is 1r gain 2. / 70 from lII+ tubules
It is expressed as 9#j of the amount dispensed per minute.

実施例1 ポリプロピレン反応器によって/より低いゾル)インデ
ックスの値を有する薄片を得た。0173重量%のルー
パーゾル/30をこの薄片に添加して均質な配合物を調
製した。この配合物を79a6Cで作動する(レット化
装置によってペレツF化し滞留時間を約2分にした。理
論的には過酸化物の約22%が反応したことになる。ペ
レットのメルトインデツクスを測定した結果的33のメ
ルトインデツクスを有することが分った。メルトインデ
ツクス測定器においてベレツシ中の崩壊促進剤の約10
%が反応したためペレットの実際のメルトインデックス
はlIO乃至11.Ii’の範囲にあると考えられる。
Example 1 A flake with a lower sol index value was obtained in a polypropylene reactor. 0.173% by weight of Loupersol/30 was added to the flakes to prepare a homogeneous blend. This formulation was operated at 79a6C (fed into pellets using a pelletizer with a residence time of about 2 minutes. Theoretically, about 22% of the peroxide had reacted. The melt index of the pellets was measured. As a result, it was found to have a melt index of 33. In the melt index meter, approximately 10 of the disintegration accelerator in the beretsu
% has reacted, so the actual melt index of the pellet is between lIO and 11. It is considered to be in the range of Ii'.

このポリマーは簡単にペレツF化された。その結果得ら
れたポリマーペレットは通常の市販ペレットと同等であ
った。
This polymer was easily converted into pellets. The resulting polymer pellets were comparable to normal commercially available pellets.

次にこれらのペレットを温度2.37IC,押出機滞留
時間約3分で以って再押出工程にかけた参拝出物のメル
トインデックスを測定したところ約S5θの値が得られ
た。2.37ICの押出工程がメルトインデックスに何
ら影響を与えないことを証明するために押出物を再び押
出工程にかけたととろメルトインデックスは!3θから
5ざOに上昇していた。従って°メルトインデックスの
増加の約93g&はペレット中の崩壊促進剤が原因であ
り約3弧は押出機の作用が原因であった。
Next, these pellets were subjected to a re-extrusion process at a temperature of 2.37 IC and a residence time of about 3 minutes in the extruder, and the melt index of the artifact was measured, and a value of about S5θ was obtained. 2.37 To prove that the IC extrusion process has no effect on the melt index, the extrudate was reextruded and the melt index was! It had risen from 3θ to 5θ. Therefore, about 93 g of the increase in melt index was due to the disintegration promoter in the pellets and about 3 arcs was due to the action of the extruder.

実施側御 実施例1と同じ薄片及び装置を用いた。ただ実施例1と
異なゐ点はa3襲ルーノダーゾル/30を薄片に添加し
九ことである。ペレツ)のメルトインデックスは測定の
結果lI3乃至jθであることが分りた。再押出工程の
際の押出物は約440のメルトインデックスを有するこ
とが分った。実施例1と同様にしてペレットの切断特性
は商業的に満足で自重ものであった。
The same flakes and equipment as in Example 1 were used. However, the difference from Example 1 was that A3 Lunodarsol/30 was added to the flakes. As a result of measurement, it was found that the melt index of the pellets was 1I3 to jθ. The extrudate during the re-extrusion process was found to have a melt index of approximately 440. As in Example 1, the cutting properties of the pellets were commercially satisfactory and self-sufficient.

実施例3 Wltco Ch*m1oalυsr−/3g今−tの
濃度がa3j重量重量上ン)になるように薄片に適用し
た。この配合物を温度/90.1.C,押出機滞留時間
約−分で以って押出工程にかけた。押出した試料のメル
トインデックスは測定の結果的l!であることが分った
。この試料を温度:l!;i7c、滞留時間3分で以っ
て再押出工程にかけたとζろメルトインデックスは2/
3の値が測定された。過―化物を添加しないで上記方法
によって加工し九薄片はlりのメル)インデックスが測
定されえ。
Example 3 Wltco Ch*m1oalυsr-/3g-t was applied to the flakes at a concentration of a3j weight above. This formulation was heated to temperature/90.1. C. The extruder was subjected to an extrusion process with an extruder residence time of about - minutes. The melt index of the extruded sample is the result of measurement! It turned out to be. Temperature: l! ; i7c, when re-extruded with a residence time of 3 minutes, the zeta melt index was 2/
A value of 3 was measured. Nine thin sections processed according to the above method without the addition of peroxides can be measured for their mel index.

実施例メ 2%ルーA−ゾル/ 30 tH@rcules PC
−デクJと呼けれる市販のポリグ、Wピレンペレットに
配合し九0次にこの配合物を温度/70C,滞留時間7
分で以って押出工程にかけた。理論的には過酸化物のり
を襲が反応しないで押出物の中に残ったことになる0次
にこの過酸化が濃縮された押出物を種々の割合でもって
一すプロぜレンペレットに配合した。理論的当量の純粋
な過酸化物を他のベレツFに添加した。これらの、「濃
縮物」/$リゾvatレン配合物と液体過酸化物//リ
プ―ビレシ配合物を別々にプラベンメー押出機を用いて
温度2’IQIC,滞留時間7分でもって押出工wIK
かけた。押出機の〆イの先端から出九イレツ)の粘度を
測定しその値を第1図に示した・両者とも同等であるこ
とが分る。
Example 2% Roux A-Sol/30 tH@rcules PC
- A commercially available polyg called Deku-J is blended with W pyrene pellets, and then this blend is heated at a temperature of 70C and a residence time of 7.
It was then subjected to an extrusion process. Theoretically, the peroxide glue would remain in the extrudate without reacting.Next, this peroxide-enriched extrudate was blended into prozelene pellets in various proportions. did. A theoretical equivalent of pure peroxide was added to the other Beretz F. These "concentrates"/resolution formulations and liquid peroxide formulations were extruded separately using a Plabenme extruder at a temperature of 2'IQIC and a residence time of 7 minutes.
I put it on. The viscosity of the extruder (from the tip of the extruder) was measured and the values are shown in Figure 1.It can be seen that both are equivalent.

かくして本発明は非崩壊促進剤の濃縮物を含む。Thus, the present invention includes a concentrate of non-disintegration accelerators.

3重量%までの濃度の崩壊促進剤が容易に形成で゛き、
また高濃度の崩壊、促進剤の形成も可能である。
Disintegration accelerator concentrations up to 3% by weight can be easily formed;
It is also possible to form high concentrations of disintegration and accelerators.

本発明をいかなる%定の理論にも限定するものではない
が、特定の崩壊促進剤の特徴の意義を仮定することがで
龜ゐ、半減期を求める計算から半減期反応速度係数とが
アーレエウスの法則に近似的に従うことが分る。
While not limiting the invention to any fixed theory, it is possible to assume the significance of the characteristics of a particular disintegration accelerator, and the half-life kinetic coefficient can be determined from half-life calculations. It can be seen that the law is approximately followed.

すなわち 1nにm−”″′+亭θ亭(ルーパーゾル130)丁 tnに−−717″−+4tll、1月−パーゾル10
/)ただしに冨ポリゾ四ピレン中の毎分の半減期反応速
度係数、T■絶対温度 嘔。
That is, 1n is m-""' + Tei θ-tei (Lupersol 130) Ding tn is -717"-+4tll, January - Parsol 10
/) However, the half-life reaction rate coefficient per minute in polyzotetrapyrene, T■ Absolute temperature.

にが求を為と次の弐によって一定時間後の未反応崩壊促
進剤の量を求めることかで亀る。
It depends on the amount of unreacted disintegration accelerator after a certain period of time, determined by the following two steps.

C^・ ただしCA!未反応崩壊剤の濃度。C^・ However, CA! Concentration of unreacted disintegrant.

CAo冨崩壌促進剤の初期濃度 を冨反応時間(分) 例えば、コ/ OC(# g’3°K)7分後における
未反応率を比較するとルーツ母−ゾール10/はわずか
70%に対してルーツ母−ゾル/、10の場合は50%
になる。
For example, when comparing the unreacted rate after 7 minutes of CO/OC (#g'3°K), the initial concentration of the CAo enrichment disintegration accelerator is determined to be only 70%. On the other hand, if the root mother is Sol/, 10, it is 50%.
become.

加うるに、7個の装置を出る/9マーの粘度は次の式で
予測できることが分る。
In addition, it is found that the viscosity of the 7/9 mer exiting the device can be predicted by the following equation:

l、、fo +にCR μ     μ ただし μ=化学崩壊後、装置を出る/ IJママ−粘度。CR to l,, fo + μ μ however μ = Exit the device after chemical breakdown / IJ mom - viscosity.

μζ化学崩壊をしないで装置を出るIリマーの粘度。μζ Viscosity of the I-remer that leaves the device without chemical breakdown.

に士化学崩壊効率係数。Chemical decay efficiency coefficient.

CR冨装置を出ゐ際に反応する崩壊促進剤の量。The amount of disintegration accelerator that reacts upon exiting the CR-rich device.

なおOR冨CAO−C^であるため、こめ式を上式にあ
てはめると、 1−−Lc、+にcA(/−*−にセ)μ     μ を得る。
Note that since OR Tomi CAO-C^, by applying the equation to the above equation, we obtain 1--Lc, + cA (/-*- set) μ μ.

従って一定の定数(にCAo)について考えると49マ
ーの極限の粘度は用いられる崩壊促進剤に関係な(長時
間の反応の後は全部同じになる。しかし粘度と時間との
相関関係は半減期反応速度係数にに依存する0例えば、
第1図は0.00 &pois@′″1(例JLldk
−〕#−fル13θ又バルーパーゾル/θ/に対する典
型的な値)のにC^及びコ077Cてペレツシ化/押出
工程を実施している時のポリマーの初期粘度/ 0.0
00 /アズに基づく時間対流量Iリグロビレン4リマ
ー粘度の関係を示すダラ7である。このグチ7てはルー
ノーゾル/3θの試料とルーノーゾル10/の試料の極
限粘度はほとんど同じであるが/乃至3分の範囲にある
通常ノヘレット化時間における「ペレッ)化J粘度に:
 O(/% ”C” ij lk −74−ゾに/、3
θはルー1− ソA//θ/の約2倍になることが証明
されて′いる。
Therefore, considering a constant constant (CAo), the ultimate viscosity of 49mer is related to the disintegration promoter used (after a long reaction time it will all be the same), but the correlation between viscosity and time is The reaction rate coefficient depends on 0 e.g.
Figure 1 shows 0.00 &pois@'''1 (e.g. JLldk
Initial viscosity of the polymer when carrying out the pelletizing/extrusion process at C^ and C077C/0.0
Figure 7 shows the relationship between time and flow rate I liglobilene 4 remer viscosity based on 00/Az. The intrinsic viscosity of the Lunosol/3θ sample and the Lunosol 10 sample are almost the same;
O(/% “C” ij lk -74-zo/, 3
It has been proven that θ is approximately twice as large as A//θ/.

半減期の短かい崩壊促進剤を用いると、滞留時間ン分後
にコθ17c11cてペレタイザーを出る際のぼりプロ
ピレンの粘度はルーI4−ゾル10/の場合のわずか6
7%であゲ、またルーツ譬−ゾル130の場合のわずか
30%である。かくしてルーノ−ゾル/、30が一番好
ましい。
When a disintegration accelerator with a short half-life is used, the viscosity of the propylene stream when it leaves the pelletizer after a residence time of 10 min is only 6 ml of that of Leu I4-sol 10/.
7%, and only 30% of Roots Sol 130. Thus Luno-Sol/.30 is most preferred.

ルーノ−ゾル/3θの場合、崩壊促進剤の約〃−がペレ
ット化工程後に残留することがあるが。
In the case of Luno-Sol/3θ, approximately 〃- of the disintegration accelerator may remain after the pelletizing process.

初期の添加量が非常に少ない産めプリマーを取扱うう際
の危険はほとんどない、再押出工程では加工条件が少く
λも237gCになる。のが一般的であシこの濃度では
ルーノ−ゾル/3θの半減期係股が67分を超えるため
再押出工程後の崩壊促進剤の残留量は実質的に皆無とな
ゐ、装債滞留時間が例えばわずか23分の場合はペレッ
ト中の過酸化物のわずか0000017%しか押出物の
中に残留しない1例えば、製造業者から送られ九デリプ
四♂レンペレットが0.2 %ルーツ母御ゾル/30を
含有している場合は、加工業者の押出装置はコ3’lI
Cにて作動し、また押出機滞留時間はコ分であり、さら
に押出機を出るポリマー中のルー・ヤーゾル/30の濃
度1’L / ppbを下回る。
There is almost no danger in handling the produced primer, which has a very low initial loading, and the re-extrusion process requires few processing conditions and λ is 237 gC. At this concentration, which is generally the case, the half-life of Luno-Sol/3θ exceeds 67 minutes, so there is virtually no residual disintegration accelerator after the re-extrusion process, and the retention time For example, if the peroxide in the pellets is only 23 minutes, only 0000017% of the peroxide in the pellets will remain in the extrudate. 30, the processor's extrusion equipment
The extruder residence time is 1000 ml, and the concentration of Lu Yasol/30 in the polymer exiting the extruder is less than 1'L/ppb.

以上のよう属して、本発明によるとポリマー製造業者が
容易にペレット化できると同時に加工業者のベレット加
工能力を有意に改讐しまた上述の目的及び利点を完全に
満足するようにペレットを製造する方法を改良すること
ができるポリマー組成が与えられるものである。
SUMMARY OF THE INVENTION In accordance with the present invention, polymer manufacturers can easily pelletize the pellets, while significantly improving the pelletizing capabilities of processors, and producing pellets that fully satisfy the above objectives and advantages. What is provided is a polymer composition that allows the process to be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るaつの崩壊促進剤の実施例t 用
イたプリプロピレンの押出温度における反応時間と粘度
との相関関係を示すグラフである。
FIG. 1 is a graph showing the correlation between the reaction time and viscosity at the extrusion temperature of propylene used in Example t of the disintegration accelerator according to the present invention.

Claims (1)

【特許請求の範囲】 (1)重量平均分子量の大針い、72 リプルピレンを
調製する1鵬、 上記lリデロビレンにポリプロピレン中の半減期が37
&?(/qθ、6℃)の温度において0.3分を超える
値を有する遊離基源崩壊促進剤を添加する工程、及び 上記Iリマーをペレット化し、このペレット化がペレッ
ト化した後少くとも約0.0 /重量・や−セントの崩
壊促進剤が残留してさらに崩壊作用を行なうような条件
下で行なわれるペレット化工程、 を含むことを特徴とする4リデロビレンの加工方法。 (2)前記残留崩壊促進剤を実質的に完全に反応せしめ
てフィルム及び*雑形成に適する低粘度グロビレン?リ
マーを生成させる条件下で前愕已ベレット化ポリマーを
押出しする工程を含むことを特徴とする特許請求の範囲
#(11項W?敏の方法・(3)  前記ポリプロピレ
ンは前P崩壊促進剤を添加する前に約、2.ff4θθ
O乃至s o o、 o o oの範囲の重量平均分子
!及び約10乃至/Sの分子量分布を有することを特徴
とする特許請求の曾囲第(11項記載の方法。 (4)前P崩壊促進剤は前記、j? リマーの重量の約
0.0 /乃至069%の量だけ添加され月つ前r残留
部分は前記崩壊促進剤の7s%までであることを特徴と
する特許請求の1囲第(1)項配豐の方法。 (5)前配簡壊促進剤が実質的に完全に反応した伊、前
記プロピレン4リマーは分子量分布が約2J乃至ダ、S
の状態で約6θOOO乃至13aoooの範囲の重量平
均分子量を有することを特徴とする特許請求の範囲第(
2)項記載の方法。 (6)前記崩壊促進剤が、2.S−ジメチルーコ、Sビ
ス−(t−ブチルペロキシ)ヘキシン−3及ヒ3゜ム4
デ9−ペンタメチル−3−(酢酸エチル)−lユ剣!−
テキシトラオキシシクロノナンから選ばれることを特徴
とする特許請求の範囲第(1)項記載の方法。 (7)前記残留部分が前記崩壊促進剤のデO%までであ
ることを特徴とする特許請求のIF WJ嬉(4)項記
載の方法。 (sl  約2k(2000乃至!r00000f)#
WKIbる重量平均分子量及び約IO乃至/Sの分子量
分布を有する4リデロビレンを調製する工程、上記ぼり
プロピレンにユs−ジメチルーλSビス−(1−ブチル
4gキシ)ヘキシン−3及tFt&&デデーインタメチ
ル−3−(酢酸エチ)’>−IQ@!−テキシトラオキ
シシクロノナンから選ばれた崩壊促進剤を上記ポリマー
の重量の約0.0 /乃至0.7%の量だけ添加する工
程、及び 上記の崩壊促進剤の少くとも□約7!%がイジツト化後
に未反応分として残留する条件下で崩壊促進剤を含んだ
上記ぼりプロピレンをベレット化する工程 を含むことを特徴とするぼりプ四ピレン加工方法0 (91/ ? Oda℃のmeにおいてポリプロピレン
中の半減期がθ、左分余りの値を有する遊離基源崩壊促
進剤を含有するポリプロピレンペレット。 帥 前r崩壊促進剤が2.3−ジメチル−2,tビス−
(、t−ブチル−e四キシ)ヘキシン−3及びat49
:?−−eンタメチルー3−(酢酸エチル)−<zqs
−テキシトラオキシシクロノナンから選ばれ且つ$ 1
7 ff−の重量に対して少くとも0.0 /%の量で
存在することを特徴とする特許請求の範囲第(9)項記
載のIリプロピレンベレットO
[Scope of Claims] (1) A method for preparing lipulpyrene having a large weight average molecular weight of 72;
&? adding a free radical source decay accelerator having a value greater than 0.3 min at a temperature of (/qθ, 6°C), and pelletizing the I remer, which A method for processing 4-liderobyrene, comprising: a pelletizing step carried out under conditions such that a disintegration accelerator of .0/wt. is left behind and further disintegrates. (2) A low viscosity globylene suitable for substantially complete reaction of the residual disintegration accelerator to form a film and *miscellaneous? Claim #11 W?Min's method (3) The polypropylene contains a pre-P disintegration accelerator, comprising the step of extruding the pre-prepared pelletized polymer under conditions that produce remer. Approximately 2.ff4θθ before adding
Weight average molecules ranging from O to so o, o o o! and a molecular weight distribution of from about 10 to about 1/S (method according to claim 11). The method according to paragraph (1) of claim 1, characterized in that the disintegration accelerator is added in an amount of 0.069% and the remaining portion is up to 7% of the disintegration accelerator. When the disintegration accelerator has substantially completely reacted, the propylene 4-limer has a molecular weight distribution of about 2J to
Claim No.
2) Method described in section 2). (6) The disintegration accelerator comprises 2. S-dimethylruco, S-bis-(t-butylperoxy)hexyne-3 and him3゜4
De9-pentamethyl-3-(ethyl acetate)-l Yuken! −
The method according to claim (1), characterized in that it is selected from texitroxycyclononane. (7) The method according to claim (4), characterized in that the residual portion is up to 0% of the disintegration accelerator. (sl approx. 2k (2000~!r00000f)#
A step of preparing 4-riderobyrene having a weight average molecular weight of WKIb and a molecular weight distribution of about IO to /S, adding s-dimethyl-λS bis-(1-butyl 4 g xy) hexyne-3 and tFt &amp; -3-(Ethyl acetate)'>-IQ@! - adding a disintegration accelerator selected from texitroxycyclononane in an amount of about 0.0/-0.7% by weight of said polymer, and at least about □ about 7% of said disintegration accelerator; Processing method for polypyrene 0 (91/ ? Oda℃ me A polypropylene pellet containing a free radical source decay accelerator having a half-life in polypropylene of θ, where the disintegration accelerator is 2,3-dimethyl-2,tbis-
(,t-butyl-e-4xy)hexyne-3 and at49
:? --e enthamethyl-3-(ethyl acetate)-<zqs
- texitroxycyclononane and $1
I-lipropylene pellet O according to claim 9, characterized in that it is present in an amount of at least 0.0/% with respect to the weight of 7 ff-
JP57102925A 1981-06-15 1982-06-15 Polymer processability improvement and polymer composition Granted JPS5823804A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27393881A 1981-06-15 1981-06-15
US273938 1981-06-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3297561A Division JPH0798843B2 (en) 1981-06-15 1991-11-14 Polypropylene pellets

Publications (2)

Publication Number Publication Date
JPS5823804A true JPS5823804A (en) 1983-02-12
JPH0443924B2 JPH0443924B2 (en) 1992-07-20

Family

ID=23046062

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57102925A Granted JPS5823804A (en) 1981-06-15 1982-06-15 Polymer processability improvement and polymer composition
JP3297561A Expired - Lifetime JPH0798843B2 (en) 1981-06-15 1991-11-14 Polypropylene pellets

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP3297561A Expired - Lifetime JPH0798843B2 (en) 1981-06-15 1991-11-14 Polypropylene pellets

Country Status (15)

Country Link
JP (2) JPS5823804A (en)
KR (1) KR860001115B1 (en)
AU (1) AU554655B2 (en)
BE (1) BE893522A (en)
BR (1) BR8203490A (en)
CA (1) CA1210176A (en)
DE (1) DE3222498C2 (en)
FR (1) FR2507607B1 (en)
GB (1) GB2100268B (en)
IT (1) IT1157210B (en)
LU (1) LU84200A1 (en)
MX (1) MX167645B (en)
NL (1) NL190931C (en)
PH (1) PH19549A (en)
ZA (1) ZA824064B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099108A (en) * 1983-11-04 1985-06-03 Tokuyama Soda Co Ltd Preparation of molded article of polypropylene

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966952A (en) * 1984-06-01 1990-10-30 The Hygenic Corporation Thermoplastic polymer composition comprising trans 1,4-polyisoprene
US4766200A (en) * 1984-06-01 1988-08-23 The Hygenic Corporation Process for improving the melt flow index of thermoplastic polymers
EP0227048A3 (en) * 1985-12-24 1989-03-08 Paul J. Albee, Jr. Peroxide concentrate and polymer carrier
US4707524A (en) * 1986-05-06 1987-11-17 Aristech Chemical Corporation Controlled-rheology polypropylene
US4882407A (en) * 1986-12-23 1989-11-21 The Hygenic Corporation Thermoplastic endodontic composition having improved melt flow index
FR2613722B1 (en) * 1987-04-07 1990-11-23 Bp Chimie Sa PROCESS FOR THE MANUFACTURE OF PROPYLENE HOMOPOLYMER OR COPOLYMER GRANULES
GB2206524B (en) * 1987-07-08 1990-03-07 Courtaulds Films & Packaging Voided polypropylene films
GB2206525B (en) * 1987-07-08 1990-03-07 Courtaulds Films & Packaging Orientated polypropylene films
FR2620079B1 (en) * 1987-09-04 1990-01-19 Arjomari Prioux HIGH-MOULDABILITY REINFORCED THERMOPLASTIC SHEET
US5264493A (en) * 1988-02-19 1993-11-23 Fina Research, S.A. Process for the treatment of polypropylene
FR2627498B1 (en) * 1988-02-19 1990-07-06 Labofina Sa POLYPROPYLENE PROCESSING PROCESS
US5198506A (en) * 1991-05-10 1993-03-30 Phillips Petroleum Company High organic peroxide content polypropylene
AT403581B (en) * 1993-06-07 1998-03-25 Danubia Petrochem Polymere METHOD FOR PRODUCING NEW POLYPROPYLENE BY CHEMICAL DEGRADING
DE4321529A1 (en) * 1993-06-29 1995-01-12 Danubia Petrochem Deutschland Novel polypropylenes obtainable by chemical degradation
US5814404A (en) * 1994-06-03 1998-09-29 Minnesota Mining And Manufacturing Company Degradable multilayer melt blown microfibers
US5594074A (en) * 1995-02-21 1997-01-14 Shell Oil Company Process for improving processability of ultra low melt viscosity polymer
US6423800B1 (en) * 1999-05-26 2002-07-23 Fina Technology, Inc. Pelletized polyolefin having ultra-high melt flow and its articles of manufacture
GB0005629D0 (en) 2000-03-10 2000-05-03 Clariant Int Ltd Light stabilizer composition
DE102011110154A1 (en) * 2011-08-12 2013-02-14 Deutsche Institute Für Textil- Und Faserforschung Denkendorf METHOD FOR THE PRODUCTION OF SURFACE-MODIFIED POLYOLEFIN YARNES, THE POLYOLEFINGARIN THEREFORE AVAILABLE AND THE USE THEREOF

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833023A (en) * 1971-08-30 1973-05-07
JPS5354247A (en) * 1976-10-27 1978-05-17 Furukawa Electric Co Ltd:The Preparation of organic peroxide impregnatedpolyolefinic resin pellets or gra nules

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148196B2 (en) * 1972-03-11 1976-12-18
TR17756A (en) * 1972-07-25 1976-07-01 Oesterr Stickstoffwerke Ag PROCEDURE FOR THE MANUFACTURING OF POLYPROPYLENE WITH MAHDUT MOLECUEL WEIGHT
JPS5635689B2 (en) * 1973-03-13 1981-08-19
US4087486A (en) * 1975-05-15 1978-05-02 Standard Oil Company (Indiana) Polypropylene composition containing EPR
JPS55742A (en) * 1978-06-20 1980-01-07 Kazuo Saotome Polymer composition composed of polypropylene having relatively low molecular weight
US4296022A (en) * 1980-06-04 1981-10-20 Chevron Research Polypropylene blend compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833023A (en) * 1971-08-30 1973-05-07
JPS5354247A (en) * 1976-10-27 1978-05-17 Furukawa Electric Co Ltd:The Preparation of organic peroxide impregnatedpolyolefinic resin pellets or gra nules

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099108A (en) * 1983-11-04 1985-06-03 Tokuyama Soda Co Ltd Preparation of molded article of polypropylene
JPH0587523B2 (en) * 1983-11-04 1993-12-17 Tokuyama Soda Kk

Also Published As

Publication number Publication date
JPH0443924B2 (en) 1992-07-20
GB2100268B (en) 1984-09-19
KR840000589A (en) 1984-02-25
NL8202406A (en) 1983-01-03
FR2507607A1 (en) 1982-12-17
AU8476782A (en) 1982-12-23
IT8248643A0 (en) 1982-06-15
GB2100268A (en) 1982-12-22
DE3222498A1 (en) 1983-01-05
DE3222498C2 (en) 1994-04-07
ZA824064B (en) 1983-04-27
FR2507607B1 (en) 1986-08-14
KR860001115B1 (en) 1986-08-13
NL190931B (en) 1994-06-01
LU84200A1 (en) 1983-01-20
JPH0798843B2 (en) 1995-10-25
NL190931C (en) 1994-11-01
PH19549A (en) 1986-05-20
AU554655B2 (en) 1986-08-28
MX167645B (en) 1993-03-31
BR8203490A (en) 1983-06-07
CA1210176A (en) 1986-08-19
IT1157210B (en) 1987-02-11
JPH051111A (en) 1993-01-08
BE893522A (en) 1982-12-15

Similar Documents

Publication Publication Date Title
JPS5823804A (en) Polymer processability improvement and polymer composition
US4451589A (en) Method of improving processability of polymers and resulting polymer compositions
US2404713A (en) Method for preparing polymeric solutions
Tzoganakis et al. Controlled degradation of polypropylene: a comprehensive experimental and theoretical investigation
US5264493A (en) Process for the treatment of polypropylene
DE1141455B (en) Process for the production of thermoplastic copolymers
EP0334829B1 (en) Process for the treatment of polypropylene
US3919171A (en) Process for preparing tertiary amyl phenol sulfides in a friable state
SG175134A1 (en) Pelletized low molecular weight brominated aromatic polymer compositions
JPS63502992A (en) Ethylene polymer composition and method for producing the same
Shamsuri et al. A preliminary investigation on processing, mechanical and thermal properties of polyethylene/kenaf biocomposites with dolomite added as secondary filler
JPS59227916A (en) Production of trioxane polymer or copolymer
US2104760A (en) Plastic materials
JPS601216A (en) Production of trioxane copolymer
JP2000169522A (en) Treatment of olefin polymer with peroxide
US3086966A (en) 2, 5-dimethyl-2, 5-di(t-butylperoxy) hexane
US6359077B1 (en) Process for producing high melt flow polymers
US3030322A (en) Method of mixing polymeric hydrocarbons and waxes
US5300539A (en) Post-polymerization additive incorporation process
KR102601295B1 (en) Composition for polymeric chain extension
US2700035A (en) Production of polyvinyl alcohol
BR112019007381B1 (en) PROCESS FOR FORMING A &#34;FUNCTIONALIZED ETHYLENE-BASED POLYMER
US2485796A (en) Polymerization of vinyl esters
US2359196A (en) Production of vinyl aromatic resins
CN105733254B (en) A kind of Melt Stability and polyamide material and preparation method thereof with the solution properties of resistance to chloride