JPS5823798A - Purification of starch sugar containing liquid - Google Patents

Purification of starch sugar containing liquid

Info

Publication number
JPS5823798A
JPS5823798A JP12136881A JP12136881A JPS5823798A JP S5823798 A JPS5823798 A JP S5823798A JP 12136881 A JP12136881 A JP 12136881A JP 12136881 A JP12136881 A JP 12136881A JP S5823798 A JPS5823798 A JP S5823798A
Authority
JP
Japan
Prior art keywords
exchange resin
tower
starch
sugar
containing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12136881A
Other languages
Japanese (ja)
Other versions
JPS6119240B2 (en
Inventor
新田 敦彦
内藤 保男
弘幸 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP12136881A priority Critical patent/JPS5823798A/en
Publication of JPS5823798A publication Critical patent/JPS5823798A/en
Publication of JPS6119240B2 publication Critical patent/JPS6119240B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 いて精製する方法に関する。[Detailed description of the invention] The present invention relates to a method for purification.

澱粉を原料として製造されるブドウ糖、異性化糖、水ア
メなどの糖製品(以下、澱粉糖と総称する)は、清涼飲
料、ジュース、パン、菓子類、かんづめなどの甘味料あ
るいは栄養剤、医薬用などの用途に広く使用されている
。これら澱粉糖は、原料として使用する澱粉や糖化、異
性化の工程で使用される酵素、添加剤などに起因する無
機塩類、色素、蛋白質、アミノ酸、有機酸などの不純物
を含有するため、イオン交換樹脂を用いて精製が行われ
ている。
Sugar products such as glucose, high fructose sugar, and starch syrup (hereinafter collectively referred to as starch sugar) manufactured from starch are used as sweeteners or nutritional supplements for soft drinks, juices, bread, confectionery, candies, etc. It is widely used for medical and other purposes. These starch sugars contain impurities such as inorganic salts, pigments, proteins, amino acids, and organic acids caused by the starch used as a raw material and the enzymes and additives used in the saccharification and isomerization processes. Purification is carried out using resin.

従来の精製法では、強酸性陽イオン交換樹脂床、弱また
は中塩基性陰イオン交換樹脂床および強酸性陽イオン交
換樹脂と強塩基性陰イオン交換樹脂との温床に澱粉糖含
有液を順次通液して精製が行われていた。この際、澱粉
糖含有液の通液は下向流で行われ、再生剤の通液も、強
酸性陽イオン交換樹脂床と弱または中塩基性陰イオン交
換樹脂床については下向流で行われていた。
In conventional purification methods, a starch-sugar-containing liquid is sequentially passed through a bed of strongly acidic cation exchange resin, a bed of weakly or moderately basic anion exchange resin, and a hot bed of strongly acidic cation exchange resin and strongly basic anion exchange resin. The liquid was then purified. At this time, the starch sugar-containing liquid is passed in a downward flow, and the regenerant is also passed in a downward flow for the strongly acidic cation exchange resin bed and the weak or medium basic anion exchange resin bed. I was worried.

しかし、この方法においては、再生剤′の使用量が多い
、精製処理能力、例えばlサイクルあたシの澱粉糖含有
液の処理量が低い、澱粉糖含有液の比重が大きく通液中
にイオン交換樹脂が浮遊してしまい精製が不充分になる
ことがある、処理液の品質が不良で、特に着色に対する
安定性が悪い(貯蔵中に着色度が増大する)などの欠点
を有しており、その改良が強く望捷れていた。
However, in this method, the amount of regenerating agent used is large, the processing capacity of the starch sugar-containing solution is low, e.g. It has disadvantages such as the exchange resin may float, resulting in insufficient purification, the quality of the processing liquid is poor, and the stability against coloring is particularly poor (the degree of coloring increases during storage). , the improvements were highly anticipated.

従来の精製法のこのような欠点を改良するいくdT″ つかの方法提案されており、例えば、従来の精製へ 法において強酸性陽イオン交換樹脂床および弱まだは中
塩基性陰イオン交換樹脂床に澱粉糖含有液を゛下向流で
通液し、再生剤は上向流で通液するという向流再生方式
が提案されている。この方法では、確かに再生剤使用量
や精製処理能力にはある程度の改善がみられるが、澱粉
糖含有液を下向流で通液しているため通液中にイオン交
換樹脂が浮遊して精製が不充分になったり、再生剤を上
向流で通液しているためイオン交換樹脂床がゆるんで乱
れ、再生が不充分になったりするという欠点を有してい
る。そのためか、処理液の液質も従来法と比べてほとん
ど向上せず、着色に対する安定性も悪い。
Several methods have been proposed to improve these shortcomings of conventional purification methods, such as the use of strongly acidic cation exchange resin beds and weak or moderately basic anion exchange resin beds in conventional purification methods. A countercurrent regeneration method has been proposed in which a starch-sugar-containing solution is passed in a downward flow and a regenerant is passed in an upward flow. However, since the starch-sugar-containing solution is passed in a downward flow, the ion exchange resin may float during the flow, resulting in insufficient purification, or the regenerant may be passed in an upward flow. The problem is that the ion-exchange resin bed is loosened and disturbed, resulting in insufficient regeneration.Perhaps for this reason, the quality of the treated solution is hardly improved compared to conventional methods. , the stability against coloring is also poor.

また、異性化糖用ブドウ糖含有液を強酸性陽イオン交換
樹脂床、弱または中塩基性陰イオン交換樹脂床、強酸性
陽イオン交換樹脂床および強塩基性陰イオン交換樹脂床
に順次上向流で通液し、再生剤は下向流で通液するとい
う向流再生方式が提案されている(特開昭53−136
536)、、、この方法では再生剤使用量、精製処理能
力に対する改善およびブドウ糖含有液通液中のイオン交
換樹脂の浮遊、再生剤通液中のイオン交換樹脂の乱れに
対する改善はみられるが、処理されたブドウ糖含有液の
pI4が高く、そのために着色に対する安定性が非常に
悪いという大きな欠点を有する。この方法は、イオン交
換樹脂で精製されたあと引続き異性化をうけるブドウ糖
含有液の精製には使用可能であるが、他の澱粉糖、例え
ば異性化糖用以外のブドウ糖、異性化糖、水アメなどの
精製に適用することは不可能である。
In addition, the glucose-containing liquid for isomerized sugar is sequentially flowed upward into a strongly acidic cation exchange resin bed, a weak or medium basic anion exchange resin bed, a strongly acidic cation exchange resin bed, and a strong basic anion exchange resin bed. A countercurrent regeneration method has been proposed in which the liquid is passed through the regenerating agent in a downward direction (Japanese Patent Application Laid-Open No. 136-1983).
536), Although this method improves the amount of regenerant used, the purification processing capacity, the floating of the ion exchange resin during the passage of the glucose-containing liquid, and the disturbance of the ion exchange resin during the passage of the regenerant, The major drawback is that the treated glucose-containing liquid has a high pI4 and therefore very poor stability against coloring. Although this method can be used to purify glucose-containing liquids that undergo subsequent isomerization after being purified with an ion exchange resin, it can be used to purify other starch sugars, such as glucose other than high-fructose isomerized sugar, high-fructose isomerized sugar, and starch syrup. It is impossible to apply it to purification such as

本発明者は、澱粉糖含有液の従来の精製法およびその改
良として提案されている精製法の有する上記の如き欠点
を解決すべく鋭意検討を行なった結果、従来の精製法に
おいて、強酸性陽イオン交換樹脂床および弱または中塩
基性陰イオン交換樹脂床に澱粉糖含有液を上向流で通液
し且つ再生剤を下向流で通液することによシ、これら欠
点が解決され、特に処理液の着色に対する′安定性が格
段に向上することを見出し、本発明を完成するに到った
The present inventor has conducted extensive studies to solve the above-mentioned drawbacks of conventional purification methods for starch-sugar-containing liquids and purification methods proposed as improvements thereto, and has found that, in conventional purification methods, strong acid oxidation These drawbacks are overcome by passing the starch sugar-containing liquid in an upward flow and the regenerant in a downward flow through the ion exchange resin bed and the weak or medium basic anion exchange resin bed. In particular, it has been found that the stability against coloring of the treatment liquid is significantly improved, and the present invention has been completed.

すなわち、本発明は、澱粉糖含有液を強酸性陽イオン交
換樹脂床、弱または中塩基性陰イオン交換樹脂床および
強酸性陽イオン交換樹脂と強塩基性陰會オン交換樹脂と
の混床に順次通液して精製する方法において、強酸性陽
イオン交換樹脂床および弱または中塩基性陰イオン交換
樹脂床に澱粉糖含有液を上向流で通液し再生剤を下向流
で通液する澱粉糖含有液の精製法である。
That is, the present invention provides a solution containing starch sugar in a strongly acidic cation exchange resin bed, a weak or medium basic anion exchange resin bed, and a mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin. In the sequential purification method, a starch sugar-containing solution is passed in an upward flow through a strongly acidic cation exchange resin bed and a weak or medium basic anion exchange resin bed, and a regenerant is passed in a downward flow. This is a method for purifying starch-sugar-containing liquids.

本発明の処理対象となる澱粉糖含有液は、コーン、スタ
ーチ、馬鈴薯澱粉、甘しょ澱粉、タピオカ澱粉などの澱
粉を原料として製造されるブドウ。
The starch-sugar-containing liquid to be treated in the present invention is grapes produced from starches such as corn, starch, potato starch, cane starch, and tapioca starch.

糖や水アメ、ブドウ糖を異性化して製造される異性化糖
、ブドウ糖を還元して製造されるノルビットなどを含有
する水溶液であり、濃度は、通常20ないし70重量%
の範囲である。
It is an aqueous solution containing sugar, starch syrup, isomerized sugar produced by isomerizing glucose, norbit produced by reducing glucose, and the concentration is usually 20 to 70% by weight.
is within the range of

このような澱粉糖含有液は、強酸性陽イオン交換樹脂を
充填したイオン交換塔(以下に塔と略記する)、弱また
は中塩基性陰イオン交換樹脂を充填したイオン交換塔(
以下A塔と略記する)、および強酸性陽イオン交換樹脂
と強塩基性陰イオン交換樹脂が混合された状態で充填さ
れているイオン交換塔(以下MB塔と略記する)に順次
通液することにより精製されるが、本発明はかかる精製
法のに塔およびA塔において、澱粉糖含有液を塔底から
塔頂に向けて上向流で通液することを第1の特徴として
いる。
Such a starch sugar-containing liquid can be prepared using an ion exchange tower (hereinafter abbreviated as "tower") filled with a strongly acidic cation exchange resin, or an ion exchange tower (hereinafter referred to as "tower") filled with a weak or medium basic anion exchange resin.
(hereinafter abbreviated as A tower), and an ion exchange tower (hereinafter abbreviated as MB tower) filled with a mixture of a strongly acidic cation exchange resin and a strong basic anion exchange resin. However, the first feature of the present invention is that the starch-sugar-containing liquid is passed in an upward flow from the bottom of the column to the top of the column in the column A and the column A.

澱粉糖含有液の通液は、K塔およびMB塔の陽イオン交
換樹脂を塩酸で、A塔およびMB塔の陰イオン交換樹脂
を苛性ソーダでそれぞれ再生した後に行われるが、本発
明は、K塔およびA・塔において再生剤を澱粉糖含有液
の通液とは逆の方向、すなわち塔頂から塔底に向けて下
向流で通液することを第2の特徴としている。
The starch sugar-containing liquid is passed through after regenerating the cation exchange resins in the K tower and MB tower with hydrochloric acid, and the anion exchange resins in the A tower and MB tower with caustic soda. The second feature is that the regenerant is passed through the A-column in the opposite direction to the passage of the starch-sugar-containing liquid, that is, in a downward flow from the top of the column to the bottom of the column.

但し、MB塔については、常法に従って澱粉糖含有液は
下向流で通液し、再生も常法に従って行なう。
However, as for the MB tower, the starch-sugar-containing liquid is passed in a downward flow according to a conventional method, and the regeneration is also carried out according to a conventional method.

本発明のに塔およびA塔に使用されるイオン交換塔の例
を図面を使って説明する。
An example of an ion exchange column used in the column A and column A of the present invention will be explained using the drawings.

第1図aは、澱粉糖含有液通液時の状態を示す。FIG. 1a shows the state when the starch sugar-containing liquid is passed through.

澱粉糖含有液は澱粉糖含有液人口9よシイオン交換塔内
に入り、ストレーナ−3を通ってイオン交換樹脂5によ
シ吸着処理をうけ、発泡スチロールなどの不活性樹脂層
6およびストレーナ−8を通って、澱粉糖含有液出口l
Oよりイオン交換塔外へ・出る。本発明の効果を充分に
発揮させるためには、澱粉糖含有液の通液時、イオン交
換樹脂の20チ以上がイオン交換塔上部で固定床を形成
するようにすることが好捷しい。イオン交換塔上部で固
定床が形成される割合は、澱粉糖含有液の比重、粘度、
イオン交換樹脂の比重、イオン交換塔内のフリー、ボー
ド(自由空間)の割合などに影響されるが、通常、は、
澱粉糖含有液の流速を空筒基準で2 m/hr 〜50
 m/hr 、 好ましくは、5m/hr〜25 m/
hrの範囲にすればよい。流速を上記の範囲にすること
によシ、イオン交換塔内のフリー・ボードを大きくとっ
ても、イオン交換塔上部に安定した固定床が形成される
ため、樹脂の逆洗を塔内で行なうことも可能となシ、特
別な逆洗塔も不要となる。澱粉糖含有液の流速を前記の
範囲より大きくすると、圧力損失が大きくなりすぎ、ま
た、前記の範囲より小さくすると、固定床が充分に形膚
されないか、澱粉糖含有液が偏流をおこすだめに、充分
な精製を行なうことが不可能となる。
The starch sugar-containing liquid enters the ion exchange tower as the starch sugar-containing liquid 9, passes through a strainer 3, is adsorbed by an ion exchange resin 5, and passes through an inert resin layer 6 such as styrofoam and a strainer 8. Through the starch sugar-containing liquid outlet l
Exit/exit the ion exchange tower from O. In order to fully exhibit the effects of the present invention, it is preferable that 20 or more ion exchange resins form a fixed bed in the upper part of the ion exchange column when the starch sugar-containing liquid is passed through the column. The rate at which a fixed bed is formed at the top of the ion exchange tower depends on the specific gravity, viscosity, and
It is affected by the specific gravity of the ion exchange resin, the proportion of free space in the ion exchange tower, etc., but usually,
The flow rate of the starch sugar-containing liquid is 2 m/hr to 50 m/hr based on the empty cylinder.
m/hr, preferably 5 m/hr to 25 m/hr
It may be within the range of hr. By setting the flow rate within the above range, a stable fixed bed is formed at the top of the ion exchange tower even if the free board inside the ion exchange tower is large, so backwashing of the resin can be performed inside the tower. This also eliminates the need for a special backwash tower. If the flow rate of the starch sugar-containing liquid is made larger than the above range, the pressure loss will become too large, and if it is made smaller than the above range, the fixed bed may not be sufficiently formed or the starch sugar containing liquid may cause uneven flow. , it becomes impossible to perform sufficient purification.

第1図すは、再生剤通液時の状態を示す。再生剤は塔頂
再生剤人口11よりイオン交換塔内に入シ、塔底の再生
剤出口12よシイオン交換塔外に出る。イオン交換樹脂
は、塔下部に固定床を形成し、したがって安定した再生
が可能である。K塔ゝの場合、再生レベル純塩酸50〜
100 gr// −樹脂、再生剤濃度5〜10%、再
生剤流速2〜20rn/h r 、  A塔の場合、再
生レベル純苛性ソーダ35〜80 gr/l−樹脂、再
生剤濃度2〜6チ、再生剤流速2〜20m/hrで再生
を行なうことが好ましい。
Figure 1 shows the state when the regenerant is flowing. The regenerant enters the ion exchange tower through the regenerant port 11 at the top of the tower and exits the ion exchange tower through the regenerant outlet 12 at the bottom of the tower. The ion exchange resin forms a fixed bed at the bottom of the column, thus allowing stable regeneration. In the case of K tower, the regeneration level of pure hydrochloric acid is 50~
100 gr// - resin, regenerant concentration 5-10%, regenerant flow rate 2-20 rn/hr, for A column, regeneration level pure caustic soda 35-80 gr/l - resin, regenerant concentration 2-6 rn/hr. It is preferable to carry out the regeneration at a regenerant flow rate of 2 to 20 m/hr.

第2図aは、別の例での澱粉糖含有液通液時の状態を示
す。イオン交換塔は、ストレーナ−支持板13およびス
トレーナ−14により上下2つの部屋に仕切られ、上の
部屋にはイオン交換樹脂5が、はとんどフリー・ボード
のない状態で充填され、下の部屋には、イオン交換樹脂
5′がフリー・ボードを充分とった状態で充填される。
FIG. 2a shows another example of the state when the starch-sugar-containing liquid is passed through. The ion exchange column is partitioned into two upper and lower chambers by a strainer support plate 13 and a strainer 14. The upper chamber is filled with ion exchange resin 5 without free boards, and the lower chamber is filled with ion exchange resin 5 without free boards. The chamber is filled with ion exchange resin 5' with sufficient free board.

澱粉糖含有液は17よりイオン交換塔内に入シ、ストレ
ーナ−3を通って下の部屋のイオン交換樹脂5′による
吸着処理を受け、ストレーナ−14を通って上の部屋の
イオン交換樹脂5による吸着処理を受けたのち、不活性
樹脂6およびストレーナ−8を通って18よシイオン交
換塔外へ出る。上の部屋のイオン交換樹脂5は固定床を
形成しているので非常に安定した通液が可能である。下
の部屋のイオン交換樹脂5′は、全量が流動床を形成し
てもかまわない。上の部屋と下の部屋のイオン交換樹脂
の蒙比は、通常、l:5〜5:lの範囲である。澱粉糖
含有液の流速は、空筒基準で2 m/h r〜50rn
/ h r ノ範囲、好ましくは3 m/hr 〜25
 m/hrの範囲である。
The starch sugar-containing liquid enters the ion exchange tower from 17, passes through the strainer 3, undergoes adsorption treatment by the ion exchange resin 5' in the lower chamber, and passes through the strainer 14 to the ion exchange resin 5 in the upper chamber. After being subjected to adsorption treatment by 18, it passes through an inert resin 6 and a strainer 8 and exits from the ion exchange column 18. Since the ion exchange resin 5 in the upper chamber forms a fixed bed, extremely stable liquid flow is possible. The entire amount of the ion exchange resin 5' in the lower chamber may form a fluidized bed. The mole ratio of the ion exchange resins in the upper and lower chambers is usually in the range of 1:5 to 5:1. The flow rate of the starch sugar-containing liquid is 2 m/hr to 50 rn based on the empty cylinder.
/hr range, preferably from 3 m/hr to 25
m/hr range.

第2図すは、再生剤通液時の状態を示す。再生剤は塔頂
19よシイオン交換塔に入シ、塔底20からイオン交換
塔を出る。上の部屋、下の部屋ともにイオン交換樹脂は
固定床を形成するので、非常に安定した再生が可能であ
る。、再生の条件は第1図すの場合と同様である。ノく
ルブ16は常時は閉であるが、これを開とし、塔底17
あるいは塔頂19から水を導入し、塔頂18あるいは塔
底20から水を抜くことによシ、下の部屋から上の部屋
へあるいは上の部屋から下の部屋へとイオン交換樹脂を
配管15およびバルブ16を通して移送することができ
る。このようにして、上の部屋あるいは下の部屋でイオ
ン交換樹脂の逆洗を行なうことが可能であシ、特別な逆
洗塔を必要としない。
Figure 2 shows the state when the regenerant is flowing. The regenerant enters the ion exchange column from the top 19 and exits the ion exchange column from the bottom 20. Since the ion exchange resin forms a fixed bed in both the upper and lower chambers, extremely stable regeneration is possible. , the conditions for reproduction are the same as in the case of FIG. The nozzle 16 is normally closed, but when it is opened, the bottom 17
Alternatively, by introducing water from the tower top 19 and removing water from the tower top 18 or tower bottom 20, the ion exchange resin can be piped 15 from the lower chamber to the upper chamber or from the upper chamber to the lower chamber. and can be transferred through valve 16. In this way, it is possible to carry out backwashing of the ion exchange resin in the upper chamber or in the lower chamber, without requiring a special backwashing tower.

本発明のに塔およびA塔として、第1図および第2図に
示したイオン交換塔をともに使用し−うるが、比重の比
較的大きい強酸性陽イオン交換樹脂が充填されるに塔の
場合には第2図、比重が比較的小さく膨潤収縮の大きい
弱まだは中塩基性陰イオン交換樹脂が充填されるA塔の
場合には第1図で示したイオン交換塔を使用した方が好
適である。
In the present invention, both the ion exchange towers shown in FIGS. 1 and 2 can be used as the ion tower and the A tower, but in the case of a ion exchange tower filled with a strongly acidic cation exchange resin having a relatively large specific gravity, It is preferable to use the ion exchange column shown in Figure 2 for the A column, which is filled with a weak to medium basic anion exchange resin that has relatively low specific gravity and large swelling and contraction. It is.

A塔に充填される陰イオン交換樹脂は、弱塩基性樹脂あ
るいは中塩基性樹脂のどちらであっても、また、それら
の混合樹脂であっても、本発明の効果は発揮される。
The effects of the present invention can be exerted regardless of whether the anion exchange resin filled in Tower A is a weakly basic resin or a medium basic resin, or a mixed resin thereof.

A塔の陰イオン交換樹脂およびMB塔の強塩基性陰イオ
ン交換樹脂は、ともに、有機物汚染に対して強いマクロ
・ポーラス型樹脂を使用するのが好ましい。
As the anion exchange resin for the A column and the strongly basic anion exchange resin for the MB column, it is preferable to use macroporous resins that are resistant to organic contamination.

K塔およびMB塔の強酸性陽イオン交換樹脂は、ゲル型
お、よびマクロポーラス型樹脂のいずれであってもかま
わない。
The strongly acidic cation exchange resin of the K tower and the MB tower may be either a gel type resin or a macroporous type resin.

各基の樹脂量は、1サイクルで処理したい澱粉糖含有液
の量、処理すべき澱粉糖含有液のカチオン、アニオンの
含有量および着色度などによって決定される。K塔およ
゛びA塔の樹脂量は、lサイクルで処理すべき澱粉糖含
有液に含有されるカチオンおよびアニオンの総量を除去
するに必要な樹脂量とし、MB塔は、K塔およびA塔か
らリークするカチオンおよびアニオンの除去の役割を持
たせ、その樹脂量は、強酸性陽イオン交換樹脂、強塩基
性陰イオン交換樹脂のそれぞれが、通常、K塔、A塔の
02〜2倍、好ましくは03〜07倍の能力を持つ樹脂
量とする。
The amount of resin for each group is determined by the amount of starch sugar-containing liquid to be treated in one cycle, the content of cations and anions in the starch sugar-containing liquid to be treated, the degree of coloring, etc. The amount of resin in the K tower and the A tower is the amount of resin necessary to remove the total amount of cations and anions contained in the starch sugar-containing liquid to be treated in one cycle. The resin has the role of removing cations and anions leaking from the tower, and the amount of resin is usually 0.2 to 2 times that of the K tower and A tower, respectively, for the strong acidic cation exchange resin and the strong basic anion exchange resin. , preferably the amount of resin has 03 to 07 times the capacity.

本発明の方法によれば、澱粉糖含有液を上向流で通液し
、イオン交換塔上部に固定床を形成させているので、従
来の下向流で通液する方法でみられるような通液中にイ
オン交換樹脂が浮遊してしまうというようなトラブルは
、本質的になく、また、再生剤を下向流で通液している
ので非常に安定した再生が可能であるとともに、向流再
生であるので再生剤の使用量が削減され、1サイクル当
りの澱粉糖含有液の処理量が増加するという利点が得ら
れる。それと同時に、処理された澱粉糖含有液の品質も
向上し、特に、着色に対する安定性が格段に向上する。
According to the method of the present invention, the starch-sugar-containing liquid is passed in an upward flow to form a fixed bed at the top of the ion exchange column, which is different from the conventional method in which the liquid is passed in a downward flow. There is essentially no problem with the ion exchange resin floating during the flow, and since the regenerant is passed through the liquid in a downward flow, very stable regeneration is possible and there is no Since it is a flow regeneration method, the amount of regenerating agent used is reduced and the amount of starch-sugar-containing liquid processed per cycle is increased. At the same time, the quality of the treated starch-sugar-containing liquid is improved, and in particular, its stability against coloring is significantly improved.

これは、従来の精製法あるいはその改良として提案され
ている精製法からは、想定できなかったことである。
This cannot be expected from conventional purification methods or purification methods proposed as improvements thereto.

澱粉糖含有液の着色度は、試料を純水で希釈し澱粉糖濃
度0.3 gr/mlに調整したものについて、分光光
度計によシ、液層IQcmの波長42 Q nmおよび
7201mにおける吸光度を測定し、両波長における吸
光度の差として求められるが、従来の精製法あるいはそ
の改良として提案されている精製法で精製された澱粉糖
含有液は、精製直後0.01〜005であった着色度が
、30℃で1ケ月間放置することにより0.07〜01
程度1で増加するのに対し、本発明の方法で精製された
澱粉糖含有液は、精製直後−001程度であった着色度
が、30℃で1ケ月間放置した後でも0.02〜0.0
3であり、着色に対し非常に安定である。
The degree of coloration of the starch sugar-containing liquid is determined by the absorbance at the wavelength 42 Q nm and 7201 m of the liquid phase IQ cm using a spectrophotometer after diluting the sample with pure water and adjusting the starch sugar concentration to 0.3 gr/ml. It is determined as the difference in absorbance at both wavelengths, but the starch sugar-containing liquid purified by the conventional purification method or the purification method proposed as an improvement thereof has a coloration of 0.01 to 0.05 immediately after purification. By leaving it at 30℃ for 1 month, the temperature will be 0.07~01.
In contrast, in the starch-sugar-containing liquid purified by the method of the present invention, the degree of coloration was about -001 immediately after purification, but even after being left at 30°C for one month, the degree of coloration decreased to 0.02 to 0. .0
3, and is very stable against coloring.

このように着色に対する安定性が向上する理由は、はつ
きシーとはわからないが、蛋白質あるいはアミノ酸が着
色の原因であるといわれていることから考えると、本発
明の方法では、澱粉糖含有液の上向流通液および再生剤
の下向流通液が非常に安定した゛状態で行なえるため、
蛋白質あるいはアミノ酸の除去率が格段に向−卜してい
るためと推定される。
The reason why the stability against coloring improves in this way is not clear, but considering that proteins or amino acids are said to be the cause of coloring, the method of the present invention can improve the stability of starch-sugar-containing liquids. Since the upward flowing liquid and the downward flowing liquid of the regenerant can be carried out in a very stable state,
This is presumed to be because the removal rate of proteins or amino acids is significantly improved.

次に実施例により本発明を更に説明する。Next, the present invention will be further explained with reference to Examples.

実施例 コーン・スターチを原料と腰液化酵素、糖化7酵素を使
って製造された糖化液を活性炭処理して、表1に示した
原糖液を得た。
Example A saccharification solution produced using corn starch as a raw material, a liquefaction enzyme, and 7 saccharification enzymes was treated with activated carbon to obtain the raw sugar solution shown in Table 1.

次に、強酸性陽イオン交換樹脂レバチット5100WS
 (バイエル社登録商標)250meを充填したに塔、
弱塩基性陰イオン交換樹脂レバチットhlP62WS5
00mlを充填したA塔、強酸性陽イオン交換樹脂レバ
チットSP I 12 W8100m/と強塩基性陰イ
オン交換樹脂レバチット〜fP600W8280 ml
とを充填したMB塔に原糖液を5//hrで順次通液し
、精製処理を行なった。K塔およびA塔は、上向流で通
液し、MB塔は下向流で通液した。
Next, strongly acidic cation exchange resin Revachit 5100WS
(Bayer registered trademark) 250me-filled tower,
Weakly basic anion exchange resin Revatit hlP62WS5
A tower filled with 00ml of strongly acidic cation exchange resin Revatit SP I 12 W8100m/and strong basic anion exchange resin Revatit~fP600W8280ml
The raw sugar solution was sequentially passed through the MB tower filled with 5/hr at 5/hr for purification. Liquid was passed through the K column and A column in an upward flow, and liquid was passed in a downward flow in the MB column.

原糖液の通液に先たち、K塔は6チ塩酸水溶液245m
/を500 me/hrで、A塔は4%苛性ソーダ水溶
液535 mlを1000 ml/hrで、下向流で通
液し再生した。MB塔は、陽イオン交換樹脂と陰イオン
交換樹脂を分離したのち、陰イオン交換樹脂は4%苛性
ソーダ水溶液535 mlを10100O/hrで、陽
イオン交換樹脂は6%塩酸水溶液130m1!を300
 ml/hr テ通液し、再生した。
Prior to passing the raw sugar solution, the K tower was filled with 245 m of 6-dihydrochloric acid aqueous solution.
/ at 500 me/hr, and tower A was regenerated by passing 535 ml of 4% caustic soda aqueous solution at 1000 ml/hr in a downward flow. After separating the cation exchange resin and anion exchange resin in the MB tower, the anion exchange resin was treated with 535 ml of 4% caustic soda aqueous solution at 10,100 O/hr, and the cation exchange resin was treated with 130 ml of 6% hydrochloric acid aqueous solution! 300
The solution was passed through at a rate of ml/hr and regenerated.

原糖液の精製処理は、MB塔出口の処理液の電気伝導度
が2μv/cmを越した時点で終了させ、次のサイクル
の再生に入った。
The purification process of the raw sugar solution was terminated when the electrical conductivity of the treated liquid at the outlet of the MB tower exceeded 2 μv/cm, and the next cycle of regeneration was started.

このようにして、再生と精製処理を4回く9かえした。In this way, the regeneration and purification treatments were repeated 4 times for 9 times.

2〜4サイクルにおける糖化液の処理量および処理液の
分析結果を表1に示した。また処理液の着色に対する安
定性をみるために、処理液を30℃の恒温槽中に1ケ月
間放置した後の着色度の測定を行なった。その結果も表
1に示した。
Table 1 shows the amount of saccharified solution processed and the analysis results of the treated solution in cycles 2 to 4. In order to examine the stability of the treatment liquid against coloring, the degree of coloration was measured after the treatment liquid was left in a constant temperature bath at 30° C. for one month. The results are also shown in Table 1.

表において、 実施例1は、K塔、A塔ともに第1図に示したイオン交
換塔を使用した場合である3、実施例2は、K塔として
第2図に示したイオン交換塔、A塔として第1図に示し
たイオン交換塔を使用した場合である。
In the table, Example 1 uses the ion exchange tower shown in Figure 1 for both the K tower and the A tower3, and Example 2 uses the ion exchange tower shown in Figure 2 as the K tower, and the case where A This is a case where the ion exchange column shown in FIG. 1 is used as the column.

比較例1は、K塔、A塔の糖化液の通液を下向流にした
他は実施例1と同様に精製処理を行なった結果を表1に
示した。
In Comparative Example 1, the purification treatment was carried out in the same manner as in Example 1, except that the saccharified liquid was passed through the K tower and the A tower in a downward flow, and the results are shown in Table 1.

比較例2は、K塔、A塔の糖化液の通液を下向流にし、
再生剤の通液を上向流にした他は、実施例1と同様に精
製処理を行なった結果を示す。
In Comparative Example 2, the saccharified liquid was passed through the K tower and the A tower in a downward flow,
The results are shown in which the purification treatment was carried out in the same manner as in Example 1, except that the regenerant was passed in an upward flow.

比較例3は、強酸性陽イオン交換樹脂レバチットS 1
00W8 250m/ (K l塔)、弱塩基性陰イオ
ン交換樹脂レバチットMP62WS  500rr+1
!(AI塔)、強酸性陽イオン交換樹脂レバチット5P
112WS  1ooml!(K2塔)、強塩基性陰イ
オン交換樹脂MP600WS  2somJ (A2塔
)に順次、上向流で糖化液を通液し精製処理を行なった
結果である。再生は、K2塔からKllベヘンリーズ6
%塩酸水溶液340 mlを500 me/h rで、
A2塔からAl塔へシリーズで4チ苛性ノーダ水溶液8
40rr+j’をI O00ml/hrで、下向流で通
液して行なった。
Comparative Example 3 is a strongly acidic cation exchange resin Rebatit S 1
00W8 250m/(Kl tower), Weakly basic anion exchange resin Revatit MP62WS 500rr+1
! (AI tower), strongly acidic cation exchange resin Revatit 5P
112WS 1ooml! (K2 tower) and the strong basic anion exchange resin MP600WS 2somJ (A2 tower) were subjected to purification treatment by sequentially passing the saccharified solution in an upward flow. Regeneration from K2 Tower to Kll Behenries 6
% hydrochloric acid aqueous solution at 500 me/hr,
From the A2 tower to the Al tower, 4 samples of caustic nodal aqueous solution 8 are added in series.
The test was carried out by passing 40rr+j' of I O at 00ml/hr in a downward flow.

表1の結果かられかるように、実施例1および2は、従
来の精製法である比較例1およびその改良として提案さ
れている比較例2および3と比べて、1サイクルあたシ
の処理量、処理液の品質ともにすぐれておシ、特に処理
液の着色に対する安定性は大巾に向上している。
As can be seen from the results in Table 1, Examples 1 and 2 have a higher processing rate per cycle than Comparative Example 1, which is a conventional purification method, and Comparative Examples 2 and 3, which are proposed as improvements. Both the quantity and the quality of the processing liquid are excellent, and in particular, the stability against coloring of the processing liquid has been greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明を実施するだめに利用されるイオン交換
塔の例を示す。 第1図aおよび第2図aは、澱粉糖含有液を通液してい
るときの状態を示し、第1図すおよび第2図すは、再生
剤を通液しているときの状態を示す。 図面中の記号は、次のものを示す。 1:塔   2.7.13ニストレーナ−支持板3.8
.14ニストレーナ− 4:フリー・ボード(自由空間) 5.5′:イオン交換樹脂   6:不活性樹脂9:澱
粉糖含有液入口 10:澱粉糖含有液出口 11:再生剤人口    12:再生剤出口15:樹脂
移送配管   16:バルプ17:澱粉糖含有液および
樹脂移送水入口18:澱粉糖含有液および樹脂移送水出
口19:再生剤および樹脂移送水入口 20:再生剤および樹脂移送水入口 詩詐士・殻ノ\      粘 冒 三1上五τc?J$六外1つ f 第 (+2.) j!I12
The drawings illustrate examples of ion exchange columns that may be utilized to carry out the present invention. Figures 1a and 2a show the state when the starch-sugar-containing solution is being passed through, and Figures 1 and 2 show the state when the regenerant is being passed through. show. Symbols in the drawings indicate the following: 1: Tower 2.7.13 Ni strainer-support plate 3.8
.. 14 Ny strainer 4: Free board (free space) 5.5': Ion exchange resin 6: Inert resin 9: Starch sugar-containing liquid inlet 10: Starch sugar-containing liquid outlet 11: Regenerant population 12: Regenerant outlet 15: Resin transfer piping 16: Valp 17: Starch sugar-containing liquid and resin transfer water inlet 18: Starch sugar-containing liquid and resin transfer water outlet 19: Regenerant and resin transfer water inlet 20: Regenerant and resin transfer water inlet Shi・Kakano\ Mutsukura 31, 5 τc? J$6 out of 1 f th (+2.) j! I12

Claims (1)

【特許請求の範囲】[Claims] 澱粉糖含有液を強酸性陽イオン交換樹脂床、弱捷たは中
塩基性陰イオン交換樹脂床および強酸性陽イオン交換樹
脂と強塩基性陰イオン交換樹脂との混床に順次通液して
精製する方法において、強酸性陽イオン交換樹脂床およ
び弱または中塩基性陰イオン交換樹脂床に澱粉糖含有液
を上面流で通液し再生剤を下向流で通液することを特徴
とする澱粉糖含有液の精製法。
The starch sugar-containing liquid is sequentially passed through a strongly acidic cation exchange resin bed, a weakly or medium basic anion exchange resin bed, and a mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin. The purification method is characterized by passing a starch sugar-containing liquid through a strongly acidic cation exchange resin bed and a weak or medium basic anion exchange resin bed in an upward flow, and passing the regenerant in a downward flow. A method for purifying starch sugar-containing liquids.
JP12136881A 1981-08-04 1981-08-04 Purification of starch sugar containing liquid Granted JPS5823798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12136881A JPS5823798A (en) 1981-08-04 1981-08-04 Purification of starch sugar containing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12136881A JPS5823798A (en) 1981-08-04 1981-08-04 Purification of starch sugar containing liquid

Publications (2)

Publication Number Publication Date
JPS5823798A true JPS5823798A (en) 1983-02-12
JPS6119240B2 JPS6119240B2 (en) 1986-05-16

Family

ID=14809508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12136881A Granted JPS5823798A (en) 1981-08-04 1981-08-04 Purification of starch sugar containing liquid

Country Status (1)

Country Link
JP (1) JPS5823798A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279800A (en) * 1985-10-04 1987-04-13 昭和産業株式会社 Method for purifying sugars
JP2016093110A (en) * 2014-11-13 2016-05-26 三菱レイヨンアクア・ソリューションズ株式会社 Manufacturing method of starch sugar-containing liquid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05165181A (en) * 1991-12-13 1993-06-29 Fc Seisakusho:Kk Method for developing exposed film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279800A (en) * 1985-10-04 1987-04-13 昭和産業株式会社 Method for purifying sugars
JP2016093110A (en) * 2014-11-13 2016-05-26 三菱レイヨンアクア・ソリューションズ株式会社 Manufacturing method of starch sugar-containing liquid

Also Published As

Publication number Publication date
JPS6119240B2 (en) 1986-05-16

Similar Documents

Publication Publication Date Title
US4519845A (en) Separation of sucrose from molasses
CA1333779C (en) Method for producing galactooligosaccharide
BRPI0414761B1 (en) METHOD FOR PRODUCING AN INVERTED SYRUP PRODUCT FROM RAW SUGAR JUICE
US2388195A (en) Process for purification of sugar juices and the like
JPH0154040B2 (en)
US4533398A (en) Extraction of sucrose
US5032686A (en) Method for the recovery of citric acid from a liquor containing the same
JPS5823798A (en) Purification of starch sugar containing liquid
US4461649A (en) Desorption technique
HU194943B (en) Process for continous separation of fructose from syrups made from glucose inverted sugar or izomeric glucose
JPH0217158B2 (en)
US2911329A (en) Sugar purification with ion exchangers
US2560504A (en) Demineralization of sucrose solutions by ion exchange
US4426232A (en) Extraction of sucrose
JPS6260942B2 (en)
CN110835656A (en) Sachima syrup purification process based on polysaccharide fiber carbon degumming technology
US2746889A (en) Interconversion of sugars using anion exchange resins
US4182634A (en) Process for purifying maltose solution
US5106638A (en) Process for decolorizing and demineralizing fruit juice and must
US4483980A (en) Process for separating glucose from polysaccharides by selective adsorption
US4386012A (en) Zeolite molecular sieve adsorbent for use in an aqueous system
Englis et al. Production of a palatable artichoke sirup
JPS6364200B2 (en)
JPH03133387A (en) Production of maltooligosaccharide
EP0075611B1 (en) Simulated countercurrent sorption process employing ion exchange resins with backflushing