JPS5823794A - Process for analyzing plurality of items - Google Patents

Process for analyzing plurality of items

Info

Publication number
JPS5823794A
JPS5823794A JP12077581A JP12077581A JPS5823794A JP S5823794 A JPS5823794 A JP S5823794A JP 12077581 A JP12077581 A JP 12077581A JP 12077581 A JP12077581 A JP 12077581A JP S5823794 A JPS5823794 A JP S5823794A
Authority
JP
Japan
Prior art keywords
reagent
nozzle
analysis
solution
reagent solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12077581A
Other languages
Japanese (ja)
Other versions
JPS606635B2 (en
Inventor
Toshiyuki Sagusa
佐草 寿幸
Yasushi Nomura
靖 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12077581A priority Critical patent/JPS606635B2/en
Publication of JPS5823794A publication Critical patent/JPS5823794A/en
Publication of JPS606635B2 publication Critical patent/JPS606635B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:A metallic nozzle is used to add the reagent solution for the first analysis to the first sample to conduct the measurement for the first analysis, then the same nozzle is used to add the second sample and conduct the second analysis, thus compensating the analysis error caused by the nozzle. CONSTITUTION:A reagent solution for the first analysis which contains an enzyme with a lower isoelectric point than the pH of the reagent solution is sucked and held in a metallic nozzle and the solution in the nozzle is added to the first sample to conduct the first analysis. Then, the same nozzle is used to add the second sample that causes a specific enzymatic reaction with the above enzyme thereto and to conduct the second analysis. Thus, even when a metallic nozzle is used to add a plurality of reagent solutions for several analyses in order, the contamination of samples for other analyses, which is caused by adhesion of the enzyme to the nozzle, is prevented to give yhe analytical data with high reliability.

Description

【発明の詳細な説明】 本発明は複数項目を分析する方法に係り、特に複数の分
析項目を同じ酵素反応を利用して分析する場合に用いる
に好適な分析方法を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for analyzing a plurality of items, and in particular, it is an object of the present invention to provide an analysis method suitable for use when a plurality of analysis items are analyzed using the same enzyme reaction.

従来の多項目分析用生化学分析装置は、各分析項目の試
薬液を、各々独立した分注装置によってそれらに付属さ
れたノズルを通してそれぞれの分析項目に応じた反応容
器内に供給していた。しかし、最近は分析装置の小形化
が進み、少数の分注装置だけで異種多項目のための試薬
を供給し得る分析装置が出現しはじめた。
In conventional biochemical analyzers for multi-item analysis, reagent solutions for each analysis item are supplied into reaction vessels corresponding to the respective analysis items through independent pipetting devices and nozzles attached thereto. However, recently, analyzers have become smaller, and analyzers that can supply reagents for a wide variety of items using only a small number of dispensing devices have begun to appear.

そのような分析装置では、各分析項目に対応する試料を
収容した一連の反応容器を移送し、所定位置において各
項目の分析に必要な試薬液を、二。
In such an analyzer, a series of reaction vessels containing samples corresponding to each analysis item are transported, and at a predetermined position, the reagent liquid necessary for the analysis of each item is transferred.

三〇分注装置で供給する方法が採用されている。A method of supplying with a 30-dispensing device is adopted.

この場合、分注装置のノズルは1つの試薬液槽から所定
量の試薬液をノズル先端付近に吸入保持し、対応する反
応容器に吐出し、続いて別の試薬液槽について吸入、吐
出動作をする。だから、1本のノズルで複数の試薬液を
供給することになる。
In this case, the nozzle of the dispensing device sucks and holds a predetermined amount of reagent liquid from one reagent liquid tank near the nozzle tip, discharges it into the corresponding reaction container, and then performs suction and discharge operations for another reagent liquid tank. do. Therefore, a single nozzle supplies multiple reagent solutions.

ところが、とのような試薬液供給方法を、特定の材質の
ノズル、すなわち金属製ノズルを用いて実行すると、し
ばしば大きな分析誤差を生じ、しかも、同じ酵素反応を
利用する2種の分析項目のための試薬液を、同一の金属
製ノズルで供給した場合に、一方の項目の分析値の誤差
が著しく高くなるということを発明者らは発見した。
However, if the reagent solution supply method described above is carried out using a nozzle made of a specific material, that is, a metal nozzle, large analysis errors often occur, and furthermore, because two types of analysis items that utilize the same enzyme reaction are used, The inventors have discovered that when two reagent solutions are supplied through the same metal nozzle, the error in the analysis value for one item becomes significantly higher.

本発明はこのような現象の発見に基づいてなされたもの
である。金属製ノズルに吸着された試薬成分は通常の洗
浄水による洗浄によっては、はとんど除去されない。
The present invention was made based on the discovery of such a phenomenon. The reagent components adsorbed on the metal nozzle are hardly removed by ordinary washing with washing water.

本発明の目的は、同じ酵素反応を利用する複数項目の分
析のための各試薬液を、1本の金属製ノズルを用いて供
給しても、一方の分析項目に金属製ノズルに起因する測
定誤差をもたらすことがない複数項目の分析方法を提供
することにある。
An object of the present invention is to provide a solution that, even if each reagent solution for analysis of multiple items using the same enzyme reaction is supplied using a single metal nozzle, measurement results due to the metal nozzle for one of the analysis items may occur. The object of the present invention is to provide a multi-item analysis method that does not introduce errors.

本発明の特徴は、第2の分析項目の測定値に誤差をもた
らす酵素が第1の分析項目用試薬液に含まれており、そ
の酵素は等電点が第1の分析項目用試薬液のpHよシも
低いという特性を有するものであるという条件を満足さ
せることにより、ノズルへの酵素の吸着を防止し、第1
の分析用試薬液と第2の分析用試薬液を同一の金属製ノ
ズルで加えることを可能にしたことにある。
A feature of the present invention is that an enzyme that causes an error in the measured value of the second analysis item is contained in the reagent solution for the first analysis item, and the enzyme has an isoelectric point that is lower than that of the reagent solution for the first analysis item. By satisfying the condition of having low pH and low pH, adsorption of the enzyme to the nozzle can be prevented and the first
The second analytical reagent solution and the second analytical reagent solution can be added using the same metal nozzle.

本発明の詳細な説明に先立ち、本発明者らの実験によっ
て得られたノズルに起因する誤差に関する知見について
説明する。
Prior to a detailed description of the present invention, knowledge regarding errors caused by nozzles obtained through experiments by the present inventors will be explained.

例えば、グルタミン酸ピルビン酸トランスアミナーゼ(
GPT)用試薬を添加したあとに乳酸脱水素酵素(LD
H)用試薬を添加した場合、グルタミン酸オギザロ酢酸
トランスアミナーゼ(GOT)用試薬を添加したあとに
LDH用試薬を添加した場合、総コレステロール用試薬
を添加したあとに遊離コレステロール用試薬を添加した
場合、あるいはトリグリセライド用試薬を添加したあと
に遊離脂肪酸用試薬を添加した場合等には、あとから試
薬を添加された分析項目の測定値にしばしば正誤差が生
ずる。この誤差は同一の金属製ノズルで各試薬液を添加
した場合に生じ、あとの試薬の添加が前の試薬の添加の
直後でなく別の項目のだめの試薬の添加の後であっても
生ずる。前に添加される試薬液にはいずれも特定の酵素
反応をもたらす酵素が含有されている。
For example, glutamate pyruvate transaminase (
After adding the reagent for lactate dehydrogenase (LD)
H), when the reagent for LDH is added after the reagent for glutamate ogizaloacetate transaminase (GOT), when the reagent for free cholesterol is added after the reagent for total cholesterol, or When a free fatty acid reagent is added after a triglyceride reagent is added, a correct error often occurs in the measured value of the analysis item to which the reagent is added later. This error occurs when each reagent solution is added using the same metal nozzle, and occurs even when a subsequent reagent is added not immediately after the previous reagent but after a different batch of reagents is added. The reagent solutions added before each contain an enzyme that brings about a specific enzymatic reaction.

金属製ノズルは、1番目の試薬液槽から所定量の試薬液
を吸入保持したあと、1番目の反応容器内へその保持し
た試薬液を吐出し、その後2番目以降の試薬液について
も同様の吸入、吐出動作を行なうが、このような金属製
ノズルを試薬液に浸漬した場合、ノズルはその金属のイ
オン化傾向に基づいて負の電位に帯電する。ステンレス
製ノズルでは、電解質である試薬液によっても異なるが
、数十〜数百mVに帯電する。そのため試薬液中の酵素
がノズルに静電的に吸着すると考えられる。
The metal nozzle sucks and holds a predetermined amount of reagent liquid from the first reagent liquid tank, then discharges the held reagent liquid into the first reaction vessel, and then performs the same process for the second and subsequent reagent liquids. When such a metal nozzle is immersed in a reagent solution, the nozzle is charged to a negative potential based on the ionization tendency of the metal. A stainless steel nozzle is charged to several tens to hundreds of mV, although this varies depending on the reagent solution that is the electrolyte. Therefore, it is thought that the enzyme in the reagent solution is electrostatically adsorbed to the nozzle.

一般にLDHと称される酵素は、物理的性質の異なる5
種類の異性体が知られており、M4゜MsH,M、H,
、MH,、およびH6と表示される。
The enzyme generally called LDH has 5 different physical properties.
The following types of isomers are known: M4゜MsH, M, H,
, MH, and H6.

これらの異性体の物理的性質の顕著な差は等電点である
。ウサギ6蔵由来およびブタ6蔵由来のLDHはH4タ
イプで等電点が約4,7である。ブタ筋肉由来のLDH
はM4タイプで等電点が約9.5である。
A notable difference in the physical properties of these isomers is their isoelectric points. The LDH derived from rabbit 6-zo and pig 6-zo is H4 type and has an isoelectric point of about 4.7. LDH derived from pig muscle
is M4 type and has an isoelectric point of about 9.5.

吸着現象は、試薬液のI)Hと酵素の等電点との関係に
よって生ずる。すなわち等電点が試薬液のpHより大で
あれば負に滞電された金属製ノズルに酵素が吸着される
。GPT試薬液はp H7,4に調部されるが、この試
薬液中で等電点9.5のM。
The adsorption phenomenon is caused by the relationship between I)H of the reagent solution and the isoelectric point of the enzyme. That is, if the isoelectric point is higher than the pH of the reagent solution, the enzyme will be adsorbed to the negatively charged metal nozzle. The GPT reagent solution is adjusted to pH 7.4, and the isoelectric point of M in this reagent solution is 9.5.

タイプLDHはその99.9%以上が+NH3−4−C
OOHO形で存在し、正電荷を有すると考えられる。ま
た、等電点4.7のH,タイプLDHはp H7,4の
溶液中では約99.5%がNH,−R−COO−の形で
存在し、負電荷を有すると考えられる。だから、M4ン
イブは吸着されるがH4タイプは吸着されない。従って
本発明ではLDHを用いる場合に試薬液のI)Hよりル
低い等電点のタイプを採用する。等電点は試薬液のpH
より2以上低ければ特に吸着し難い。
More than 99.9% of type LDH is +NH3-4-C
It exists in the OOHO form and is thought to have a positive charge. Furthermore, about 99.5% of H type LDH, which has an isoelectric point of 4.7, exists in the form of NH, -R-COO- in a solution of pH 7.4, and is considered to have a negative charge. Therefore, the M4 type is adsorbed, but the H4 type is not. Therefore, in the present invention, when using LDH, a type with an isoelectric point lower than that of the reagent solution I) is adopted. The isoelectric point is the pH of the reagent solution
If it is lower than 2 or more, it is particularly difficult to adsorb.

実施例 I GPT測定用試薬によるLDH測定誤差を防止できる例
を示す。第1表にGPT測定用試薬の組成例を示し、第
2表にLDH測定用試薬の組成例を示す。
Example I An example will be shown in which LDH measurement errors caused by GPT measurement reagents can be prevented. Table 1 shows examples of compositions of reagents for measuring GPT, and Table 2 shows examples of compositions of reagents for measuring LDH.

表   1   表 第  2  表 第1表、第2表においてIは第1液、■は第2液を示す
。第1表の処方AのLDHはウサギ6蔵由来のものであ
り、処方BのLDHはブタ6蔵由来のものである。いず
れのLDHも等電点が約4.7であシ、試薬液のp H
7,4より2.7低い。
Table 1 Table 2 In Tables 1 and 2, I indicates the first solution and ■ indicates the second solution. The LDH of formulation A in Table 1 is derived from rabbit 6zo, and the LDH of formulation B is derived from pig 6zo. The isoelectric point of each LDH is approximately 4.7, and the pH of the reagent solution
2.7 lower than 7.4.

自動分析装置において、所定温度例えば37Cに維持さ
れたターンテーブル状に形成された反応ラインに一連の
透明な反応容器が移送される。反応容器は試料吐出位置
、試薬添加位置および測光位置を通るように移送され、
各反応容器は測定すべき各分析項目に対応している。一
方、試薬分注用の金属製ノズルは、試薬吸入位置、試薬
添加位置およびノズル洗浄位置の間を移動される。試薬
吸入位置には、試薬添加位置へ位置づけられる反応容器
の分析項目に関連づけて、対応する試薬槽が順次位置づ
けられる。試薬分注用ノズルはステンレスパイプからな
り、吸入、吐出動作をするシリンジに連通されておシ、
上記各位置において上下動し得る。
In an automatic analyzer, a series of transparent reaction vessels are transferred to a reaction line shaped like a turntable and maintained at a predetermined temperature, for example 37C. The reaction container is transported through a sample discharge position, a reagent addition position, and a photometry position,
Each reaction container corresponds to each analysis item to be measured. On the other hand, the metal nozzle for reagent dispensing is moved between a reagent suction position, a reagent addition position, and a nozzle cleaning position. At the reagent suction position, corresponding reagent vessels are sequentially positioned in association with the analysis items of the reaction vessels positioned at the reagent addition position. The reagent dispensing nozzle is made of stainless steel pipe and is connected to the syringe that performs suction and discharge operations.
It can move up and down in each of the above positions.

GPTを測定すべき血清試料20μtが添加された反応
容器が試薬添加位置に来たとき、第1表の第1液の液槽
が試薬吸入位置に移送されており、その第1液槽に試薬
分注用ノズルが挿入され、400μtが吸入保持される
。続いてノズルは試薬添加位置に移送され、反応容器へ
保持していたGPT用第用液1液出する。その後反応容
器は回転移送され、一方ノズルはノズル洗浄位置にて約
s omzの純水で洗浄されて次の試薬液添加に備える
。5分のプレインキュベー7ヨンの後同じ反応容器が試
薬添加位置に来ると、第1表のGPT用第用液2液記の
ものと同じノズルで100μを添加される。その後反応
容器は所定時間間隔毎に測光位置に位置づけられ、34
011mの波長光に関する反応液の吸光度変化が測定さ
れ、GPT活性値が求められる。
When the reaction container into which 20 μt of the serum sample to be measured for GPT has been added comes to the reagent addition position, the first liquid tank in Table 1 has been transferred to the reagent suction position, and the reagent is added to the first liquid tank. A dispensing nozzle is inserted and 400 μt is sucked and held. Subsequently, the nozzle is moved to the reagent addition position, and the first liquid for GPT held in the reaction container is discharged. Thereafter, the reaction vessel is rotated, while the nozzle is washed with approximately somz pure water at the nozzle washing position in preparation for the next reagent solution addition. After 5 minutes of pre-incubation, when the same reaction vessel is brought to the reagent addition position, 100μ is added using the same nozzle as in the 2nd solution for GPT in Table 1. Thereafter, the reaction vessel is positioned at a photometric position at predetermined time intervals, and
The change in absorbance of the reaction solution with respect to light with a wavelength of 0.011 m is measured, and the GPT activity value is determined.

この間、反応容器の中では、DL−アラニンとα−ケト
グルタル酸を基質とし、血清中のGPTの作用によって
ピルビン酸とグルタミン酸を生成する。生成されたピル
ビン酸は、LDHの存在下で、ニコチンアミドアデニン
ヌクレオチド還元型(NADH)と反応する。反応によ
ってNADHは酸化型(NAD” )に変化するから、
340nmの紫外部吸収が減少する。
During this time, in the reaction vessel, pyruvic acid and glutamic acid are produced by the action of GPT in serum using DL-alanine and α-ketoglutaric acid as substrates. The generated pyruvate reacts with nicotinamide adenine nucleotide reduced form (NADH) in the presence of LDH. Because NADH changes to oxidized form (NAD") through the reaction,
Ultraviolet absorption at 340 nm is reduced.

その後LDHを測定すべき血清試料20μtが添加され
た反応容器が試薬添加位置に来たとき、第2表の第1液
が試薬吸入位置に移送されており、上述のものと同じノ
ズルで400μtのLDH用第用液1液の反応容器に添
加される。ブレインキュベーション(5分)の後同じノ
ズルで第2表の第2液を添加する。反応容器が測光位置
にくり返し位置づけられ、光度計によって反応液の34
0nmにおける吸光度変化が測定され、反応速度法によ
って定量される。反応容器内ではピルビン酸とNADH
が血清試料中のLDHによって反応され、乳酸とNAD
”に変化される。
After that, when the reaction container into which 20 μt of the serum sample to be measured for LDH was added came to the reagent addition position, the first solution in Table 2 was transferred to the reagent suction position, and the same nozzle as above was used to collect 400 μt of serum sample. One liquid of the first liquid for LDH is added to the reaction vessel. After incubation (5 minutes), add the second solution from Table 2 using the same nozzle. The reaction vessel was repeatedly positioned at the photometric position, and the photometer measured 34% of the reaction solution.
The absorbance change at 0 nm is measured and quantified by kinetic method. In the reaction vessel, pyruvic acid and NADH
is reacted by LDH in the serum sample, and lactate and NAD
” is changed to

第3表は、本実施例によって得られた分析結果であり、
試料として管理血清(モニトロールIIX)を用いた結
果である。第3表における処方A、 Bは、第1表での
A、Bに対応する。第3表における処方Cは、試薬液の
濃度が第1表の処方Bと同じであるがLDHとして等電
点が9.5のフリ筋肉由来のものを用いている。
Table 3 shows the analysis results obtained in this example,
These are the results using control serum (Monitrol IIX) as a sample. Prescriptions A and B in Table 3 correspond to A and B in Table 1. In prescription C in Table 3, the concentration of the reagent solution is the same as in prescription B in Table 1, but LDH derived from the free muscle with an isoelectric point of 9.5 is used.

第   3   表 ()PT活性値の測定後、LDH活性値を3検体連続し
て測定したところ、処方Cの場合だけ約359 m u
 / m lの正誤差を生じた。これはGPT試薬液中
に1200mu/fTl を以上含まれるLDHが金属
製ノズルに吸着され、それがLDH測定用試薬液を添加
するときに混入して誤差をもたらした、ものであろう。
Table 3 () After measuring the PT activity value, the LDH activity value was measured in three consecutive samples, and only in the case of prescription C, approximately 359 mu
A positive error of /ml was produced. This is probably because LDH containing 1200 mu/fTl or more in the GPT reagent solution was adsorbed by the metal nozzle, and this was mixed in when adding the LDH measurement reagent solution, causing an error.

分析項目LDHの正常値範囲は150〜35 Qmu/
mtなので、35 Q mu/mtの正誤差は致命的で
ある。GPT用試用液薬液中DHの等電点が、その液の
pHよシも低い処方A、Hの場合には異常な正誤差をも
たらさない。
The normal value range for analysis item LDH is 150 to 35 Qmu/
mt, a positive error of 35 Q mu/mt is fatal. In the case of prescriptions A and H, in which the isoelectric point of DH in the GPT trial solution is lower than the pH of the solution, no abnormal correct error occurs.

実施例 2 この例は、GOT測定用試薬によるLDH測定誤差を防
止できる例である。第4表にGOT測定用試薬の組成例
を示す。
Example 2 This example is an example in which LDH measurement errors due to GOT measurement reagents can be prevented. Table 4 shows an example of the composition of the GOT measurement reagent.

この例では実施例1と同じ分析装置が用いられ、GOT
活性値測定後にLDH活性値が測定された。
In this example, the same analyzer as in Example 1 is used, and GOT
After measuring the activity value, the LDH activity value was measured.

LDH測定用試薬液は第2表のものと同じである。The reagent solution for LDH measurement is the same as that in Table 2.

GOT測定時には、L−アスパラギン酸とα−ケトグル
タル酸を基質として生成されたオキザロ酢酸を、LDH
およびリンゴ酸脱水素酵素(MDI)の共在下でNAD
Hと反応させ、NADHの減少速度よりGOT活性値を
求める。
During GOT measurement, oxaloacetate produced using L-aspartic acid and α-ketoglutarate as substrates is
and malate dehydrogenase (MDI).
The GOT activity value is determined from the rate of decrease in NADH.

第4表のような等電点4.7のLDH(ブタ6蔵由来)
を含むGOT用試用液薬液いた後のLDH活性値測定結
果では、異常な正誤差が生じなかったが、等電点9.5
のLDH(ブタ筋肉由来)を含むGOT用試用液薬液い
た後のLDH活性値には、約35 Q mu/mtの正
誤差が生じた。
LDH with an isoelectric point of 4.7 as shown in Table 4 (derived from Buta 6 Kura)
In the LDH activity value measurement results after using the GOT trial liquid chemical solution containing
A positive error of about 35 Q mu/mt occurred in the LDH activity value after using the GOT trial solution containing LDH (derived from pig muscle).

実施例 3 次に血清試料に対し総コレステロール用試薬液の添加の
後に、同じ金属製ノズルを用いて遊離コレステロール用
試薬液を添加する例を示す。
Example 3 Next, an example will be shown in which a total cholesterol reagent solution is added to a serum sample, and then a free cholesterol reagent solution is added using the same metal nozzle.

まず、実施例1で示した分析装置によって血清試料中の
総コレステロールを分析する。総コレステロール用試薬
液の組成を第5表に示す。コレステロールエステラーゼ
としては、すえひろたけ産性の等電点が4.1のものを
用いた。血清試料が収容されている反応容器に第5表の
試薬液を金属製ノズルで添加すると、1)H7,9の緩
衝液中でコレステロールエステラーゼの作用テニスチル
形コレステロールが遊離コレステロールに変換され、こ
の遊離コレステロールがコレステロールオキシダーゼに
よシ酸化され、過酸化水素とΔ1コレステノンを生ずる
。生成された過酸化水素にペルオキシダーゼの存在下で
フェノールおよび4−アミノアンチビリ/を縮合させて
赤色キノンを生成する。
First, total cholesterol in a serum sample is analyzed using the analyzer shown in Example 1. The composition of the reagent solution for total cholesterol is shown in Table 5. As the cholesterol esterase, one produced by Sue Hirotake and having an isoelectric point of 4.1 was used. When the reagent solution shown in Table 5 is added to the reaction container containing the serum sample using a metal nozzle, 1) the action of cholesterol esterase in the H7,9 buffer converts the tennis-like cholesterol to free cholesterol; Cholesterol is oxidized by cholesterol oxidase to produce hydrogen peroxide and Δ1 cholestenone. The produced hydrogen peroxide is condensed with phenol and 4-aminoanthibiry/ in the presence of peroxidase to produce a red quinone.

この赤色キノンに基づ゛き・吸光度を測定して総コレス
テロールの濃度を求めた。
The concentration of total cholesterol was determined by measuring absorbance based on this red quinone.

次に、同じ金層製ノズルを用いて遊離コレステロール用
試薬液を対応する反応容器に添加する。
The free cholesterol reagent solution is then added to the corresponding reaction vessel using the same gold layer nozzle.

遊離コレステロール用試薬液は、第5表の試薬液組成の
内、コレステロールエステラーゼを含まない組成からな
る。赤色キノンの生成反応は同じである。測定の結果、
血清試料の遊離コレステロールの濃度は85mg/dl
であった。第5表のコレステロールエステラーゼの等電
点が緩衝液のpH(7,9)よりも低いので、この酵素
はノズルに吸着されすくしたがって遊離コレステロール
分析値に異常外正誤差をもたらさない。分析誤差は1 
mgAdt以下であった。
The reagent solution for free cholesterol consists of a composition not containing cholesterol esterase among the reagent solution compositions shown in Table 5. The reaction for producing red quinone is the same. As a result of the measurement,
The concentration of free cholesterol in the serum sample is 85 mg/dl
Met. Since the isoelectric point of the cholesterol esterase in Table 5 is lower than the pH of the buffer (7,9), this enzyme is easily adsorbed to the nozzle and therefore does not introduce an abnormal positive error in the free cholesterol assay. Analysis error is 1
mgAdt or less.

比較のために同じ血清試料について、等電点が8、4 
(微生物産性)のコレステロールエステラーゼを含む総
コレステロール用試薬液を添加した後、同じ金属製ノズ
ルを用いて上記と同様の測定を行った。その結果、遊離
コレステロール測定値には、50〜100mg/dzの
正誤差が生じた。これは緩衝液のpH(7,9)よりも
等電点の高いコレステロールエステラーゼがノズルに吸
着し、遊離コレステロール分析時ニ混入シ、エステル形
コレステロールが遊離コレステロールに変換されるため
である。
For comparison, the isoelectric points were 8 and 4 for the same serum sample.
After adding a reagent solution for total cholesterol containing cholesterol esterase (produced by microorganisms), the same measurement as above was performed using the same metal nozzle. As a result, free cholesterol measurements had a positive error of 50-100 mg/dz. This is because cholesterol esterase, which has an isoelectric point higher than the pH (7,9) of the buffer solution, is adsorbed to the nozzle, and the ester-form cholesterol mixed in during free cholesterol analysis is converted to free cholesterol.

実施例 4 これは血清試料に対してトリグリセライ)” illl
l試用試薬液加した後、同じ金属製ノズルを用いて遊離
脂肪酸測定用試薬液を添加する例である。
Example 4 This is a triglyceride test for serum samples.
This is an example in which after adding a sample reagent solution, a reagent solution for free fatty acid measurement is added using the same metal nozzle.

トリグリセライド測定用試薬を調合するに当って、試薬
液のpHと同程度の等電点(6,9)の力・び由来めリ
ポプロティン1しく−ゼ(LPL)を用いた場合には、
ノズルに吸着して遊離脂肪酸の屓11定値に正誤差をも
たらすが、プセウドモナス属細菌由来の等電点の低い(
4,8)LPLを用いた場合には、異常な正誤差の出現
を防止できる。
When preparing a reagent for triglyceride measurement, if lipoproteinase (LPL) with an isoelectric point (6,9) having an isoelectric point (6,9) that is similar to the pH of the reagent solution is used,
The free fatty acid adsorbed to the nozzle causes a positive error in the constant value, but the free fatty acid has a low isoelectric point (derived from bacteria of the genus Pseudomonas).
4, 8) When LPL is used, it is possible to prevent the appearance of abnormal positive errors.

Claims (1)

【特許請求の範囲】[Claims] 1、試薬液のpHよりも等電点が低い酵素が含まれた第
1の分析項目用の試薬液を、金属製ノズルを用いて第1
の試料に加える第1の行程と、上記第1の行程後に、第
2の分析項目用の試薬液を、上記金属製ノズルを用いて
、上記酵素と特定の酵素反応を生じ得る第2の試料に加
える第2の行程と、上記第1の行程後に上記第1の分析
項目を計測し、上記第2の行程後に上記第2の分析項目
を計測する行程とを含むことを特徴とする複数項目を分
析する方法。
1. A reagent solution for the first analysis item containing an enzyme with an isoelectric point lower than the pH of the reagent solution is added to the first analysis item using a metal nozzle.
After the first step, a reagent solution for a second analysis item is added to the sample using the metal nozzle, and a second sample that can cause a specific enzymatic reaction with the enzyme is added. and a step of measuring the first analysis item after the first process and measuring the second analysis item after the second process. How to analyze.
JP12077581A 1981-08-03 1981-08-03 How to analyze multiple items Expired JPS606635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12077581A JPS606635B2 (en) 1981-08-03 1981-08-03 How to analyze multiple items

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12077581A JPS606635B2 (en) 1981-08-03 1981-08-03 How to analyze multiple items

Publications (2)

Publication Number Publication Date
JPS5823794A true JPS5823794A (en) 1983-02-12
JPS606635B2 JPS606635B2 (en) 1985-02-19

Family

ID=14794691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12077581A Expired JPS606635B2 (en) 1981-08-03 1981-08-03 How to analyze multiple items

Country Status (1)

Country Link
JP (1) JPS606635B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970606A (en) * 1988-07-27 1990-11-13 Ricoh Company, Ltd. Document reading apparatus
US5153750A (en) * 1989-05-23 1992-10-06 Ricoh Company, Ltd. Image reading apparatus having a contact type image sensor device
JP2019117196A (en) * 2017-12-26 2019-07-18 東洋紡株式会社 Measurement error reduction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970606A (en) * 1988-07-27 1990-11-13 Ricoh Company, Ltd. Document reading apparatus
US5153750A (en) * 1989-05-23 1992-10-06 Ricoh Company, Ltd. Image reading apparatus having a contact type image sensor device
JP2019117196A (en) * 2017-12-26 2019-07-18 東洋紡株式会社 Measurement error reduction method

Also Published As

Publication number Publication date
JPS606635B2 (en) 1985-02-19

Similar Documents

Publication Publication Date Title
AU614405B2 (en) Process and agent for the colorimetric determination of an analyte by means of enzymatic oxidation
Gibbard et al. A micro-method for the enzymatic determination of D-β-hydroxybutyrate and acetoacetate
Tipton Principles of enzyme assay and kinetic studies
Karsten et al. Inverse solvent isotope effects in the NAD-Malic enzyme reaction are the result of the viscosity difference between D2O and H2O: Implications for solvent isotope effect studies
EP0041366B1 (en) Method for operating an apparatus for analysing samples optically
EP0253520B1 (en) Stabilized liquid enzyme composition for glucose determination
CN107505273A (en) Serum tolal bile acid assay kit and its application method
WO2020087893A1 (en) Atomic fluorescence spectrometry method and device employing water as carrier fluid
Grissom et al. Isotope effect studies of chicken liver NADP malic enzyme: role of the metal ion and viscosity dependence
JPS5823794A (en) Process for analyzing plurality of items
Furukawa et al. Assays of serum lipase by the" BALB-DTNB method" mechanized for use with discrete and continuous-flow analyzers.
US20090130696A1 (en) HDL Cholesterol Sensor Using Selective Surfactant
Olsson et al. An enzymatic flow injection method for the determination of oxygen
JPH02104298A (en) Quantification of 1,5-anhydroglucitol
Boyne et al. Enzymatic correction of interference in the kinetic Jaffé reaction for determining creatinine in plasma.
CN1311335A (en) Reagent for stabilizing reducing coenzyme I and reducing coenzyme II
EP2460888B1 (en) Method and kit for measurement of dehydrogenase or substrate for the dehydrogenase
Romano Automated Glucose Methods: Evaluation of a Glucose Oxidase—Peroxidase Procedure
CN111154833B (en) alpha-L-fucosidase determination kit
Schölmerich et al. [19] Immobilized enzymes for assaying bile acids
McCloskey Enzymatic assay for malic acid and malo-lactic fermentations
JPH07151761A (en) Reagent and method for measuring content of fructosamine in blood sample or sample derived from blood
Orsonneau et al. Sensitisation and visualisation of biochemical measurements using the NAD/NADH system by means of Meldola blue: II. Application to the continuous flow determination of plasma glucose and urea
CN111690715A (en) Small and dense low-density lipoprotein cholesterol determination kit and determination method thereof
JP4050308B2 (en) Method for immobilizing malate dehydrogenase on a substrate