JPS5823380B2 - Formilkino Datsurihou - Google Patents

Formilkino Datsurihou

Info

Publication number
JPS5823380B2
JPS5823380B2 JP49140646A JP14064674A JPS5823380B2 JP S5823380 B2 JPS5823380 B2 JP S5823380B2 JP 49140646 A JP49140646 A JP 49140646A JP 14064674 A JP14064674 A JP 14064674A JP S5823380 B2 JPS5823380 B2 JP S5823380B2
Authority
JP
Japan
Prior art keywords
formyl
ester
hydroxylamine
groups
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49140646A
Other languages
Japanese (ja)
Other versions
JPS5168520A (en
Inventor
柿崎房義
竹本正
野田一郎
有吉安男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP49140646A priority Critical patent/JPS5823380B2/en
Priority to CA240,016A priority patent/CA1042875A/en
Priority to GB48458/75A priority patent/GB1496980A/en
Priority to US05/635,746 priority patent/US4021418A/en
Priority to DE2554421A priority patent/DE2554421C2/en
Priority to CH1578675A priority patent/CH599115A5/xx
Publication of JPS5168520A publication Critical patent/JPS5168520A/en
Publication of JPS5823380B2 publication Critical patent/JPS5823380B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/12General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06104Dipeptides with the first amino acid being acidic
    • C07K5/06113Asp- or Asn-amino acid
    • C07K5/06121Asp- or Asn-amino acid the second amino acid being aromatic or cycloaliphatic
    • C07K5/0613Aspartame

Description

【発明の詳細な説明】 本発明はホルミル基の脱離法、更に詳しくはホルミル基
にて保護されたアミノ基及びエステル基を含有する化合
物より、効率的、優先的にホルミル基を脱離する方法に
関する。
Detailed Description of the Invention The present invention provides a method for eliminating formyl groups, more specifically, a method for eliminating formyl groups more efficiently and preferentially than from compounds containing amino groups and ester groups protected by formyl groups. Regarding the method.

本発明は、特にペプチド合成に有効な手段を提供するも
のであって、N−ホルミルアミノ酸エステル類、N−ホ
ルミルペプチドエステル類、その中でも特にN−ホルミ
ルアスバルチルペフチドエステル類等のエステル基の他
に遊離のカルボキシル基をもつ化合物よりホルミル基を
脱離せしめるのに優れた効果を発揮する。
The present invention provides particularly effective means for peptide synthesis, and includes ester groups such as N-formyl amino acid esters, N-formyl peptide esters, and especially N-formyl asbartyl peftide esters. In addition, it exhibits a superior effect in eliminating formyl groups compared to compounds with free carboxyl groups.

以下、N−ホルミルアミノ酸エステル類及びN−ホルミ
ルペプチドエステル類について本発明方法を適用する場
合を中心に説明するが、本発明はこれらに限定されるも
のではなく、ホルミル基にて保護されたアミン基及びエ
ステル基を含有する化合物(以下、N−ホルミルエステ
ル化合物トいう)一般に本発明は適用することが出来る
Hereinafter, the case where the method of the present invention is applied to N-formyl amino acid esters and N-formyl peptide esters will be mainly explained, but the present invention is not limited thereto, and the present invention is not limited to these. The present invention is generally applicable to compounds containing N-formyl ester groups and ester groups (hereinafter referred to as N-formyl ester compounds).

一般にアミノ基の保護基として、特にペプチド合成にお
いては、ベンジルオキシカルボニル基や、t−ブチルオ
キシカルボニル基などが使用されるが、これら保護基は
、その導入に際して危険なホスゲンガスが必須であるこ
とから工場規模での生産には不適当である。
Generally, benzyloxycarbonyl groups and t-butyloxycarbonyl groups are used as protecting groups for amino groups, especially in peptide synthesis, but these protecting groups require dangerous phosgene gas to be introduced. It is unsuitable for factory scale production.

一方、本発明で用いるホルミル基は導入の容易さや、コ
ストの面から工業的生産に有利な方法であるが、次に述
べる様にその除去に問題があり、殆んど使用されていな
いのが現状である。
On the other hand, the formyl group used in the present invention is an advantageous method for industrial production from the viewpoint of ease of introduction and cost, but as described below, there are problems in its removal, so it is hardly used. This is the current situation.

従来、ホルミル基の除去は酸性加水分解、酸性アルコー
ル分解、接触還元等により行うことが推奨されていた。
Conventionally, it has been recommended that the formyl group be removed by acidic hydrolysis, acidic alcoholysis, catalytic reduction, or the like.

しかしながら酸性加水分解ではエステル基が加水分解さ
れたり、ペプチド結合が開裂する危険性があり、一方接
触還元は特別な条件でなければ進行しない。
However, acidic hydrolysis carries the risk of hydrolysis of ester groups and cleavage of peptide bonds, while catalytic reduction does not proceed unless special conditions are met.

また、エステル基を含有しないN−ホルミル化合物の脱
ホルミル法として、ヒドラジンを用いる方法(D、La
francier。
In addition, a method using hydrazine (D, La
francier.

Bull、Chem、Soc、、France、196
5,3668)及びヒドロキシルアミン又はその弱酸塩
を用いる方法(ロルフ ガイカー、特公昭45−289
66号明細書)があるが、これらの方法をエステル基を
含むN−ホルミル化合物に適しても、前者にあってはエ
ステル基がヒドラジドに変化し、また後者にあってはエ
ステル基がヒドロキサム酸に変化したり、ジペプチドエ
ステルではジケトピペラジン誘導体に変化し、目的とす
る脱ホルミル化は達成することができない。
Bull, Chem, Soc, France, 196
5,3668) and the method using hydroxylamine or its weak acid salt (Rolf Geiker, Japanese Patent Publication No. 45-289
66 specification), but even if these methods are applied to N-formyl compounds containing ester groups, in the former case the ester group changes to hydrazide, and in the latter case the ester group changes to hydroxamic acid. or diketopiperazine derivatives in the case of dipeptide esters, making it impossible to achieve the desired deformylation.

本発明者らは、ホルミル基をアミノ基の有効な保護基と
して、特にペプチドエステル合成のアミン保護基として
有効に利用すべく、その障害となっている除去方法を種
々検討した結果、ヒドロキシルアミン強酸塩をN−ホル
ミルエステル化合物に適用する場合には驚くべきことに
前記した種々の副反応を生起せず選択的にホルミル基を
脱離できること、更にヒドロキシルアミン強酸塩と、遊
離のヒドロキシルアミン及び/又はヒドロキシルアミン
の弱酸塩を併用しても強酸塩を単独に使用した場合と同
等の或いはより優れた結果が得られることを見い出し、
本発明を完成した。
In order to effectively utilize formyl group as an effective protecting group for amino groups, especially as an amine protecting group for peptide ester synthesis, the present inventors investigated various methods for removing the formyl group, which is an obstacle to this, and found that hydroxylamine strong acid When the salt is applied to an N-formyl ester compound, surprisingly, the formyl group can be selectively eliminated without causing the various side reactions described above, and furthermore, it is possible to remove the formyl group selectively without causing the various side reactions described above. Or, it has been found that even when a weak acid salt of hydroxylamine is used in combination, results equivalent to or better than when a strong acid salt is used alone can be obtained,
The invention has been completed.

本発明で用いるヒドロキシルアミン強酸塩を構成する強
酸としては、塩酸、硫酸等の鉱酸、モノメチル硫、酸、
ベンゼンスルホン酸、トリフルオロ酢酸等の有機強酸で
あって、25℃に於ける第1解離恒数が1.0X10’
以上である強酸が使用される。
The strong acids constituting the strong hydroxylamine salt used in the present invention include mineral acids such as hydrochloric acid and sulfuric acid, monomethyl sulfuric acid,
A strong organic acid such as benzenesulfonic acid or trifluoroacetic acid with a first dissociation constant of 1.0X10' at 25°C.
A strong acid that is above is used.

これら強酸のうち、鉱酸、特に塩酸、硫酸等からなる塩
が工業的に容易に入手できること及び取り扱いの容易さ
から最も好ましく用いられる。
Among these strong acids, mineral acids, particularly salts of hydrochloric acid, sulfuric acid, etc., are most preferably used because they are easily available industrially and are easy to handle.

これら強酸塩は、塩の形で反応系に通常導入されるカ、
勿論、遊離ヒドロキシルアミン或いは同弱酸塩と強酸と
を反応系に個々に導入し反応系内にて強酸塩を形成せし
めて後、使用することもできる。
These strong acid salts are usually introduced into the reaction system in the form of salts,
Of course, free hydroxylamine or a weak acid salt thereof and a strong acid may be individually introduced into the reaction system to form a strong acid salt before use.

一方、原料たるN−ホルミルエステル化合物全構成する
エステルとしては、1級及び2級アルコールとのエステ
ルであって他に何ら限定はない。
On the other hand, the esters constituting the entire N-formyl ester compound as a raw material are esters with primary and secondary alcohols, and there are no other limitations.

通常ペプチド合成に常用されるメチルアルコール、エチ
ルアルコール、インフロビルアルコール、ベンジルアル
コール等とのエステルが代表的なものである。
Typical examples include esters with methyl alcohol, ethyl alcohol, inflovir alcohol, benzyl alcohol, etc., which are commonly used in peptide synthesis.

また、ヒドロキシルアミンの弱酸塩を構成する弱酸とし
ては酢酸、プロピオン酸等のカルボン酸が代表的なもの
である。
In addition, carboxylic acids such as acetic acid and propionic acid are typical examples of weak acids constituting the weak acid salt of hydroxylamine.

本発明の特徴は、脱離反応が容易に進行し、目的物が高
収率で得られることにある。
A feature of the present invention is that the elimination reaction proceeds easily and the target product can be obtained in high yield.

即ち、ヒドロキシルアミン強酸塩溶液、或いは同強酸塩
と遊離ヒドロキシルアミン及び/又は同弱酸塩の溶液に
N−ホルミルエステル化合物を加えるだけで反応は進行
する。
That is, the reaction proceeds simply by adding the N-formyl ester compound to a solution of a strong hydroxylamine salt, or a solution of the strong salt and free hydroxylamine and/or the weak salt.

また、N−ホルミルエステル化合物を構成する化合物、
例えば、N−ホルミルアミノ酸エステル類、N−ホルミ
ルペプチドエステル類等のアミノ酸の種類に制限はなく
、ペプチド基、エステル基の他に、カルボキシル基、ア
ミド基、アミノ基、チオール基などを含んでいても反応
は支障なく進行する。
In addition, compounds constituting the N-formyl ester compound,
For example, there are no restrictions on the type of amino acids such as N-formyl amino acid esters and N-formyl peptide esters, which include carboxyl groups, amide groups, amino groups, thiol groups, etc. in addition to peptide groups and ester groups. The reaction proceeds without any problem.

従って、これまでホルミル基の脱離が困難であった、カ
ルボキシル基とエステル基を持つ、N−ホルミルアスバ
ルチルジペプテドエステルの脱ホルミル反応に特に適し
ており、甘味剤として注目を集めているアスパルチルジ
ペプチドエステルの合成に有効な手段をも提供する。
Therefore, it is particularly suitable for the deformylation reaction of N-formyl asbartyl dipeptedoester, which has a carboxyl group and an ester group, from which it has been difficult to remove the formyl group, and has attracted attention as a sweetening agent. It also provides an effective means for the synthesis of aspartyl dipeptide esters.

本発明に用いられる溶媒としては、N−ホルミルエステ
ル化合物、ヒドロキシルアミン強酸塩、遊離ヒドロキシ
ルアミン及び/又は同弱酸塩を共存させる場合にあって
は当該アミ゛ン類、並びに生成物に対し不活性なもので
あれば、特に制限はないが、反応物及び生成物両者の溶
解性が高い、水、アルコール類(メタノール、エタノー
ル、n−フロパノール、isoプロパツール、n−ブタ
ノール、グリセロール、プロピレングライコールなど)
、または、水とアルコールの混合溶媒が挙げられる。
When an N-formyl ester compound, a strong hydroxylamine salt, free hydroxylamine, and/or a weak salt thereof are present, the solvent used in the present invention should be inert to the amines and the product. There is no particular restriction as long as it is water, alcohols (methanol, ethanol, n-furopanol, isopropanol, n-butanol, glycerol, propylene glycol) that have high solubility for both reactants and products. Such)
, or a mixed solvent of water and alcohol.

反応温度にも特に制限はなく、通常の化学反応と同様に
高温では反応は速やかに進行するが、ラセミ化やジペプ
チドエステルではジケトピペラジン誘導体への変化など
の危険性があるので好ましくは、20°C〜80°Cが
選択される。
There is no particular restriction on the reaction temperature, and the reaction proceeds quickly at high temperatures as in normal chemical reactions, but since there is a risk of racemization or change to diketopiperazine derivatives in the case of dipeptide esters, it is preferable to °C to 80 °C is selected.

更に反応完結時間は上述の如く反応温度に依存するが、
例えば70℃では1〜4時間、50℃では5〜12時間
、25℃前後では約2〜4日程度である。
Furthermore, the reaction completion time depends on the reaction temperature as mentioned above,
For example, the heating time is 1 to 4 hours at 70°C, 5 to 12 hours at 50°C, and about 2 to 4 days at around 25°C.

使用するヒドロキシルアミン強酸塩の量には特に制限は
ないが、通常N−ホルミルエステル化合物に対し等モル
量以上、特に1.5〜7倍モル使用するのが好ましい。
There is no particular restriction on the amount of the strong hydroxylamine salt to be used, but it is usually preferred to use it in an amount equal to or more than the equivalent molar amount, particularly 1.5 to 7 times the molar amount of the N-formyl ester compound.

また遊離ヒドロキシルアミン及び/又は同弱酸塩を共存
させる場合は、当該アミン類と強酸塩の和として上記の
量用いればよい。
In addition, when free hydroxylamine and/or a weak acid salt thereof are present together, the above-mentioned amount may be used as the sum of the amine and the strong acid salt.

遊離体及び同弱酸塩の使用量はヒドロキシルアミン強酸
塩の30モル%以下が好ましく、当該アミン類を多量に
存在させると前述した遊離ヒドロキシル−アミノ酸いは
同弱酸塩を単独にて用いた時と同様にエステルがヒドロ
キサム酸に変化したり、ジペプチドエステルではジケト
ピペラジン誘導体に変化する危険性がある。
The amount of the free form and the weak acid salt to be used is preferably 30 mol% or less of the strong hydroxylamine salt, and if the amine is present in a large amount, the free hydroxyl amino acid or the weak acid salt will be used alone. Similarly, there is a risk that esters will change to hydroxamic acid, or dipeptide esters will change to diketopiperazine derivatives.

反応系への遊離のヒドロキシルアミン又はその弱酸塩の
導入は直接遊離のヒドロキシルアミンを用いて行っても
よいが、空気に対し不安定であるので通常反応系にヒド
ロキシルアミン強酸塩を導入して後その一部をヒドロキ
シルアミンより塩基性の強い化合物、例えば水酸化カリ
ウム、酢酸すl−IJウム等で中和し遊離のヒドロキシ
ルアミン又はその弱酸塩となすことにより行なわれる。
Free hydroxylamine or its weak acid salt may be introduced directly into the reaction system using free hydroxylamine, but since it is unstable in air, it is usually introduced after introducing a strong hydroxylamine salt into the reaction system. This is carried out by neutralizing a part of it with a compound more basic than hydroxylamine, such as potassium hydroxide, sodium acetate, etc., to form free hydroxylamine or its weak acid salt.

目的とする脱ホルミル化物の単離は、反応終了後常法に
従って容易に行うことができる。
Isolation of the desired deformylated product can be easily carried out according to a conventional method after the completion of the reaction.

即ち、所定の時間反応した後、必要があれば低温に保存
し、反応液を濾過すれば純粋なアミノ酸エステル類、ペ
プチドエステル類等の脱ホルミル化物が得られる。
That is, after reacting for a predetermined period of time, if necessary, the reaction solution is stored at a low temperature and filtered to obtain pure deformylated products such as amino acid esters and peptide esters.

目的物が溶解度の高い場合には、濃縮した後目的生成物
の溶解性の低い溶媒を加えて晶析すればよい。
When the target product has high solubility, it is sufficient to concentrate the product and then add a solvent in which the target product has low solubility for crystallization.

以上の説明で明らかな如く本発明によれば工業上極めて
有利に種々のN−ホルミルエステル化合物よりエステル
基の変化等の副反応を来すことなくホルミル基を選択的
に脱離させることが出来る。
As is clear from the above explanation, according to the present invention, formyl groups can be selectively eliminated from various N-formyl ester compounds without causing side reactions such as changes in ester groups, which is industrially extremely advantageous. .

以下、実施例及び比較例により更に詳しく説明する。A more detailed explanation will be given below using Examples and Comparative Examples.

各実施例における収率は別設の記載なき場合は、使用し
たN−ホルミルエステル化合物に対するモル収率であり
、次の様にして定量分析した結果求められたものである
Unless otherwise specified, the yield in each Example is the molar yield based on the N-formyl ester compound used, and was determined as a result of quantitative analysis as follows.

即ち反応液を適度に希釈し一定量を採って濾紙電気泳動
を行い、ニンヒドリン−カドミウム試薬(Z、phys
iol、Ch−em、、309,219(1957))
により発色後、半生じた脱ホルミル化物に相当する部分
を切り取りメタノールで抽出し抽出液の510mμに於
ける吸光度を測定定量することにより収率を求めた。
That is, the reaction solution was appropriately diluted, a certain amount was taken, filter paper electrophoresis was performed, and ninhydrin-cadmium reagent (Z, phys
iol, Ch-em, 309, 219 (1957))
After color development, a portion corresponding to the half-formed deformylated product was cut out and extracted with methanol, and the yield was determined by measuring and quantifying the absorbance of the extract at 510 mμ.

実施例 I N−ホルミル−α−L−アスパルチルーL−フェニルア
ラニンメチルエステル9.6g(30ミ!Jモル)及び
塩酸ヒドロキシルアミン10.4.@(150ミIJモ
ル)を90%メタノール水溶液36m1に加え70℃で
3時間加熱攪拌後、反応液の一部を取り出し定量分析し
た。
Example I 9.6 g (30 mm!J mol) of N-formyl-α-L-aspartyl-L-phenylalanine methyl ester and 10.4 g of hydroxylamine hydrochloride. (150 mmol) was added to 36 ml of 90% aqueous methanol solution, and after heating and stirring at 70° C. for 3 hours, a portion of the reaction solution was taken out and subjected to quantitative analysis.

反応液中のα−L−アスパルチルーL−フェニルアラニ
ンメチルエステルの収率は86%であった。
The yield of α-L-aspartyl-L-phenylalanine methyl ester in the reaction solution was 86%.

定量分析後、反応液を濃縮し、残渣に3N−塩酸40m
1を加え、冷蔵庫に一夜保存した。
After quantitative analysis, the reaction solution was concentrated, and the residue was added with 40 m of 3N-hydrochloric acid.
1 was added and stored in the refrigerator overnight.

析出したα−L−アスパルチルーL−フェニルアラニン
メチルエステル塩酸塩8.5gを濾取した。
8.5 g of precipitated α-L-aspartyl-L-phenylalanine methyl ester hydrochloride was collected by filtration.

この結晶を水50mAに溶解し、炭酸すl−’llラム
pH4,8に調整し、冷蔵庫に一夜保存し、遊離のα−
L −アスパルチル−L−フェニルアラニンメチルエス
テル6.8gを得た。
The crystals were dissolved in 50 mA of water, adjusted to pH 4.8 using carbonic acid, and stored overnight in the refrigerator to release free α-
6.8 g of L-aspartyl-L-phenylalanine methyl ester was obtained.

収率75%〔α)j’=−+−32,2° (C=1、
酢酸)m、p、235〜236°C 実施例 2 N−ホルミル−L−アスパラギン酸−α−メチルエステ
ル1.75i10ミリモル)及ヒ塩酸ヒドロキシルアミ
ン3.5g(50ミリモル)を90%メタノール水溶液
107Illに加え70℃で4時間攪拌した後、定量分
析した。
Yield 75% [α)j'=-+-32,2° (C=1,
Example 2 N-formyl-L-aspartic acid-α-methyl ester (1.75 i10 mmol) and hydroxylamine arsenate (3.5 g (50 mmol)) were added to 90% aqueous methanol solution (107 Ill) After stirring at 70°C for 4 hours, quantitative analysis was performed.

反応液中のL−アスパラギン酸−α−メチルエステルの
収率は85%であった。
The yield of L-aspartic acid-α-methyl ester in the reaction solution was 85%.

実施例 3 N−ホルミル−L−フェニルアラニンメチルニス7−ル
2.07 、@ (10ミリモル)及び塩酸ヒドロキシ
ルアミン3.5g(50ミリモル)をメタノール127
7+lに溶解し、更に酢酸ナトリウム0.82.9(1
0ミリモル)を加えて塩酸ヒドロキシルアミンの一部を
中和し酢酸塩となし、70°Cで1.5時間攪拌後定量
分析した。
Example 3 2.07 g (10 mmol) of N-formyl-L-phenylalanine methyl nisol and 3.5 g (50 mmol) of hydroxylamine hydrochloride were added to 127 g (50 mmol) of methanol.
7+l and further add 0.82.9(1
0 mmol) was added to neutralize a portion of hydroxylamine hydrochloride to form an acetate salt, and after stirring at 70°C for 1.5 hours, quantitative analysis was performed.

反応液中のL−フェニルアラニンメチルエステルの収率
は80%であった。
The yield of L-phenylalanine methyl ester in the reaction solution was 80%.

実施例 4 N−ホルミル−グリシル−L−ロイシンメチルエステル
2.3g(10ミリモル)及び塩酸ヒト。
Example 4 2.3 g (10 mmol) of N-formyl-glycyl-L-leucine methyl ester and human hydrochloride.

キシルアミン3.5g(50ミリモル)をメタノール1
2m1に溶解し、更に酢酸ナトリウム0.414(5ミ
リモル)を加え、塩酸塩の一部を中和し酢酸塩となし、
70℃で2時間攪拌後定量分析した。
3.5 g (50 mmol) of xylamine in 1 part of methanol
Dissolve in 2 ml and add 0.414 (5 mmol) of sodium acetate to neutralize a portion of the hydrochloride to form acetate,
Quantitative analysis was performed after stirring at 70°C for 2 hours.

反応液中のグリシル−L−ロイシンメチルエステルの収
率は88%であった。
The yield of glycyl-L-leucine methyl ester in the reaction solution was 88%.

実施例 5 N−ホルミル−α−L−アスパルチルーL−フェニルア
ラニンメチルエステル1.6g(5:!Jモル)及び塩
酸ヒドロキシルアミン1.71’(25ミリモル)をメ
タノール8mlに加え50℃で10時間攪拌後定量分析
した。
Example 5 1.6 g (5:!J mol) of N-formyl-α-L-aspartyl-L-phenylalanine methyl ester and 1.71' (25 mmol) of hydroxylamine hydrochloride were added to 8 ml of methanol and stirred at 50°C for 10 hours. Quantitative analysis was then carried out.

反応液中のα−L−アスパルチルーL−フェニルアラニ
ンメチルエステルの収率は83%であった。
The yield of α-L-aspartyl-L-phenylalanine methyl ester in the reaction solution was 83%.

実施例 6 N−ホルミル−α−L−アスパルチルーL−フェニルア
ラニンエチルエステル1.’1(5−:リモル)及び硫
酸ヒドロキシルアミン1.7g(10ミリモル)を75
%イングロフロール水溶液107721に加え4時間攪
拌後定量分析した。
Example 6 N-formyl-α-L-aspartyl-L-phenylalanine ethyl ester 1. '1 (5-: rimole) and 1.7 g (10 mmol) of hydroxylamine sulfate at 75
% Ingrofluor aqueous solution 107,721 and after stirring for 4 hours quantitative analysis was performed.

反応液中のα−L−アスパルチル−L−フエニ少アラニ
ンエテルエステルの収率は74%であった。
The yield of α-L-aspartyl-L-phenylalanine ether ester in the reaction solution was 74%.

実施例 7 N−ホルミル−α−L−アスパルチルーL−fロジンエ
チルエステル1.l(5ミ!Jモル)及び塩酸ヒドロキ
シルアミン1.4g(20::リモル)を90%メタノ
ール水溶液8mlに加え、70℃で3時間攪拌後、定量
分析した。
Example 7 N-formyl-α-L-aspartyl-L-f rosin ethyl ester 1. 1 (5 mm! J mol) and 1.4 g (20:: mol) of hydroxylamine hydrochloride were added to 8 ml of a 90% aqueous methanol solution, and after stirring at 70° C. for 3 hours, quantitative analysis was performed.

反応液中のα−L−アスパルチルーL−チロシンエチル
エステルの収率は83%であった。
The yield of α-L-aspartyl-L-tyrosine ethyl ester in the reaction solution was 83%.

実施例 8 N−ホルミル−L−アスパラギン酸無水物1.4g(1
0ミリモル)とL−フェニルアラニンメチルエステル1
.!1(10ミリモル)を酢酸エチル207111中で
縮合させた。
Example 8 1.4 g of N-formyl-L-aspartic anhydride (1
0 mmol) and L-phenylalanine methyl ester 1
.. ! 1 (10 mmol) was condensed in ethyl acetate 207111.

反応液を濃縮し、残渣にメタノール30m1、塩酸ヒド
ロキシルアミン3.5,9(50ミリモル)、水酸化カ
リウム0.56.?(10ミ!Jモル)を加え塩酸ヒド
ロキシルアミンの一部を中和し、70°Cで2時間撹拌
後定量分析した。
The reaction solution was concentrated, and the residue contained 30 ml of methanol, 3.5.9 ml of hydroxylamine hydrochloride (50 mmol), and 0.56 ml of potassium hydroxide. ? (10 mm! J mol) was added to neutralize a portion of hydroxylamine hydrochloride, and after stirring at 70°C for 2 hours, quantitative analysis was performed.

反応液中のα−L−アスパルチルーL−フェニルアラニ
ンメチルエステルの使用N−ホルミル−L−アスパラギ
ン酸無水物に対する収率は70%であった。
The yield of α-L-aspartyl-L-phenylalanine methyl ester in the reaction solution based on the used N-formyl-L-aspartic anhydride was 70%.

又、β−L−7スパルチルーL−フェニルアラニンメチ
ルエステルの同無水物に対する収率は21%であった。
The yield of β-L-7 spartyl-L-phenylalanine methyl ester based on the anhydride was 21%.

比較例 1 N−ホルミル−α−L−アスパルチルーL−フェニルア
ラニンメチルエステル1.6g(5ミリモル)及び塩酸
ヒドロキシルアミン1.74.9(25ミリモル)をメ
タノール10m1に溶解し、更に酢酸ナトリウム2.0
5g(25ミ!Jモル)を加え塩酸ヒドロキシルアミン
を中和し酢酸塩さした。
Comparative Example 1 1.6 g (5 mmol) of N-formyl-α-L-aspartyl-L-phenylalanine methyl ester and 1.74.9 (25 mmol) of hydroxylamine hydrochloride were dissolved in 10 ml of methanol, and further 2.0 g of sodium acetate was added.
Hydroxylamine hydrochloride was neutralized by adding 5 g (25 mm!J mol) and acetate was added.

上記溶液を70℃にて1.5時間攪拌した。The above solution was stirred at 70°C for 1.5 hours.

反応液を薄層クロマトグラフィーにて分析したところ、
原料N−ホルミル−α−L−アスパルチルーL−フェニ
ルアラニンメチルエステル及び脱ホルミル化物りるα−
L−アスパルチルーL−フェニルアラニンメチルエステ
ルは検出できなかった。
When the reaction solution was analyzed by thin layer chromatography,
Raw material N-formyl-α-L-aspartyl-L-phenylalanine methyl ester and deformylated product Riruα-
L-aspartyl-L-phenylalanine methyl ester could not be detected.

比較例 2 N−ホルミル−α−L−アスパルチルーL−フェニルア
ラニンメチルエステル1.6.9(5ミリモル)及び塩
酸ヒドロキシルアミン1.749(25ミリモル)をメ
タノール10m1に溶解し、更に水酸化カリウムL4.
F(25ミ!Jモル)を加え塩酸ヒドロキシルアミンを
中和した。
Comparative Example 2 1.6.9 (5 mmol) of N-formyl-α-L-aspartyl-L-phenylalanine methyl ester and 1.749 (25 mmol) of hydroxylamine hydrochloride were dissolved in 10 ml of methanol, and 4.9 ml of potassium hydroxide was dissolved.
F (25 mm!J mol) was added to neutralize the hydroxylamine hydrochloride.

上記溶液を70℃にて1,5時間攪拌した。The above solution was stirred at 70°C for 1.5 hours.

反応液を薄層クロマトグラフィーにて分析したところ、
原料N−ホルミル−α−I、−7スパルチルーL−フェ
ニルアラニンメチルエステル及び脱ホルミル化物たるα
−L−アスパルチルーL−フェニルアラニンメチルエス
テルは検出されなかった。
When the reaction solution was analyzed by thin layer chromatography,
Raw material N-formyl-α-I, -7 spartyl-L-phenylalanine methyl ester and deformylated product α
-L-aspartyl-L-phenylalanine methyl ester was not detected.

Claims (1)

【特許請求の範囲】[Claims] 1 ホルミル基にて保護されたアミン基及びエステル基
を含有する化合物をヒドロキシルアミン強酸塩と接触せ
しめることを特徴とするホルミル基の脱離法。
1. A method for eliminating formyl groups, which comprises bringing a compound containing a formyl group-protected amine group and ester group into contact with a strong hydroxylamine salt.
JP49140646A 1974-12-05 1974-12-05 Formilkino Datsurihou Expired JPS5823380B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP49140646A JPS5823380B2 (en) 1974-12-05 1974-12-05 Formilkino Datsurihou
CA240,016A CA1042875A (en) 1974-12-05 1975-11-19 Method of removing formyl groups from n-formyl-amino acid-n-formyl-peptide esters
GB48458/75A GB1496980A (en) 1974-12-05 1975-11-25 Process for removing formyl groups from n-formyl protected esters
US05/635,746 US4021418A (en) 1974-12-05 1975-11-26 Method of removing formyl groups from N-formyl-amino acid and N-formyl-peptide esters
DE2554421A DE2554421C2 (en) 1974-12-05 1975-12-03 Process for the cleavage of the formyl group from esters of N-α-formylamino acids or N-α-formyl peptides with primary or secondary alcohols
CH1578675A CH599115A5 (en) 1974-12-05 1975-12-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49140646A JPS5823380B2 (en) 1974-12-05 1974-12-05 Formilkino Datsurihou

Publications (2)

Publication Number Publication Date
JPS5168520A JPS5168520A (en) 1976-06-14
JPS5823380B2 true JPS5823380B2 (en) 1983-05-14

Family

ID=15273490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49140646A Expired JPS5823380B2 (en) 1974-12-05 1974-12-05 Formilkino Datsurihou

Country Status (6)

Country Link
US (1) US4021418A (en)
JP (1) JPS5823380B2 (en)
CA (1) CA1042875A (en)
CH (1) CH599115A5 (en)
DE (1) DE2554421C2 (en)
GB (1) GB1496980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502983A (en) * 1984-07-02 1986-12-18 バロ−ス・コ−ポレ−ション Mounting arrangement of display terminal equipment

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223001A (en) * 1975-08-14 1977-02-21 Ajinomoto Co Inc Process for elimination of formyl group
IT1194795B (en) * 1981-05-13 1988-09-28 Pierrel Spa PROCEDURE FOR THE ELIMINATION OF THE N-FORMILE GROUP FROM N-FORMILATED PEPTIDES AND N-FORMILATED PEPTID ESTERS
JPH07636B2 (en) * 1984-12-17 1995-01-11 三井東圧化学株式会社 Process for producing N-formyl-α-aspartyl phenylalanine
ES8703487A1 (en) * 1984-12-27 1987-03-01 Mitsui Toatsu Chemicals Process for the preparation of alpha-L-aspartyl-L-phenylalanine methyl ester.
AU561384B2 (en) * 1985-03-26 1987-05-07 Mitsui Toatsu Chemicals Inc. Preparation of -l-aspartyl-l-phenylalanine methyl ester or hydrochloride thereof
IT1190395B (en) * 1985-09-30 1988-02-16 Lark Spa PROCEDURE FOR REMOVAL OF THE FORMILE GROUP FROM AN ESTER OF N-FORMIL PEPTIDE OR N-FORMIL AMINO ACID
US4730076A (en) * 1985-12-18 1988-03-08 Nippon Kayaku Kabushiki Kaisha Process for producing α-aspartyl-phenylalanine ester
DE3780585T2 (en) * 1986-12-05 1993-03-18 Mitsui Toatsu Chemicals PRODUCTION OF ALPHA-L-ASPARTYL-L-PHENYLALANINE METHYL ESTERS OR THEIR HYDROHALIDES.
JPH0832719B2 (en) * 1986-12-19 1996-03-29 三井東圧化学株式会社 Method for producing α-L-aspartyl-L-phenylalanine methyl ester having low hygroscopicity
US5017690A (en) * 1989-08-11 1991-05-21 W. R. Grace & Co.-Conn. Deblocking N-formyl aspartame compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1543610A1 (en) * 1966-08-27 1969-07-31 Hoechst Ag Process for the preparation of amino acids and peptides and their derivatives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502983A (en) * 1984-07-02 1986-12-18 バロ−ス・コ−ポレ−ション Mounting arrangement of display terminal equipment

Also Published As

Publication number Publication date
GB1496980A (en) 1978-01-05
DE2554421A1 (en) 1976-06-10
DE2554421C2 (en) 1984-10-11
CA1042875A (en) 1978-11-21
JPS5168520A (en) 1976-06-14
US4021418A (en) 1977-05-03
CH599115A5 (en) 1978-05-12

Similar Documents

Publication Publication Date Title
EP0092933B1 (en) Process for producing alpha-l-aspartyl-l-phenylalanine methyl ester or its hydrochloride
JPS5823380B2 (en) Formilkino Datsurihou
JP2003509437A (en) Method for producing H-TYR-D-ALA-PHE (F) -PHE-NH2
JPS6050200B2 (en) Improved production method of α-L-aspartyl-L-phenylalanine methyl ester
CA1268598A (en) METHOD OF PREPARING .alpha.-L-ASPARTYL-L-PHENYLALANINE METHYL ESTER AND ITS HYDROCHLORIDE
EP0058063B1 (en) Process for removing an n-formyl group
JPS6150941B2 (en)
JPS6257180B2 (en)
JPH0441155B2 (en)
JPH08231586A (en) Production of alpha-l-aspartyldipeptide amide derivative
NZ208279A (en) The preparation of n-l- a -aspartyl-l-phenylalaning 1-methyl ester (aspartame)
JPH049800B2 (en)
JP2662287B2 (en) Method for separating α-L-aspartyl-L-phenylalanine methyl ester
JPH0647600B2 (en) Method for converting β-aspartylphenylalanine derivative into α-aspartylphenylalanine derivative
JPH078855B2 (en) Sulfonium compound
AU649623B2 (en) Process for the preparation of N-formyl-L-aspartic anhydride
JP2598470B2 (en) Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester
US3835109A (en) Vinyloxycarbonyl group as an amino protecting group in the syntheses of peptides
JP2541622B2 (en) Method for producing aspartyl phenylalanine methyl ester from N-formyl aspartyl phenylalanine methyl ester and oxalate salt of aspartyl phenylalanine methyl ester
JP2910228B2 (en) Method for producing α-L-aspartyl-L-phenylalanine methyl ester hydrochloride
JPS6274296A (en) Enzymic linking of n-acetyl-l-aspartic acid to l-phenylalanine alkyl ester
JP3178092B2 (en) Method for producing α-L-aspartyl-L-phenylalanine methyl ester hydrochloride
JP2598467B2 (en) Method for producing N-protected-α-L-aspartyl-L-phenylalanine methyl ester
JPH0680074B2 (en) Method for producing N-formyl-L-α-aspartyl-L-phenylalanine
JP2513155B2 (en) Process for producing N-protected-L-α-aspartyl-L-phenylalanine