JPS5823116Y2 - netsukoukankiyoudennetsutai - Google Patents

netsukoukankiyoudennetsutai

Info

Publication number
JPS5823116Y2
JPS5823116Y2 JP1975121417U JP12141775U JPS5823116Y2 JP S5823116 Y2 JPS5823116 Y2 JP S5823116Y2 JP 1975121417 U JP1975121417 U JP 1975121417U JP 12141775 U JP12141775 U JP 12141775U JP S5823116 Y2 JPS5823116 Y2 JP S5823116Y2
Authority
JP
Japan
Prior art keywords
heat transfer
particles
iron
copper
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1975121417U
Other languages
Japanese (ja)
Other versions
JPS5234452U (en
Inventor
忠文 吉田
岩夫 茂木
Original Assignee
シヨウケツキンゾクコウギヨウ カブシキガイシヤ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シヨウケツキンゾクコウギヨウ カブシキガイシヤ filed Critical シヨウケツキンゾクコウギヨウ カブシキガイシヤ
Priority to JP1975121417U priority Critical patent/JPS5823116Y2/en
Publication of JPS5234452U publication Critical patent/JPS5234452U/ja
Application granted granted Critical
Publication of JPS5823116Y2 publication Critical patent/JPS5823116Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【考案の詳細な説明】 本考案は、伝熱面に多数の金属粒子を溶着させた熱交換
器用伝熱体の改良に関するものである。
[Detailed Description of the Invention] The present invention relates to an improvement of a heat transfer body for a heat exchanger in which a large number of metal particles are welded to the heat transfer surface.

近年、伝熱管群の空間にほぼ球状の金属粒子を充填し、
該粒子間および該粒子と伝熱管表面との間を溶着させて
形成した多孔質状の金属伝熱体が、フィンチューブ等に
代わる拡大伝熱面として、熱伝達率の向上を計るために
利用されている。
In recent years, nearly spherical metal particles have been filled into the space of heat exchanger tube groups,
A porous metal heat transfer body formed by welding between the particles and between the particles and the surface of the heat transfer tube is used as an expanded heat transfer surface in place of a fin tube, etc. to improve heat transfer coefficient. has been done.

而して、この金属伝熱体は、伝熱面積の増大という利点
の他に、金属粒子間の空隙部を流れる流体の流れを乱す
ために、その流れの乱れによって流体と金属粒子間の熱
伝達率を向上させるという利点をを有し、その結果、熱
交換器の性能向上を驚異的なものとしている。
In addition to the advantage of increasing the heat transfer area, this metal heat transfer body disturbs the flow of the fluid flowing through the gaps between the metal particles. It has the advantage of increasing the transfer rate, resulting in an amazing improvement in the performance of the heat exchanger.

このような多孔質状の金属伝熱体において、伝熱面積が
金属粒子の表面積にまで有効に拡大されるためには、金
属粒子材料の熱伝導率が大きいこと、金属粒子相互の溶
着が確実で溶着部の熱伝導が良好であることなどが要求
され、そのため一般に金属粒子の材質としては、工業材
料の中で最も熱伝導率が大きく、粒子相互のろう付けに
よる溶着が比較的容易な銅材料が用いられている。
In such a porous metal heat transfer body, in order to effectively expand the heat transfer area to the surface area of the metal particles, the thermal conductivity of the metal particle material must be high and the welding of the metal particles to each other must be ensured. Therefore, the material for the metal particles is generally copper, which has the highest thermal conductivity among industrial materials and is relatively easy to weld particles together by brazing. material is used.

しかしながら、銅材料は比較的材料価格が高価なため、
それを多量に必要とする熱交換器はコスト高になる可能
性がある。
However, copper materials are relatively expensive, so
Heat exchangers that require a large amount of it can be expensive.

そこで、銅材料の代わりに材料価格が比較的低廉な鉄系
材料を使用することが考えられるが、鉄の熱伝導率は銅
の熱伝導率の約τであるため、鉄粒子の表面で吸収され
た熱が伝熱管壁を経て管内を流れる冷媒体に達するまで
の伝熱性能は、熱伝導率の低下分だけ低下することにな
る。
Therefore, it may be possible to use iron-based materials, which are relatively inexpensive, instead of copper materials, but since the thermal conductivity of iron is approximately τ that of copper, absorption is absorbed on the surface of iron particles. The heat transfer performance until the heat passes through the heat transfer tube wall and reaches the refrigerant flowing inside the tube decreases by the amount of decrease in thermal conductivity.

しかも、伝熱性能の低下を最少限にとどめるために、金
属粒子に鉄系材料を用い、伝熱管に銅材料を使用する場
合には、両者のろう付けによる溶着が従来のろう材では
困難である。
Furthermore, in order to minimize the decline in heat transfer performance, when using iron-based materials for the metal particles and copper materials for the heat transfer tubes, it is difficult to weld the two together using conventional brazing filler metals. be.

即ち、銀ろうは材料が高価であり、亜鉛を含む場合は亜
鉛の蒸発を誘発するので使用することができず、黄銅ろ
うも同様に亜鉛が蒸発するので使用できない。
That is, silver solder is an expensive material and cannot be used if it contains zinc because it induces evaporation of the zinc. Similarly, brass solder cannot be used because the zinc evaporates.

また、りん銅ろうはりんと鉄が鉄の表面で化合して脆い
化合物を形威し、マンガンを含む合金ろうはマンガンが
鋼中に拡散する速度が速いため、炉内溶着作業における
製品の品質管理が難しい。
In addition, in phosphorous copper solder, phosphorus and iron combine on the surface of the iron to form a brittle compound, and in alloy solders containing manganese, manganese diffuses into the steel at a high rate, so product quality control during furnace welding work is difficult.

さらに、一般にろう付は作業においては、金属表面の酸
化膜を除去してろう付けを確実にするためにフラックス
を使用するが、このブラック又はろう付は作業後に確実
に除去する必要がある。
Furthermore, during brazing work, flux is generally used to remove the oxide film on the metal surface to ensure brazing, but this black or brazing must be reliably removed after the work.

本考案者らは、金属粒子に鉄系材料を用い、伝熱管に銅
材料を使用する場合における上記各種ろう材についての
有効性を・実験的に確かめると共に、他の金属材料につ
いてもその確認を行い、結果的には、ろう材として一般
的に用いられていない青銅が種々の点で有利であること
を確め、本考案をなすに至ったものである。
The present inventors experimentally confirmed the effectiveness of the various brazing fillers mentioned above when using iron-based materials for metal particles and copper materials for heat exchanger tubes, and also confirmed the effectiveness of other metal materials. As a result, it was confirmed that bronze, which is not generally used as a brazing material, is advantageous in various respects, and the present invention was developed.

従って、本考案は金属粒子として安価な鉄系材料を用い
ると共に伝熱管として銅系材料を用いる場合における両
者の溶着の問題を、適切な溶着剤即ち青銅の使用によっ
て解決し、鉄系金属粒子の使用による伝熱性能の低下を
最少限にとどめて、銅系金属粒子を用いた場合と同程度
の伝熱性能を有する熱交換器を安価に提供することを可
能にするものである。
Therefore, the present invention solves the problem of welding when using an inexpensive iron-based material as the metal particles and a copper-based material as the heat transfer tube by using an appropriate welding agent, that is, bronze. This makes it possible to minimize the deterioration in heat transfer performance due to use and to provide a heat exchanger at a low cost that has heat transfer performance comparable to that when copper-based metal particles are used.

図面を参照して本考案について詳述するに、第1図は本
考案に係る伝熱体を構成を例示したもので、1は銅また
は銅系合金からなる伝熱管、2は上記伝熱管1の伝熱面
に溶着させた鉄または鉄を主体とする合金の粒子、3は
上記粒子2を溶着させるための青銅からなる溶着剤を示
している。
To describe the present invention in detail with reference to the drawings, FIG. 1 shows an example of the configuration of a heat transfer body according to the present invention, where 1 is a heat exchanger tube made of copper or a copper-based alloy, and 2 is the heat exchanger tube 1. Particles of iron or an alloy mainly composed of iron are welded to the heat transfer surface of , and 3 indicates a welding agent made of bronze for welding the particles 2 .

溶着剤として使用する青銅は、銅を主体として錫を含む
合金材で、この錫の含有量によって鉄系金属粒子2の結
合強度が変化する。
Bronze used as a welding agent is an alloy material mainly composed of copper and containing tin, and the bonding strength of the iron-based metal particles 2 changes depending on the tin content.

粒子2の結合強度が大きい程、伝熱性能、耐久性能が向
上することを考慮すれば、後述の実験結果から明らかな
ように、10〜30%の錫を含有する合金材が適当であ
り、約20%の場合が最適である。
Considering that the greater the bonding strength of the particles 2, the better the heat transfer performance and durability performance, as is clear from the experimental results described below, an alloy material containing 10 to 30% tin is suitable. A case of about 20% is optimal.

この青銅は、溶融。点が銅と鉄よりも低く、流れ性が良
好でフラックスを必要としない。
This bronze is molten. It has a lower point than copper and iron, has good flowability, and does not require flux.

而して、上記溶着剤を用いて粒子相互間および該粒子と
伝熱面との間を溶着させる場合、粒子表面を溶着剤によ
って被覆させ、この溶着剤によって粒子相互間を溶着結
合させるが、該溶着剤は銅系材料からなる伝熱管表面に
多く集まる傾向を有し、そのため粒子の伝熱面に対する
溶着が極めて緊密に行われる。
When the above welding agent is used to weld the particles together and between the particles and the heat transfer surface, the surfaces of the particles are coated with the welding agent, and the particles are welded and bonded using the welding agent. The welding agent tends to gather in large quantities on the surface of the heat transfer tube made of copper-based material, and therefore the particles are extremely tightly welded to the heat transfer surface.

次に、本考案に関する実験の結果を示す。Next, the results of experiments related to the present invention will be shown.

第2図は、溶着剤としての青銅の錫含有量を変化させて
鉄粒子相互を溶着させた粒子集合体について、抗張力と
剪断強さを測定した結果を示すものである。
FIG. 2 shows the results of measuring the tensile strength and shear strength of particle aggregates in which iron particles were welded together by varying the tin content of bronze as a welding agent.

この場合に、鉄粒子としては2.3mmφのワイヤを約
2.3mmに切断したものを用い、鉄粒子1000 g
に対して青銅を50 gの割合で使用した。
In this case, 2.3 mmφ wire cut into approximately 2.3 mm pieces was used as the iron particles, and 1000 g of iron particles were used.
50 g of bronze was used.

また、溶着は電気炉内において水素ガス雰囲気で行い、
溶着温度は青銅の融点プラス70℃として、5分間保持
した。
In addition, welding is performed in an electric furnace in a hydrogen gas atmosphere.
The welding temperature was set to 70° C. above the melting point of bronze, and was maintained for 5 minutes.

第2図の実験結果によれば、青銅が10〜30%の錫を
含む場合に結合強度がすぐれ、特に20%の場合が最適
であることがわかる。
According to the experimental results shown in FIG. 2, it can be seen that the bonding strength is excellent when the bronze contains 10 to 30% tin, and in particular, the case of 20% tin is optimal.

また、第3図は従来の各種伝熱体と本考案の伝熱体との
伝熱性能の比較を熱通過率によって行った結果を示すも
のである。
Furthermore, FIG. 3 shows the results of a comparison of heat transfer performance between various conventional heat transfer bodies and the heat transfer body of the present invention based on the heat transfer rate.

同図において、Aはベアーチューブタイプ、Bはフィン
チューブタイプ、Cは銅粒子(粒子径2.0〜2.3m
m)を鋼管にりん銅ろうによって溶着した場合、Dは鉄
粒子を用いた本考案の伝熱体の場合を示し、それぞれの
場合における伝熱管としては、素管寸法が外径lQmm
φ、肉厚0.8mmの鋼管を使用した。
In the same figure, A is a bare tube type, B is a fin tube type, and C is a copper particle (particle size 2.0 to 2.3 m).
m) is welded to a steel pipe by phosphor brazing, D shows the case of the heat transfer body of the present invention using iron particles, and in each case, the heat transfer tube has an outer diameter of lQ mm.
A steel pipe with a diameter of 0.8 mm and a wall thickness of 0.8 mm was used.

試験条件は、伝熱管内に流速’1m/sec程度の冷却
水を流し、伝熱管外側には伝熱管に直交するように約6
0℃の鉱物油を流した。
The test conditions were to flow cooling water at a flow rate of about 1 m/sec into the heat exchanger tube, and to flow the cooling water at a flow rate of about 1 m/sec to the outside of the heat exchanger tube.
Mineral oil at 0°C was flushed.

第3図の測定結果から明らかなように、熱伝導率が比較
的小さい鉄粒子を用いた本考案の伝熱体の伝熱性能は、
熱伝導率が比較的大きい銅粒子を用いた場合と比較して
同程度であり、このことから、本考案の伝熱体において
鉄粒子を用いたための伝熱性能の低下が僅少であること
がわがる。
As is clear from the measurement results in Figure 3, the heat transfer performance of the heat transfer body of the present invention using iron particles with relatively low thermal conductivity is as follows.
The thermal conductivity is on the same level as when using relatively large copper particles, and this shows that there is only a slight decrease in heat transfer performance due to the use of iron particles in the heat transfer body of the present invention. I'm selfish.

これは、本考案の伝熱体の伝熱時における温度勾配が銅
粒子の場合の温度勾配より僅かに大きいためと考えられ
る。
This is considered to be because the temperature gradient during heat transfer in the heat transfer body of the present invention is slightly larger than the temperature gradient in the case of copper particles.

更に第3図の熱通過率は管外熱伝達率と管内熱伝達率と
の両方の値によって変化することを考慮すれば、管外熱
伝達率の値の差が軽減されるためと考えられる。
Furthermore, considering that the heat transfer coefficient in Figure 3 changes depending on the values of both the heat transfer coefficient outside the tube and the heat transfer coefficient inside the tube, this is thought to be because the difference in the value of the heat transfer coefficient outside the tube is reduced. .

以上に詳述した本考案の伝熱体によれば、次に列挙する
ような効果が期待できる。
According to the heat transfer body of the present invention described in detail above, the following effects can be expected.

(1)銅に比して比較的安価な鉄または鉄を主体とする
合金の粒子を用い、伝熱性能のすぐれた伝熱体を得るこ
とができる。
(1) A heat transfer body with excellent heat transfer performance can be obtained using iron or iron-based alloy particles, which are relatively inexpensive compared to copper.

(2)鉄系金属粒子の表面を青銅が被覆しているので熱
伝導が向上し、また耐蝕性が青銅と同じ程度となり、利
用範囲が広い。
(2) Since the surface of the iron-based metal particles is coated with bronze, heat conduction is improved, and the corrosion resistance is on the same level as bronze, so it can be used in a wide range of applications.

(3)青銅の溶着量が、鉄系金属粒子相互間よりも該粒
子と銅系金属からなる伝熱面との間の方に多いため、そ
れが伝熱性能に有効に活用される。
(3) Since the amount of bronze welded is greater between the iron-based metal particles and the heat transfer surface made of the copper-based metal than between the iron-based metal particles, this is effectively utilized for heat transfer performance.

(4)フラックスを使用しないので、溶着後にフラック
スの除去という困難な工程を必要としない。
(4) Since flux is not used, there is no need for the difficult process of removing flux after welding.

【図面の簡単な説明】 第1図は本考案に係る伝熱体の要部拡大断面図、第2図
および第3図は本考案に関連する実験の結果を示すグラ
フである。 1・・・・・・伝熱管、2・・・・・・金属粒子、3・
・・・・・溶着剤。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged sectional view of a main part of a heat transfer body according to the present invention, and FIGS. 2 and 3 are graphs showing the results of experiments related to the present invention. 1... Heat exchanger tube, 2... Metal particles, 3.
...Welding agent.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 銅または銅系合金からなる伝熱面に多数の鉄または鉄を
主体とする合金の粒子を溶着させる溶着剤として、銅を
主体とし錫を10〜30%含む青銅を用い、上記粒子の
表面を該溶着剤により被覆すると共に、該粒子間および
該粒子と伝熱面との間を上記溶着剤により溶着させてな
る熱交換器用伝熱体。
As a welding agent for welding a large number of iron or iron-based alloy particles to a heat transfer surface made of copper or a copper-based alloy, bronze containing mainly copper and 10 to 30% tin is used to bond the surface of the particles. A heat transfer body for a heat exchanger, which is coated with the welding agent and is welded between the particles and between the particles and the heat transfer surface using the welding agent.
JP1975121417U 1975-09-03 1975-09-03 netsukoukankiyoudennetsutai Expired JPS5823116Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1975121417U JPS5823116Y2 (en) 1975-09-03 1975-09-03 netsukoukankiyoudennetsutai

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1975121417U JPS5823116Y2 (en) 1975-09-03 1975-09-03 netsukoukankiyoudennetsutai

Publications (2)

Publication Number Publication Date
JPS5234452U JPS5234452U (en) 1977-03-11
JPS5823116Y2 true JPS5823116Y2 (en) 1983-05-17

Family

ID=28602110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1975121417U Expired JPS5823116Y2 (en) 1975-09-03 1975-09-03 netsukoukankiyoudennetsutai

Country Status (1)

Country Link
JP (1) JPS5823116Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS416550Y1 (en) * 1964-08-27 1966-04-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS416550Y1 (en) * 1964-08-27 1966-04-02

Also Published As

Publication number Publication date
JPS5234452U (en) 1977-03-11

Similar Documents

Publication Publication Date Title
CN105940129B (en) Aluminum alloy heat exchanger
US4831701A (en) Method of making a corrosion resistant aluminum heat exchanger using a particulate flux
JPH0320594A (en) Heat exchanger
JP4577634B2 (en) Aluminum alloy extruded tube with brazing filler metal for heat exchanger
KR101646484B1 (en) Plate Heat Exchangers having copper connectors's manufacturing method
JPS5823116Y2 (en) netsukoukankiyoudennetsutai
WO2001066295A1 (en) Method of short-time brazing for aluminum alloy assembly and low temperature brazing filler alloy
JPS6018294A (en) Aluminum-brazed joint
JP2005307252A (en) Aluminum alloy clad material for automobile heat exchanger
JP3876179B2 (en) Aluminum alloy three-layer clad material
JPH0150518B2 (en)
JP2000107883A (en) Nickel brazing filler metal for joining egr cooler, manufacture of egr cooler using it, and egr cooler
KR100408776B1 (en) Processing method of heat exchanger
JPS61202772A (en) Aluminum alloy made fin material having both sacrifical anode effect and zn coating effect
CN104654878A (en) Steam Condensing Heat Conduction Pipe For Air Cooling Steam Condensing Plant
JPS5852545B2 (en) Cast material for copper alloy pipe fittings with excellent weldability
JPS6328704B2 (en)
JPH02142672A (en) Manufacture of aluminum heat exchanger
KR20150058944A (en) Aluminum Clad Oblong Tube for air cooling system condensing plant
JPS5983741A (en) Fin material for heat exchanger made of aluminum alloy having sacrificial corrosion-proof effect
JPH0256413B2 (en)
JPS6124369Y2 (en)
US20070000969A1 (en) Brazed aluminum structure and method for forming same
JPH0218959B2 (en)
JPS58123098A (en) Heat transfer pipe with grooves inside