JPS5822999B2 - Method for recycling filter material used to filter radioactive wastewater - Google Patents

Method for recycling filter material used to filter radioactive wastewater

Info

Publication number
JPS5822999B2
JPS5822999B2 JP51109649A JP10964976A JPS5822999B2 JP S5822999 B2 JPS5822999 B2 JP S5822999B2 JP 51109649 A JP51109649 A JP 51109649A JP 10964976 A JP10964976 A JP 10964976A JP S5822999 B2 JPS5822999 B2 JP S5822999B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
regeneration method
aqueous solution
radioactive wastewater
peroxide aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51109649A
Other languages
Japanese (ja)
Other versions
JPS5335899A (en
Inventor
幸彦 小柴
嘉治 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKI KK
NOMURA MAIKURO SAIENSU KK
Original Assignee
NITSUKI KK
NOMURA MAIKURO SAIENSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKI KK, NOMURA MAIKURO SAIENSU KK filed Critical NITSUKI KK
Priority to JP51109649A priority Critical patent/JPS5822999B2/en
Publication of JPS5335899A publication Critical patent/JPS5335899A/en
Publication of JPS5822999B2 publication Critical patent/JPS5822999B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】 本発明は放射性廃水のr過に使用したfj材の再生方法
に係り、更に詳しくは放射性廃水中に懸濁している固体
微粒子を沢過分離するために使用されたΔゴ材を過酸化
水素水溶液中に浸漬せしめて該汗材を再生する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating fj material used for r-filtration of radioactive wastewater, and more specifically, the present invention relates to a method for regenerating fj material used for r-filtration of radioactive wastewater. The present invention relates to a method of regenerating sweat material by immersing sweat material in an aqueous hydrogen peroxide solution.

軽水冷却型原子炉L−W−Hによる原子力発電所、特に
沸騰型原子炉B −W−Hによる発電所に於ては前記原
子炉と発電用タービンを循環する炉水中に装置材料の腐
蝕に起因する酸化鉄を主成分とする不溶性の固体微粒子
(通常クラッドとよばれるので以下クラッドと云う)が
生成し、これが炉心に於て中性子の照射をうけて炉水の
放射能レベルを高めるだけでなく、原子炉燃料体の表面
や炉水の循環系内に沈積するので、かかるクラッドを炉
水中から除去するための処理施設が必要となる。
In nuclear power plants using light water-cooled nuclear reactors L-W-H, especially power plants using boiling-type nuclear reactors B-W-H, corrosion of equipment materials occurs in the reactor water that circulates between the reactor and the power generation turbine. Insoluble solid particles (usually called cladding, henceforth referred to as cladding) whose main component is iron oxide are generated, and when they are irradiated with neutrons in the reactor core, they only increase the radioactivity level of the reactor water. Since the crud is deposited on the surface of the reactor fuel assembly and within the reactor water circulation system, a treatment facility is required to remove such crud from the reactor water.

現在、かような処理施設に於てはセルローズ粉末等の1
過助材を使用してプレコート力式で前記クラッドを沢過
分離するか、もしくは10ミクロン以上の相当直径から
成る流通孔を有する板状の1材、例えば04〜3.0ミ
クロンの一定でほぼ均一な径をもつ円形孔が膜面にほぼ
垂直に開口率10〜20%の範囲で多数片たれたプラス
チックを基材とする、厚さ10〜20ミクロンのメンブ
1/ンフィルター等を使用して前記クラッドを沢過分離
する方法が採用されている。
At present, such processing facilities are unable to process cellulose powder, etc.
Either the cladding is filtered and separated using a pre-coating force method using a filter material, or a plate-shaped material having flow holes with an equivalent diameter of 10 microns or more, for example, a constant diameter of 0.4 to 3.0 microns, is used. A membrane filter with a thickness of 10 to 20 microns is used, which is made of plastic and has a large number of circular pores with a uniform diameter cut almost perpendicular to the membrane surface with an aperture ratio in the range of 10 to 20%. A method is adopted in which the cladding is filtered and separated.

この場合、後者の方法に於てはp過操作の結果、1材の
一面に堆積したクラッドを逆洗することによって1材の
1過機能を回復せしめることができるので、その都度新
しいf”材と交換することなくその1材を繰返し使用す
ることができる。
In this case, in the latter method, by backwashing the crud deposited on one side of the material as a result of the p-overflow operation, the 1-overfunction of the 1-material can be restored, so a new f'' material is used each time. One material can be used repeatedly without having to be replaced.

しかしながら前記1材を長期に亘って使用していると、
逆洗操作等では除去しにくい、非結晶性で粘着性の強い
有7幾物、例えば微生物が次第にその1材表向や流通孔
などに付着、蓄積してしまうため、結局は新しい1材と
交換するか、或いは何らかの方法によって該1材を再生
することが必要となる。
However, if the above material is used for a long period of time,
Amorphous and highly sticky substances, such as microorganisms, which are difficult to remove by backwashing operations, etc., gradually adhere to and accumulate on the surface of the material and the flow holes, resulting in the product being replaced with a new material. It is necessary to replace the material or to regenerate it by some method.

従来、このように有機物が付着してf過機能を失った1
材を再生する方法としては超音波洗浄法などが知られて
いるがP材に付着した微生物の除去には余まり効果的で
あるとは云えない。
In the past, organic matter adhered to the product and the f-hyperfunction was lost1.
Although ultrasonic cleaning methods are known as methods for recycling materials, they cannot be said to be very effective in removing microorganisms attached to P materials.

そこで本発明渚等はかかる現状に鑑み、前記p材に付着
している微生物等の有機物を完全もしくはほぼ完全に除
去してその1過機能を回復する方法を鋭意研究した結果
、過酸化水素水溶液中で処理する方法が最も適し、てい
ることを見い出し、本発明を為すに到った。
In view of the current situation, the inventors of the present invention, Nagisa et al., conducted extensive research into a method for completely or almost completely removing organic matter such as microorganisms adhering to the p-material and restoring its first function. The present inventors have discovered that a method of treating the inside of the body is most suitable, and has accomplished the present invention.

即ち本発明による、放射性廃水中に懸濁している固体微
粒子を沢過分離するために使用された1材を再生する方
法は微生物等の有機物が付着したP材を常温ないし70
℃の温度範囲に維持された過酸化水素水溶液中に一定時
間浸漬して処理することを特徴とするものである。
That is, the method according to the present invention for regenerating a material used to filter and separate solid particles suspended in radioactive wastewater is to recover the P material to which organic matter such as microorganisms has adhered at room temperature to 70°C.
The treatment is characterized by being immersed in an aqueous hydrogen peroxide solution maintained at a temperature range of 0.degree. C. for a certain period of time.

この場合、微生物等の南機物に対して過酸化水素が如何
に作用しているかについては明らかではないがその強力
な酸化作用によって微生物等の有機物が変質して1材か
ら分離しやすい状態になり、極端な場合には酸化分解し
ていることか考えられる。
In this case, it is not clear how hydrogen peroxide acts on organic matter such as microorganisms, but its strong oxidizing action alters the organic matter such as microorganisms and makes it easy to separate from the material. In extreme cases, it may be due to oxidative decomposition.

本発明方法に使用される過酸化水素水溶液は市販のもの
であってよいが過酸化水素濃度3〜30重量%の範囲に
あるものを処理濃度との関係に於て選択することが望ま
しい。
The hydrogen peroxide aqueous solution used in the method of the present invention may be commercially available, but it is desirable to select one having a hydrogen peroxide concentration in the range of 3 to 30% by weight in relation to the treatment concentration.

尚、処理温度は常温ないし70℃の範囲より選択するこ
とができるが40〜60℃の範囲にあることが望ましい
The treatment temperature can be selected from the range of room temperature to 70°C, but is preferably in the range of 40 to 60°C.

以下、図面に沿って本発明の構成要件兼ひに効果要件を
更に具体的に説明する。
Hereinafter, the constituent elements and effect requirements of the present invention will be explained in more detail along with the drawings.

第1図は本発明方法の一実施態様を示すフローシートで
あって、T1 + T2及びT3は夫々放射性廃水の貯
槽、処理槽及び過酸化水素水溶液の貯槽を示す。
FIG. 1 is a flow sheet showing one embodiment of the method of the present invention, where T1 + T2 and T3 indicate a storage tank for radioactive wastewater, a treatment tank, and a storage tank for aqueous hydrogen peroxide solution, respectively.

第1図に於て放射性廃水の貯槽T1からポンプP1によ
ってライン1を介して処理槽T2中に導入された、クラ
ッドを含む放射性廃水はP材F1を通過する間に実質的
にクラッドを含まない廃水となってライン2より糸外に
取り出される。
In FIG. 1, the radioactive wastewater containing crud is introduced from the radioactive wastewater storage tank T1 into the treatment tank T2 via line 1 by pump P1 and does not substantially contain crud while passing through P material F1. It becomes waste water and is taken out from the line 2.

かかる操作を一定期間性なっていると1材F1の下部に
クラッドが堆積してその1過機能を失ってしまうので、
放射性廃水の導入を停止して、ライン3から圧搾空気を
注入することによって処理槽内に残っている処理液を沢
過通水方向とは逆の方向に急速に流すことによって1材
の膜面に付着したクランドを洗い流し、該1材の1過機
能を回復させる。
If such operations are continued for a certain period of time, crud will accumulate at the bottom of the material F1 and the material will lose its functionality.
By stopping the introduction of radioactive wastewater and injecting compressed air from line 3, the treatment liquid remaining in the treatment tank is rapidly flowed in the opposite direction to the direction of water passing through the stream, thereby reducing the membrane surface of one material. The crand adhering to the material is washed away and the superfunction of the material is restored.

この結果、得られた廃液はライン5を介して系外に増り
出し、以下公知のセメント固化法やアヌファルト固化法
等によって処理する。
As a result, the obtained waste liquid flows out of the system through line 5, and is subsequently treated by a known cement solidification method, annuphalt solidification method, or the like.

通常、このような逆洗操作を施せば、前記1材の1過機
能は当初の状態に回復するが、かか1材F1を長期間使
用していると該1材の表面や流通孔に第2図に示す如く
、微生物等の有機物S1が付着して、たとえ前記の如き
逆洗操作を繰り返してもその1過機能を回復させること
が困難となる。
Normally, if such a backwashing operation is performed, the above-mentioned 1st material's 1st function will be restored to its original state, but if the 1st material F1 is used for a long period of time, the surface and flow holes of the 1st material will be damaged. As shown in FIG. 2, organic substances S1 such as microorganisms are attached, and it becomes difficult to restore the primary function even if the above-mentioned backwashing operation is repeated.

このようにして有機物S1が1材F1に付着してしまっ
たことが認められたならば過酸化水素溶液の貯槽T3よ
りライン6を介して処理槽T2中に過酸化水溶液を導入
して本発明方法による処理を行なう。
If it is recognized that the organic matter S1 has adhered to the first material F1 in this way, an aqueous peroxide solution is introduced into the treatment tank T2 from the hydrogen peroxide solution storage tank T3 through the line 6, and according to the present invention. Process according to method.

この場合、処理槽T2中の過酸化水素水溶液は加熱器H
1によって加熱して常温ないし70°C1好ましくは4
0〜60℃の温度条件下に維持して、微生物等の有機物
が1材から完全もしくはほぼ完全に離脱する程度の時間
(約0.5〜1時間程度)放置する。
In this case, the hydrogen peroxide aqueous solution in the treatment tank T2 is heated by the heater H.
1 to room temperature to 70°C, preferably 4.
The material is maintained at a temperature of 0 to 60° C. and left for a period of time (approximately 0.5 to 1 hour) such that organic substances such as microorganisms are completely or almost completely removed from the material.

次いで過酸化水素水溶液の温度を70〜80℃にして、
過酸化水素を完全に水と酸素に分解せしめた後、再び逆
洗して処理槽T2内を洗浄する。
Next, the temperature of the hydrogen peroxide aqueous solution is set to 70 to 80°C,
After the hydrogen peroxide is completely decomposed into water and oxygen, backwashing is performed again to clean the inside of the treatment tank T2.

尚、この際過酸化水素の分解によって発生した酸素はラ
イン1を介して大気中に放出される。
Incidentally, at this time, oxygen generated by the decomposition of hydrogen peroxide is released into the atmosphere through line 1.

以上の通り、本発明方法によれば微生物等の有機物が付
着して沢過機能を失った涙材をその都度新しいものと交
換する必要がないため、放射性二次廃棄物の発生量が少
ないばかりでなく経済的にも極めて有利である。
As described above, according to the method of the present invention, there is no need to replace tear material that has lost its drainage function due to attachment of organic matter such as microorganisms with a new one each time, so the amount of radioactive secondary waste generated is small. It is also extremely advantageous economically.

尚、本発明による過酸化水素水溶液の代わりに次亜塩素
酸ソーダ水溶液等を使用することも考えられるがこれら
のものは最終的に後処理の必要な放射性二次廃棄物とな
るため本発明のような工業的な規模の処理プロセスに適
用することは好ましくない。
It is also conceivable to use a sodium hypochlorite aqueous solution instead of the hydrogen peroxide aqueous solution according to the present invention, but since these will eventually become radioactive secondary waste that requires post-treatment, the present invention is not applicable. It is not preferable to apply it to such an industrial scale treatment process.

これに対して、本発明による過酸化水素水溶液は容易に
水と酸素に分解するため放射性二次廃棄物を発生しない
On the other hand, the hydrogen peroxide aqueous solution according to the present invention easily decomposes into water and oxygen, and therefore does not generate radioactive secondary waste.

更に本発明方法によれば比較的安価に市販されている低
濃度の過酸化水素水溶液を使用することができるため、
極めて経済的であるばかりでなく、その取扱いも比較的
容易である。
Furthermore, according to the method of the present invention, it is possible to use a low concentration hydrogen peroxide aqueous solution that is commercially available at a relatively low price.
It is not only extremely economical, but also relatively easy to handle.

実施例 1 (実験 1) 無菌状態の蒸溜水中に20”19/lの酸化鉄微粒子を
含ませた模擬廃水を平均直径1ミクロンの流通孔を多数
(開口率20%)有するニュークリアポア社のポリカー
ボネット製メンブレンフィルターを設置した処理槽中に
一定速度で導入して、前記の如き沢過操作を行ない、圧
力損失が2Kt/cr/1になるまでの時間を測定した
Example 1 (Experiment 1) Simulated wastewater containing 20"19/l of iron oxide fine particles in sterile distilled water was prepared using Nuclearpore's Nuclepore Co., Ltd., which has many flow holes (opening ratio 20%) with an average diameter of 1 micron. The mixture was introduced at a constant speed into a processing tank equipped with a polycarbonate membrane filter, and the above-mentioned flushing operation was performed, and the time until the pressure loss reached 2 Kt/cr/1 was measured.

次いで逆洗操作を一定時間桁なって涙材の沢過機能を回
復せしめた後、再び沢過操作を行なった。
Next, the backwashing operation was performed for a certain period of time to restore the flushing function of the lachrymal material, and then the flushing operation was performed again.

このような沢過−逆洗操作を20回繰返し行なって、沢
過操作に於ける圧力損失が2 KP7’crAになるま
での時間を夫々測定したところ第1表のAに示す如き結
果が得られた。
After repeating this swamp-backwashing operation 20 times and measuring the time required for the pressure loss during the swamping operation to reach 2 KP7'crA, the results shown in A in Table 1 were obtained. It was done.

この結果からも明らかなように各々の涙材に於ける沢過
機能はほぼ一定であることが認められた。
As is clear from this result, it was recognized that the drainage function of each lachrymal material was almost constant.

(実験 2) Kl記の模擬廃水中に、更に105個、6雇の微生物を
含ませた模擬廃水を処理槽中に一定速度で導入して、沢
過−逆洗操作を繰返し行なって、実験1の場合と同様に
沢過操作に於ける圧力損失が2yIになるまでの時間を
夫々測定したところ、第1表のBに示す如き結果が得ら
れた。
(Experiment 2) The simulated wastewater containing 105 microorganisms and 6 microorganisms was further introduced into the treatment tank at a constant rate into the simulated wastewater described in Kl, and the swamp-backwashing operation was repeated. As in case 1, the time required for the pressure loss to reach 2yI in the overflow operation was measured, and the results shown in B in Table 1 were obtained.

この結果からも明らかなように第6回目の沢過操作に使
用された涙材には微生物が多量に付着して、その沢過機
能も初回の沢過操作に使用した涙材に較べると約1/2
になっていることが認められた。
As is clear from these results, a large amount of microorganisms were attached to the lachrymal material used in the 6th rinsing operation, and its rinsing function was about 30% lower than that of the lachrymal material used in the first rinsing operation. 1/2
It was recognized that .

(実験 3) 前記の実1験2に於て使用された処理槽を逆洗洗浄した
後、該処理槽中に常温の過酸化水素水溶液(過酸化水素
濃度15重量%)を注入して、涙材を約16時間、浸漬
状態においた後、過酸化水素水溶液の温度を80°Cに
して残余の過酸化水素を完全に分解せしめた。
(Experiment 3) After backwashing the treatment tank used in Experiment 1 and Experiment 2 above, a room temperature hydrogen peroxide aqueous solution (hydrogen peroxide concentration 15% by weight) was injected into the treatment tank, After the tear material was soaked for about 16 hours, the temperature of the aqueous hydrogen peroxide solution was raised to 80°C to completely decompose the remaining hydrogen peroxide.

次に処理槽中の溶液を抜出して洗浄した後、実験2で使
用した模擬廃水を一定速度で導入して、実験2の場合と
同様に各々のr過操作に於ける圧力損失が2鶏になるま
での時間を夫々測定したところ第1表のBに示す如き結
果が得られた。
Next, after extracting and cleaning the solution in the treatment tank, the simulated wastewater used in Experiment 2 was introduced at a constant rate, and as in Experiment 2, the pressure loss in each r-over operation was When the time taken for each to become saturated was measured, the results shown in B of Table 1 were obtained.

この結果からも明らかなように過酸化水素水溶液で処理
した直後の涙材は実験2に於ける、初回の沢過操作に使
用した新品の涙材とほぼ同等なる性能を有するまでその
沢過機能が回復していることが認められた。
As is clear from these results, the lacrimal material immediately after being treated with the hydrogen peroxide aqueous solution improved its rinsing function until it had almost the same performance as the new lacrimal material used for the first rinsing operation in Experiment 2. was found to be recovering.

しかしながらかかる1材も、過酸化水素水溶液で処理す
ることなく繰返し使用していると、実験2の場合と同様
にその沢過機能が除々に低下していく傾向にあることが
認められた。
However, it was observed that when such one material was used repeatedly without being treated with an aqueous hydrogen peroxide solution, its permeation function tended to gradually decrease as in the case of Experiment 2.

(実験 4) 前記の実験3に於て使用された処理槽を逆洗洗浄した後
、該処理槽中に過酸化水素水溶液を注入して、以下実験
3の場合と同様なる条件下で涙材を再生した。
(Experiment 4) After backwashing the treatment tank used in Experiment 3 above, an aqueous hydrogen peroxide solution was injected into the treatment tank, and the tear material was washed under the same conditions as in Experiment 3. was played.

次ζこ実験3の場合と同様に沢過−逆洗操作を繰返し行
って各々の1過操作に於けるTト力損失が2当になるま
での時間を夫々測定したところ第1表のBに示す如き結
果が得られた。
Next, in the same way as in Experiment 3, we repeated the wash-backwash operation and measured the time required for the T torque loss to reach 2 hits in each 1-pass operation. The results shown are obtained.

この結果からも明らかなように本発明方法によって、涙
材を再生すれば、そのp材を何回でも繰返し使用するこ
とが可能であることが認められた。
As is clear from these results, it was confirmed that if lachrymal material is regenerated by the method of the present invention, it is possible to use the p material any number of times.

実施例 2 実施例1の実験1に示す処理槽を8個準備して、各々の
処理槽中に実験2で使用した模擬廃水を一定速度で導入
し、以斗実験2の場合と同様に濾過−逆洗操作を6回繰
返して行なうと共に初回の1過操作に於ける圧力損失が
2当になるまでの時間Xを測定した。
Example 2 Eight treatment tanks shown in Experiment 1 of Example 1 were prepared, and the simulated wastewater used in Experiment 2 was introduced into each treatment tank at a constant rate, and filtered in the same manner as in Ito Experiment 2. - The backwashing operation was repeated 6 times and the time X until the pressure loss in the first 1st pass operation reached 2 hits was measured.

次に各々の処理槽を逆洗洗浄した後、それらの処理槽中
に5ないし30重量%の過酸化水素濃度の過酸化水素水
溶液を注入して、第2喪に示す条件下で本発明方法によ
る処理を行なった。
Next, after backwashing each treatment tank, a hydrogen peroxide aqueous solution having a hydrogen peroxide concentration of 5 to 30% by weight is injected into the treatment tanks, and the method of the present invention is carried out under the conditions shown in the second stage. Processing was performed.

次いで各々の処理槽中の溶液を抜き出して洗浄した後、
上述の模擬廃水を一定速度で導入して、1過操作を行な
い、各処理槽に於ける圧力損失が2〜になるまでの時間
Yを測定した。
Next, after extracting and cleaning the solution in each treatment tank,
The above-mentioned simulated wastewater was introduced at a constant rate, a one-pass operation was performed, and the time Y until the pressure loss in each treatment tank reached 2 or more was measured.

この結果に基いて各処理槽中に設置された1材の沢過機
能がどの程度回復しているかを求めたところ、第2表に
示す如き結果が得られた。
Based on these results, the extent to which the sewage function of one material installed in each treatment tank had been recovered was determined, and the results shown in Table 2 were obtained.

尚、第2表に示す“沢過機能の回復率″とは再生後の1
材を使用して初回の濾過操作を行なった場合の濾過時間
Yを新品の沖材を使用した場合の濾過時間Xで除した値
を百分率で示したものである。
In addition, the "recovery rate of overflow function" shown in Table 2 refers to 1 after regeneration.
The value obtained by dividing the filtration time Y when performing the first filtration operation using the wood by the filtration time X when using new offshore wood is expressed as a percentage.

以上の結果からも明らかなように本発明方法によれは有
機化合物の付着した1材の濾過機能を充分に回復せしめ
ることができ、願わくば40〜60℃の温度条件−トで
本発明方法を実施することが最も好ましいことが認めら
れた。
As is clear from the above results, the method of the present invention can sufficiently restore the filtration function of a material to which organic compounds have adhered, and it is hoped that the method of the present invention can be used at a temperature of 40 to 60°C. It has been found that it is most preferable to carry out

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施態様を示すフローシートで
あって、第2図は本発明方法に使用される1材の部分断
向図並ひに有機化合物の付着形態を示したものである。 T1・・・−・・放射性廃水の貯槽、T2・・・・・・
処理槽、T3・・・・・・過酸化水素水溶液の貯槽、P
l・・・・・・ポンプ、Hl・・・・・・加熱器、Fl
・・・・・・1材、Sl・・・・・・有機化合物。
FIG. 1 is a flow sheet showing one embodiment of the method of the present invention, and FIG. 2 is a partial cross-sectional view of one material used in the method of the present invention, as well as showing the form of attachment of organic compounds. be. T1...- Radioactive wastewater storage tank, T2...
Processing tank, T3...Hydrogen peroxide aqueous solution storage tank, P
l...pump, Hl...heater, Fl
...1 material, Sl...organic compound.

Claims (1)

【特許請求の範囲】 1 放射性廃水中に懸濁している固体微粒子を沢過分離
するために使用され、しかもその表面に有機物が付着し
て沢過機能を失った汗材を再生する方法に於て、該汗材
を常温ないし70℃の温度条件下に維持された過酸化水
素水溶液中に一定時間浸漬して処理することを特徴とす
る放射性廃水の1過に使用したP材の再生方法。 2 放射性廃水は軟水冷却型原子力発電所の施設から排
出される廃水である特許請求の範囲第1項記載の再生方
法。 3 固体微粒子は酸化鉄を主成分とする腐蝕生成物であ
る特許請求の範囲第1項記載の再生方法。 41材は10ミクロン以下の相当直径から成る流通孔を
特徴とする特許請求の範囲第1項記載の再生方法。 5 P材は0.4〜3.0ミクロンの一定でほぼ均一な
径をもつ円形孔が膜面にほぼ垂直に多数穿たれたプラス
チックを基材とする膜状体である特許請求の範囲第4項
記載の再生方法。 6 P材は10〜20ミクロンの厚みをもつポリカーボ
ネートの膜状体である特許請求の範囲第5項記載の再生
方法。 7 P材は10〜20%の開口率をもつ特許請求の範囲
第5項記載の再生方法。 8 有機物は微生物を特徴とする特許請求の範囲第1項
記載の再生方法。 9 過酸化水素水溶液は40〜60℃の温度条件下に維
持されている特許請求の範囲第1項記載の再生方法。 10 浸漬時間は0.5〜1時間の範囲にある特許請
求の範囲第9項記載の再生方法。 11 過酸化水素水溶液の過酸化水素濃度は3〜30
重量%の範囲にある特許請求の範囲第1項記載の再生方
法。 12 過酸化水素水溶液は、汗材を浸漬後、70〜80
°で分解される特許請求の範囲第1項記載の再生方法。
[Claims] 1. A method for regenerating sweat material that is used to filter and separate solid particles suspended in radioactive wastewater, and which has lost its filtering function due to the attachment of organic matter to its surface. A method for regenerating P material used for filtration of radioactive wastewater, characterized in that the sweat material is treated by immersing it in a hydrogen peroxide aqueous solution maintained at room temperature to 70° C. for a certain period of time. 2. The regeneration method according to claim 1, wherein the radioactive wastewater is wastewater discharged from a facility of a soft water-cooled nuclear power plant. 3. The regeneration method according to claim 1, wherein the solid fine particles are corrosion products containing iron oxide as a main component. 4. The recycling method according to claim 1, wherein the material has flow holes having an equivalent diameter of 10 microns or less. 5. The P material is a film-like body made of plastic as a base material, in which a large number of circular holes having a constant and substantially uniform diameter of 0.4 to 3.0 microns are bored substantially perpendicular to the film surface. The regeneration method described in Section 4. 6. The recycling method according to claim 5, wherein the P material is a polycarbonate film having a thickness of 10 to 20 microns. 7. The recycling method according to claim 5, wherein the P material has an aperture ratio of 10 to 20%. 8. The regeneration method according to claim 1, wherein the organic matter is a microorganism. 9. The regeneration method according to claim 1, wherein the hydrogen peroxide aqueous solution is maintained at a temperature of 40 to 60°C. 10. The regeneration method according to claim 9, wherein the immersion time is in the range of 0.5 to 1 hour. 11 The hydrogen peroxide concentration of the hydrogen peroxide aqueous solution is 3 to 30
% by weight. 12 Hydrogen peroxide aqueous solution is 70-80% after soaking the sweat material.
The regeneration method according to claim 1, wherein the regeneration method is decomposed at .degree.
JP51109649A 1976-09-13 1976-09-13 Method for recycling filter material used to filter radioactive wastewater Expired JPS5822999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51109649A JPS5822999B2 (en) 1976-09-13 1976-09-13 Method for recycling filter material used to filter radioactive wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51109649A JPS5822999B2 (en) 1976-09-13 1976-09-13 Method for recycling filter material used to filter radioactive wastewater

Publications (2)

Publication Number Publication Date
JPS5335899A JPS5335899A (en) 1978-04-03
JPS5822999B2 true JPS5822999B2 (en) 1983-05-12

Family

ID=14515628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51109649A Expired JPS5822999B2 (en) 1976-09-13 1976-09-13 Method for recycling filter material used to filter radioactive wastewater

Country Status (1)

Country Link
JP (1) JPS5822999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647298U (en) * 1987-06-26 1989-01-17

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384961A (en) * 1982-05-18 1983-05-24 Pall Corporation Process for filtration of aqueous oil-containing brines
JPH0747101B2 (en) * 1991-08-15 1995-05-24 丸善石油化学株式会社 How to regenerate a clogged filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647298U (en) * 1987-06-26 1989-01-17

Also Published As

Publication number Publication date
JPS5335899A (en) 1978-04-03

Similar Documents

Publication Publication Date Title
US4632740A (en) Apparatus and method for decontaminating metallic components of a nuclear engineering installation
JP6077250B2 (en) Water treatment method and apparatus in nuclear power plant
CN109499378B (en) Cleaning method for organic dirt blockage of hollow fiber ultrafiltration membrane
JP4916828B2 (en) Method and apparatus for treating radioactive material-containing wastewater
JPS5822999B2 (en) Method for recycling filter material used to filter radioactive wastewater
Deqian Cleaning and regeneration of membranes
CN107096388B (en) A kind of forward osmosis membrane cleaning method
US3791520A (en) Process for treating water contaminated with hexavalent chromium
CS268821B2 (en) Method of boric acid's reapplicable solutions recovery in atomic power stations
CN209292015U (en) A kind of sewage disposal system proposes mark modernization system
JP2000301005A (en) Method for reutilizing effluent in regeneration of ion exchange resin
JPS57207585A (en) Treatment of rinsing water for plating
JP2001108789A (en) Method for filtering radioactive waste water
JP2807856B2 (en) Treatment method for radioactive ultrasonic cleaning waste liquid
JPH1119485A (en) Method for controlling operation in water treatment using membrane
JP3770077B2 (en) Method and apparatus for removing manganese from raw water
JP3671454B2 (en) Performance recovery method for anion exchange resin in condensate demineralizer
JP3904774B2 (en) Backwashing method for radioactive waste water filtration equipment
JPH01107850A (en) Washer of ion exchange resin
Pizzi Optimizing your plant's filter performance
JPH0639375A (en) Wastewater treatment apparatus
JP2677380B2 (en) Method for collecting backwash wastewater from condensate demineralizer
JPS6159794B2 (en)
JPS5886498A (en) Decontaminating device
JPH10235320A (en) Reuse of treatment solution used in coating film peeling treatment by immersion and stirring of coating film waste