JPS5822862A - Decompression device - Google Patents

Decompression device

Info

Publication number
JPS5822862A
JPS5822862A JP56122104A JP12210481A JPS5822862A JP S5822862 A JPS5822862 A JP S5822862A JP 56122104 A JP56122104 A JP 56122104A JP 12210481 A JP12210481 A JP 12210481A JP S5822862 A JPS5822862 A JP S5822862A
Authority
JP
Japan
Prior art keywords
pressure reducing
reducing device
refrigerant
insert
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56122104A
Other languages
Japanese (ja)
Other versions
JPS6250744B2 (en
Inventor
直樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56122104A priority Critical patent/JPS5822862A/en
Publication of JPS5822862A publication Critical patent/JPS5822862A/en
Publication of JPS6250744B2 publication Critical patent/JPS6250744B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、冷媒の潜熱を利用する蒸気圧縮式の冷凍サ
イクルに係り、特にその減圧装置による冷媒流量制御に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor compression type refrigeration cycle that utilizes the latent heat of a refrigerant, and particularly to control of the refrigerant flow rate using a pressure reducing device.

第tv!Jは従来の冷凍サイクルの一例を示すもので、
図において、(1)は圧縮機、(2)は凝縮器、(3)
は減圧装置、(4Jは蒸発器、(6)は熱交換器、(6
)は吸入管であり、これらを順次連通して冷凍サイクル
を構成している。
Part tv! J shows an example of a conventional refrigeration cycle.
In the figure, (1) is the compressor, (2) is the condenser, and (3)
is a pressure reducing device, (4J is an evaporator, (6) is a heat exchanger, (6
) are suction pipes, which are connected in sequence to form a refrigeration cycle.

また第2図は上記減圧装置(3)の構造を示す図で、(
7]は管、(8)は外周にスパイラル状の溝(8&)を
有し、上記管(7)に密嵌されたインサートである。
FIG. 2 is a diagram showing the structure of the pressure reducing device (3).
7] is a tube, and (8) is an insert having a spiral groove (8&) on the outer periphery and tightly fitted into the tube (7).

このような従来の冷凍サイクルにおいては、安定運転時
、圧縮機(11で高温高圧となった冷媒ガスは、凝縮器
(2)で冷、却されて液化し、吸入管(6)との熱交換
器(5)によって冷凍効果(利用エン・タルビ)が増大
したのち、減圧装置(3)の溝(8&)を通って低温低
圧となり、蒸発器(4)に導かれる。そしてこの蒸発器
(4)内では冷媒液がガス化する際に周囲から吸熱して
冷凍を発生する・この後、冷媒ガスは熱交換器(5)で
凝縮器出口冷媒と熱交換して温度が上昇し、Wc入管(
6)を通って圧縮機口)に吸入される。
In such a conventional refrigeration cycle, during stable operation, the refrigerant gas that has become high temperature and high pressure in the compressor (11) is cooled and liquefied in the condenser (2), and the heat is exchanged with the suction pipe (6). After the refrigeration effect (utilization) is increased by the exchanger (5), it passes through the groove (8&) of the pressure reducing device (3) to become low temperature and low pressure, and is led to the evaporator (4). 4) When the refrigerant liquid is gasified, it absorbs heat from the surroundings and generates refrigeration. After this, the refrigerant gas exchanges heat with the condenser outlet refrigerant in the heat exchanger (5), and its temperature rises, causing Wc Immigration (
6) and is sucked into the compressor port).

このときの減圧装置(3)を流れる冷媒は一1減圧装置
入口部の過冷却度によって第8図のように変化する0即
ち安定運転時には、吸入管(6)内の冷媒が低温になっ
ているため、減圧装置(3)入口の冷媒は十分に冷却さ
れて第8図Bのような過冷却度となり、冷媒流量はGB
である。一方、運転開始時には、蒸発器が暖かいために
吸入管の冷媒も低温にならず、従って減圧装置(3)入
口の冷媒は充分に冷却されない。この場合、減圧装置(
8)入口の冷媒は第8図Aのような過冷却度となり、冷
媒流量はG^である。
At this time, the refrigerant flowing through the pressure reducing device (3) changes as shown in Figure 8 depending on the degree of subcooling at the inlet of the pressure reducing device. As a result, the refrigerant at the inlet of the pressure reducing device (3) is sufficiently cooled to a degree of supercooling as shown in Figure 8B, and the refrigerant flow rate is GB.
It is. On the other hand, at the start of operation, the refrigerant in the suction pipe does not reach a low temperature because the evaporator is warm, so the refrigerant at the inlet of the pressure reducing device (3) is not sufficiently cooled. In this case, a pressure reducing device (
8) The refrigerant at the inlet has a supercooling degree as shown in FIG. 8A, and the refrigerant flow rate is G^.

このように従来の冷凍サイクルでは、安定運転時に適当
な流量が保てるような減圧装置が設置されていて、第8
図()[1のような十分な冷媒流量が流れるが、一方運
転開始時には、第8図郭のような不十分な流量しか流れ
ない喪め、十分な冷却効果が得られないという欠点があ
った。
In this way, in conventional refrigeration cycles, a pressure reducing device is installed to maintain an appropriate flow rate during stable operation.
Although a sufficient flow rate of refrigerant flows as shown in Figure (2) [1], on the other hand, at the start of operation, only an insufficient flow rate flows as shown in Figure 8, and there is a drawback that a sufficient cooling effect cannot be obtained. Ta.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、インサートの中心部に低温冷媒を
一部流すことにより、運転開始時にも十分な冷媒流量が
得られるような冷凍サイクルを提供することを目的とし
ている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it is a refrigeration cycle in which a sufficient flow of refrigerant can be obtained even at the start of operation by partially flowing low-temperature refrigerant through the center of the insert. is intended to provide.

以下この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第4図において、(7)は管、(8)はスパイラル状の
溝(8a)を有するインサートであり、中心に下流側に
開口する袋状の空洞(9)を有し、かつこの袋状の空洞
(9)と減圧装置上流とを連通する細孔Ql)が設けら
れている。
In FIG. 4, (7) is a tube, (8) is an insert having a spiral groove (8a), and has a bag-shaped cavity (9) in the center that opens downstream, and this bag-shaped A pore Ql) is provided which communicates the cavity (9) of the pressure reducing device with the upstream side of the pressure reducing device.

次にその作用について説明する。上記のような減圧装置
においては、運転開始時には細孔Q□を通る冷媒は空洞
部(9)内で低温低圧となって、インサー ) (8)
を冷却し、従って溝(8a)を通る冷媒を冷やして過冷
却度を増す。このため、第8図に示した安定運転時の冷
媒流量G3にほぼ等しい冷媒流量が得られる。
Next, its effect will be explained. In the above-mentioned pressure reducing device, at the start of operation, the refrigerant passing through the pores Q□ becomes low temperature and low pressure in the cavity (9), and the refrigerant passes through the cavity (9).
, thereby cooling the refrigerant passing through the groove (8a) to increase the degree of subcooling. Therefore, a refrigerant flow rate approximately equal to the refrigerant flow rate G3 during stable operation shown in FIG. 8 is obtained.

一方安定運転時には、吸入管が充分に冷却されているた
め、第1図に示す熱交換器(5)での熱交換によって、
冷媒液は減圧装置入口で第8図Bの過冷却度となるため
、冷媒流量はG、には!等しい。
On the other hand, during stable operation, since the suction pipe is sufficiently cooled, heat exchange in the heat exchanger (5) shown in Fig. 1 causes
Since the refrigerant liquid reaches the degree of supercooling shown in Figure 8B at the inlet of the pressure reducing device, the refrigerant flow rate is G! equal.

なおこのとき、空洞(9)内を流れる冷媒と溝(8a)
内を流れる冷媒との温度差が小さい丸め、減圧装置内で
の熱交換は殆んど無視でき、細孔QQがない場合の定常
運転時の特性が実現される。
At this time, the refrigerant flowing in the cavity (9) and the groove (8a)
The temperature difference with the refrigerant flowing inside is small, the heat exchange within the pressure reducing device can be almost ignored, and the characteristics during steady operation when there are no pores QQ are realized.

このように、本発明の減圧装置によれば、運転開始時か
ら定常運転時に至るまで常に十分な冷媒流量が得られる
As described above, according to the pressure reducing device of the present invention, a sufficient refrigerant flow rate can always be obtained from the start of operation to the time of steady operation.

なお上記実施例では、スパイラル状の溝を有するインサ
ートを用いる場合について説明したが、第5WJのよう
に内壁にスパイラル状の溝(7&)を有する管(7)に
、管内壁と密着するようなインサート(8〕を挿入した
ものでもよい。
In the above embodiment, an insert having a spiral groove is used. However, in a tube (7) having a spiral groove (7&) on the inner wall, as in the 5th WJ, an insert that is in close contact with the inner wall of the tube is used. An insert (8) may also be inserted.

以上の例は簡単な冷凍装置について示したが、この単純
な冷凍装置以外に、多段冷凍サイクル、多段カスケード
などの冷凍装置にも適用でき、しかも油分離器、乾燥器
、アキエムレークなどの補機を備えたものについても同
様の効果を秦する。
The above example is a simple refrigeration system, but in addition to this simple refrigeration system, it can also be applied to refrigeration systems such as multi-stage refrigeration cycles and multi-stage cascades. The same effect applies to those prepared.

また、空洞の形状は円形に限らず任意の形状でも良く、
また空洞に第6図の゛ようにフィン四をっけ九りスパイ
ラル状のテープを挿入するなどして熱伝達を改善する工
夫をすれば、熱交換が良(なり良い特性が得られる。ざ
らに細孔四は複数個でも良く、また必ずしも中心にある
必要もなく、管と平行とする必要もない。例えば#I7
図のように細孔a1の出口の冷媒が、空洞壁面に衝突す
るように細孔を斜めに形成すれば、熱交換が良くなって
さらに良い性能が得られる。また、この細孔00は第8
図のように溝(8a)と空洞sQQと連通ずるように形
成しても同じ効果が得られる。
In addition, the shape of the cavity is not limited to circular, but may be any shape.
In addition, if measures are taken to improve heat transfer, such as inserting spiral tape around the four fins into the cavity as shown in Figure 6, good heat exchange characteristics can be obtained. There may be multiple pores, and they do not necessarily need to be in the center or parallel to the tube.For example, #I7
If the pores are formed obliquely so that the refrigerant at the outlet of the pore a1 collides with the cavity wall surface as shown in the figure, heat exchange will be improved and even better performance will be obtained. Also, this pore 00 is the eighth
The same effect can be obtained even if the groove (8a) is formed to communicate with the cavity sQQ as shown in the figure.

以上のようにこの発明によれば、インサートの中心部に
低温冷媒を一部流して運転開始時にも十分な冷媒量を確
保できるようにしたので、運転開始時の立上り特性を改
善することができ、運転開始時から定常運転にわたって
安定な運転が実現でき、総合効率の高い冷凍装置を得る
ことができる。
As described above, according to the present invention, a portion of the low-temperature refrigerant flows through the center of the insert to ensure a sufficient amount of refrigerant even at the start of operation, thereby improving the start-up characteristics at the start of operation. , stable operation can be achieved from the start of operation to steady operation, and a refrigeration system with high overall efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷凍装置のサイクル図、第2図は従来の
減圧装置の構造を示す図、第8図は減圧装置入口の過冷
却度と冷媒流量の関撫を示す図、第4図はこの発明の一
実施例による減圧装置の構造を示す図、第!S図〜第8
vAはこの発明の他の実施例を示す図である。 図中、(1)は圧縮機、(2)は凝縮器、(3)は減圧
装置、(4)は蒸発器、(5)は熱交換器、(6)は吸
入管、(7)は管、(8)はインサート、(7a)(8
a)は溝、(9)は空洞、αQは細孔、συはフィンで
ある。 尚、図中同一符号は同−又は相当部分を示す。 代理人  葛 野 信 − 第1図 第2図 第3図 第4図 θ   j  /Q
Fig. 1 is a cycle diagram of a conventional refrigeration system, Fig. 2 is a diagram showing the structure of a conventional decompression device, Fig. 8 is a diagram showing the relationship between the degree of subcooling and the refrigerant flow rate at the inlet of the decompression device, and Fig. 4 1 is a diagram showing the structure of a pressure reducing device according to an embodiment of the present invention. Figure S ~ No. 8
vA is a diagram showing another embodiment of the present invention. In the figure, (1) is a compressor, (2) is a condenser, (3) is a pressure reducing device, (4) is an evaporator, (5) is a heat exchanger, (6) is a suction pipe, and (7) is a Tube, (8) is insert, (7a) (8
a) is a groove, (9) is a cavity, αQ is a pore, and συ is a fin. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Shin Kuzuno - Figure 1 Figure 2 Figure 3 Figure 4 θ j /Q

Claims (3)

【特許請求の範囲】[Claims] (1)管と、肢管の内壁VC48着して挿入されたイン
サートとからなり、管の上流側と下流側を連通するよう
に管の内壁とインサート外周との間に細い溝が形成され
ている減圧装置において、上記インサートの内部に、下
流側に開口する袋状の空洞部を設けるとともに、この空
洞部と減圧装置上流側または上記細溝の一部とを連通ず
る細孔を設けたことを特徴とする減圧装置。
(1) Consisting of a tube and an insert that is inserted by adhering to the inner wall of the limb canal, a thin groove is formed between the inner wall of the tube and the outer periphery of the insert so as to communicate the upstream and downstream sides of the tube. In the pressure reducing device, a bag-shaped cavity opening to the downstream side is provided inside the insert, and a pore is provided that communicates this cavity with the upstream side of the pressure reducing device or a part of the narrow groove. A decompression device featuring:
(2)インサートの空洞部壁面にフィンを設けたことを
特徴とする特許請求の範囲第1項記載の減圧装置。
(2) The pressure reducing device according to claim 1, characterized in that a fin is provided on the wall surface of the cavity portion of the insert.
(3)空洞部と減圧装置上流側を連通ずる細孔を斜めに
形成したこと!特徴とする特許請求の範囲第1項または
第2項記載の減圧装置。
(3) The pores communicating between the cavity and the upstream side of the decompression device are formed diagonally! A pressure reducing device according to claim 1 or 2.
JP56122104A 1981-08-03 1981-08-03 Decompression device Granted JPS5822862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56122104A JPS5822862A (en) 1981-08-03 1981-08-03 Decompression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56122104A JPS5822862A (en) 1981-08-03 1981-08-03 Decompression device

Publications (2)

Publication Number Publication Date
JPS5822862A true JPS5822862A (en) 1983-02-10
JPS6250744B2 JPS6250744B2 (en) 1987-10-27

Family

ID=14827735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56122104A Granted JPS5822862A (en) 1981-08-03 1981-08-03 Decompression device

Country Status (1)

Country Link
JP (1) JPS5822862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927523B2 (en) 2001-11-30 2005-08-09 Namiki Seimitsu Houseki Kabushiki Kaisha Brush device and motor with brush

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927523B2 (en) 2001-11-30 2005-08-09 Namiki Seimitsu Houseki Kabushiki Kaisha Brush device and motor with brush

Also Published As

Publication number Publication date
JPS6250744B2 (en) 1987-10-27

Similar Documents

Publication Publication Date Title
JPH1019418A (en) Refrigerator with deep freezer
JPS5822862A (en) Decompression device
JP2000356419A5 (en)
JPS5824764A (en) Heat pump device
JPS5998244U (en) Multi-dimensional refrigerator
JPH0113968Y2 (en)
CN210320742U (en) Refrigerant medium compression structure
CN216644629U (en) Heat regenerator and refrigeration plant
JPS6252238B2 (en)
JPS5828955A (en) Heat pump device
JPS6284260A (en) Heating apparatus
JPS5822861A (en) Decompression device
JP2022546214A (en) Expander for refrigeration equipment
JPS63123995A (en) Heat storage type heat exchanger
JPS59113174U (en) Heat pump air conditioner
JPS6042330U (en) air dehumidifier
JPS5846063U (en) Hot gas defrost device
JPS5822860A (en) Decompression device
JPS5988655U (en) Refrigeration equipment
JPS5815819Y2 (en) air conditioner
JPH03217770A (en) Heat exchanging device
JPS6077980U (en) Refrigeration equipment such as refrigerators
JPS59180175U (en) Heat pump refrigeration cycle
JPS6246778B2 (en)
JPH10232055A (en) Refrigerator