JPS5822799A - Control system for mass characteristic of artificial satellite - Google Patents

Control system for mass characteristic of artificial satellite

Info

Publication number
JPS5822799A
JPS5822799A JP56121680A JP12168081A JPS5822799A JP S5822799 A JPS5822799 A JP S5822799A JP 56121680 A JP56121680 A JP 56121680A JP 12168081 A JP12168081 A JP 12168081A JP S5822799 A JPS5822799 A JP S5822799A
Authority
JP
Japan
Prior art keywords
axis
satellite
mass
balancer
attitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56121680A
Other languages
Japanese (ja)
Inventor
誠 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56121680A priority Critical patent/JPS5822799A/en
Publication of JPS5822799A publication Critical patent/JPS5822799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は三軸姿勢制御衛星(以下三軸衛星と云う)が
飛行する時に天体から受ける重力傾度トルク(引力場の
不均一が三軸衛星の質量の不均一の状態を表す質量特性
状態に作用して姿勢外乱を発生させる)に依る姿勢外乱
を除去する為の三軸衛星の質量特性の制御方式に関する
[Detailed Description of the Invention] This invention is based on the gravitational gradient torque (non-uniformity of the gravitational field) that a three-axis attitude control satellite (hereinafter referred to as a three-axis satellite) receives from a celestial body when it flies. This invention relates to a control method for the mass characteristics of a three-axis satellite to remove attitude disturbances caused by

人工衛星が飛行する場合、天体は運動力学上は質点運動
として扱つ【いる。しかしながら地球を含め各天体の質
量、特性は、均質均等でなく様々な分布特性を有してお
り、そのレベルも異なることから引力(重力)のバラツ
キを有している。従って人工衛星が天体の周囲を飛行す
る場合9人工衛星も1つの天体としての質量特性(質量
の不均一を人工衛星に搭載した各機器。
When an artificial satellite flies, the celestial body is treated as a mass point in terms of kinematics. However, the mass and characteristics of each celestial body, including the earth, are not homogeneous and uniform, but have various distribution characteristics, and their levels also vary, resulting in variations in gravitational force (gravitational force). Therefore, when an artificial satellite flies around a celestial body, the mass characteristics of the 9 artificial satellite as a single celestial body (the unevenness of the mass of each device mounted on the satellite).

部材の位置と質量)を有していることから天体、と人工
衛星間の引力のバラツキの効果が発生し人工衛星のX軸
、Y軸、X軸に対する外乱トルりとじて表われ、いわゆ
る重力傾度トルクを発生させる。天体及び人工衛星にお
いても質量特性は運動力学上はX軸、Y軸、X軸の各軸
回りの特性としての慣性能率及び各軸相互間の特性とし
ての慣性乗積として表され、引力のバラツキはこれらの
質量特性に対して働く外乱として様々な運動を発生させ
、三軸衛星の様に常時三軸の姿勢を天体に相対的に保つ
衛星の場合、従来姿勢制御の為には多くの制御負荷及び
その制御の難しさを発生させていた。
Due to the difference in the gravitational force between the celestial body and the satellite (the position and mass of the parts), the effect of variations in the gravitational force between the celestial body and the satellite occurs, which is manifested as disturbance torque on the X-axis, Y-axis, and X-axis of the satellite, and is called gravitational force. Generates tilt torque. The mass properties of celestial bodies and artificial satellites are expressed in terms of kinematics as the inertia factor as a characteristic around each axis (X-axis, Y-axis, and generates various movements as disturbances acting on these mass characteristics, and in the case of a satellite that always maintains a three-axis attitude relative to the celestial body, such as a three-axis satellite, conventionally many controls are required for attitude control. This caused the load and the difficulty of its control.

また一つの天体の周回を飛行する人工衛星の場合はもと
より、特に深宇宙の様に複数天体の周回を観測せしめる
人工衛星の場合は特に各天体の質量特性は各々異なって
いるので、従来の衛星の様に一つの天体に合わせた重力
傾度トルク制御の設計では、他の天体の時には人工衛星
に搭載した姿勢制御用のアクチュエータの稼動も膨大に
なり燃料消費も膨大となり、複数衛星間の飛行という軌
道修正に消費する燃料に加えて1人工衛星に搭載する観
測機器の重量に制限を与え、観測項目も限られ、相対的
に観測コストも高くなり、又、打上げ用のロケット等も
大型の物を要し不利益となっていた。
In addition, not only in the case of an artificial satellite that orbits a single celestial body, but especially in the case of an artificial satellite that observes the orbit of multiple celestial bodies such as in deep space, the mass characteristics of each celestial body are different, so conventional satellites When designing gravitational gradient torque control for one celestial body, as in In addition to the fuel consumed for orbit correction, the weight of observation equipment mounted on a single satellite is limited, observation items are limited, observation costs are relatively high, and launch rockets are also large. This resulted in a disadvantage.

−この発明はこのような点を改善する為になされたもの
で、三軸衛星の質量特性は±X軸、±Y軸、±2軸の各
方向に質量を移動せしめると変えることができるので三
軸衛星に搭載した機器を移動させる代りにバランサとし
ての代替質量を各軸方向に移動できるようにして搭載す
ることで三軸衛星の質量特性を可変するようになし、三
軸衛星の軌道上で発生する姿勢擾乱である重力傾度トル
クは天体と三軸衛星の各々の質量特性の不均一の積算と
して発生するので、各天体の質量特性の不均一に逆比例
して三軸衛星の質量特性を変えることにより、各天体の
近傍を飛行する毎に積算として発生する重力傾度トルク
を最少化することができる。
-This invention was made to improve these points, and the mass characteristics of a three-axis satellite can be changed by moving the mass in each direction of the ±X axis, ±Y axis, and ±2 axes. Instead of moving the equipment mounted on the three-axis satellite, a substitute mass as a balancer is mounted so that it can be moved in each axis direction, so that the mass characteristics of the three-axis satellite can be varied, and the mass characteristics of the three-axis satellite can be varied. The gravitational gradient torque, which is the attitude disturbance that occurs in By changing , it is possible to minimize the gravitational gradient torque that is generated as an integrated value each time the aircraft flies near each celestial body.

バランサの軸の移動の為の駆動は、マニュアルで行う場
合には地上で姿勢の変化率をモニタし三軸衛星が保持す
るべき各軸の姿勢と比較することにより、各軸に働く重
力傾度トルクを計算し、この重力傾度トルクに依る姿勢
擾乱を最少化(相殺)できるように三軸衛星の質量特性
と天体の質量特性のffcNを最少にするバランサの各
軸方向の移動量を計算し、地上局からコマンドを送信し
バランサを移動せしめ三軸衛星の質量特性を制御するバ
ランサの軸の移動の為の駆動を人工衛星上で自動的に行
う場合は9人工衛星に搭載した姿勢センサ(光学的に天
体を検出し天体との相対姿勢を検出する。また姿勢セン
サに微分回路を装着することにより1時間微分すなわち
姿勢の変化率を検出する)あるいはジャイロ(三軸衛星
のX軸、Y軸、X軸に装着し三軸衛星の各軸回りの運動
すなわち姿勢変化率を検出する)の検出する姿勢変化率
データを三軸衛星に搭載した姿勢制御系に入力し、姿勢
制御系で三軸衛星が保持するべき姿勢と比較して各軸回
りの姿勢外乱すなわち重力傾度トルクを検出し、三軸衛
星の質量特性は打上げ前に分っているので、さきに検出
した重力傾度トルクを三軸衛星の質量特性で除算して天
体の質量特性を検出し、検出した天体の質量特性に対し
て積算が最少になる三軸衛星の質!特性を与えるバラン
サの各軸方向の移動値を逆算し、その移動値に従ってバ
ランサの駆動装置を作動せしめる。
If the drive for moving the balancer's axes is performed manually, the rate of change in attitude is monitored on the ground and compared with the attitude of each axis that the three-axis satellite should maintain, and the gravitational tilt torque acting on each axis is determined. Calculate the amount of movement of the balancer in each axis direction to minimize the mass characteristics of the triaxial satellite and the mass characteristics of the celestial body, ffcN, so as to minimize (cancel out) the attitude disturbance caused by this gravitational gradient torque. A command is sent from the ground station to move the balancer and control the mass characteristics of the three-axis satellite.If the drive for moving the axis of the balancer is automatically performed on the satellite, the attitude sensor (optical It detects celestial bodies and detects the relative attitude with the celestial body.Also, by attaching a differential circuit to the attitude sensor, it detects the hourly differential, that is, the rate of change in attitude) or a gyro (X-axis, Y-axis of a three-axis satellite) , which is attached to the The attitude disturbance around each axis, that is, the gravitational inclination torque, is detected by comparing it with the attitude that the satellite should maintain.Since the mass characteristics of the three-axis satellite are known before launch, the previously detected gravitational inclination torque is used as the three-axis The quality of a three-axis satellite that detects the mass characteristics of a celestial object by dividing it by the mass characteristics of the satellite, and minimizes the integration with respect to the mass characteristics of the detected celestial object! The movement values of the balancer in each axis direction that give the characteristics are calculated backwards, and the balancer driving device is operated in accordance with the movement values.

この様に王軸制御術星上で質量特性を制御する場合三軸
衛星に搭載した姿勢制御装置の処理機能が重要になるが
、現在のアナログ式の制御回路で姿勢制御系を構成する
場合においても、比較、減算、除算、の機能は一般的に
三軸衛星で使用されるコンパレータ、インバータ等の機
能を有する信号マトリクス回路にて容易に実現する。
In this way, when controlling the mass characteristics on a king-axis control star, the processing function of the attitude control device installed on a three-axis satellite becomes important, but when configuring the attitude control system with the current analog control circuit, However, the functions of comparison, subtraction, and division can be easily realized by a signal matrix circuit having functions such as comparators and inverters, which are generally used in three-axis satellites.

また最近三軸衛星に搭載されている搭載用コンピュータ
を使用すれば演算能力を有することから更に容易に実現
する。がくして軌道上で天体の質量特性の不均一による
姿勢外乱としての重力傾度トルクを相殺可能になり、二
つ以上の天体の周囲を飛行する場合においても天体が三
軸衛星に与える重力傾度トルクのレベルと種類に依らず
、その影響を相殺できるようにした方式を提供するもの
である。
Moreover, if the on-board computers that are recently installed on three-axis satellites are used, it will be easier to realize this because they have the computing power. As a result, it becomes possible to cancel out the gravitational inclination torque as an attitude disturbance due to the non-uniformity of the mass properties of celestial bodies in orbit, and even when flying around two or more celestial bodies, the gravitational inclination torque exerted by the celestial bodies on the three-axis satellite can be canceled out. It provides a method that can offset the effects regardless of the level and type.

以下この発明の一実施例について図面により説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は天体の質量特性の例を示す図であり第1図にお
いて(イ)は扇状分布、(ロ)は帯状分布、(ハ)は基
盤目状分布である。天体はその組成において質量の不拘
−を有しておりその結果。
FIG. 1 is a diagram showing an example of the mass characteristics of a celestial body. In FIG. 1, (a) is a fan-like distribution, (b) is a band-like distribution, and (c) is a basal eye-like distribution. Celestial bodies have mass inconsistency in their composition, and this is the result.

人工衛星に働く引力も不均一を有し、姿勢や軌道に対し
てその不均一が擾乱を与えている。帯状分布(イ)の様
な場合は質量分布は天体の経線方向のゾーンで異ってい
るので天体が例えば人工衛星の軌道−周回と自転の周期
が同期している場合には軌−周もしくは数周回毎に質量
分布の異るゾーンの上空を飛行するので人工衛星の姿勢
に及ぼす擾乱は一周もしくは数周間のサイクルで正弦波
的に変わる。帯状分布(ロ)の様な場合は天体の質量分
布は緯度線上のゾーンで異っているので天体の周囲を人
工衛星が等速飛行する場合には人工衛星の姿勢に及ぼす
擾乱は一周回のうち数サイクルのオーダで正弦波的に変
動し、基盤目状分布()・)の様な場合には軌道−周回
と自転の周期が同期している時は9人工衛星に及ばず擾
乱は四分の一周回のオーダでサイクリックに変わる正弦
波的変動が一周回もしくは数周回毎のサイクルで余弦波
的変動に入れ換る。従って扇状分布(イ)、帯状分布(
ロ)、基盤目状分布(ハ)の単一もしくは複合した質量
特性分布の異る天体の周囲を人工衛星を飛行せしめるに
ついては天体の質量特性分布は不変であるので人工衛星
の質量特性を天体の質量特性分布との積が最少になるよ
う調整して、天体と人工衛星の質量特性の不均一の積と
して発生する重力傾度トルクを最少化せしめる。
The gravitational force acting on a satellite is also uneven, and this unevenness causes disturbances to its attitude and orbit. In the case of zonal distribution (a), the mass distribution differs depending on the zone in the meridian direction of the celestial body, so if the celestial body is, for example, an artificial satellite whose orbit and rotation period are synchronized, the orbit or rotation period of the celestial body is synchronized. Since the satellite flies over zones with different mass distributions every few orbits, the disturbances that affect the satellite's attitude change sinusoidally over one or several orbits. In the case of zonal distribution (b), the mass distribution of the celestial body differs depending on the zone on the latitude line, so when the satellite flies around the celestial body at a constant speed, the disturbance that affects the satellite's attitude will be equal to the amount per revolution. Among them, the fluctuations are sinusoidal on the order of several cycles, and in cases such as the base pattern distribution () and ), when the orbit-circulation and rotation periods are synchronized, the disturbance is less than 9 artificial satellites, and the disturbance is 4. A sinusoidal fluctuation that changes cyclically on the order of a fraction of a revolution is replaced by a cosine wave fluctuation in cycles every one or several revolutions. Therefore, fan-shaped distribution (a), zonal distribution (
(b), When flying a satellite around celestial bodies with different single or composite mass property distributions (c), the mass property distribution of the celestial bodies remains unchanged, so the mass properties of the satellite are The gravitational gradient torque generated as a product of the nonuniformity of the mass properties of the celestial body and the artificial satellite is minimized by adjusting the product with the mass property distribution of the celestial body and the artificial satellite.

第2図はこの発明の一実施例を示す図であり。FIG. 2 is a diagram showing an embodiment of the present invention.

第2図において兄は地球、(1)は三軸衛星、(2)は
観測機器、(31は軌道の進行方向、 (41kiZ軸
バラバランサ5)は−2軸バラ”ンサ、(6)はX軸バ
ランサ。
In Figure 2, the older brother is the earth, (1) is the three-axis satellite, (2) is the observation equipment, (31 is the direction of orbit, (41ki Z-axis balancer 5) is the -2-axis balancer, and (6) is the -2-axis balancer. X-axis balancer.

(7)は−X軸バランサ、(8)はY軸バランサ、(9
)は−Y軸バランサである。三軸衛星(1)は地球Eを
観測する為観測機器(2)を地球Eに向けてかつX軸バ
ランサ【6)の装着されたX軸を軌道進行方向に合わせ
て観測機器(2)が2軸バランサ(4)の装着されたz
軸回りに回転して撮像プレが発生しないようにして飛行
している。
(7) is a -X axis balancer, (8) is a Y axis balancer, (9
) is the −Y-axis balancer. In order to observe the Earth E, the three-axis satellite (1) points the observation instrument (2) toward the Earth E, and aligns the X-axis equipped with the X-axis balancer [6] with the direction of the orbit. z with 2-axis balancer (4) installed
It flies by rotating around its axis to prevent imaging pre-occurrence.

こ〜で三軸衛星(1)が地球Eから姿勢擾乱を受ける要
素は三軸衛星(1)の質量特性であり、質量特性は±X
軸、±Y軸、±2軸の各方向に質量を移動させると変わ
ることから、姿勢の変化率が保持するべき値より大きい
一軸、二軸あるいは三軸を検出し、その軸回りの運動に
作用する質量(力孝上はその軸に直交する他の二軸上の
質量)を移動せしめることで、その軸回りの姿勢運動す
なわち姿勢擾乱を押えることができる。
Here, the element that causes the triaxial satellite (1) to undergo attitude disturbance from the earth E is the mass characteristic of the triaxial satellite (1), and the mass characteristic is ±X
Since the change occurs when the mass is moved in each direction of the axis, ±Y axis, and ±2 axis, detect one, two, or three axes where the rate of change in posture is greater than the value that should be maintained, and adjust the movement around that axis. By moving the acting mass (mass on two other axes perpendicular to that axis), posture movement around that axis, that is, posture disturbance, can be suppressed.

従って例えばX軸回□りの姿勢擾乱が大きい時はY軸バ
ランサ(8) 、 −Y軸パランサ(91、Z軸バラン
サ(41、−Z軸バランサ(5)を移動せしめ、Y軸回
りの姿勢擾乱が大きい時はX軸バランサ(6)。
Therefore, for example, when the posture disturbance around the When the disturbance is large, use the X-axis balancer (6).

−X軸バランサ(7) 、 Z軸バランサ+41 、−
Z軸バランサ(5)を移動せしめると三軸衛星(1)に
働くY軸回り、Y軸回りの各々の姿勢擾乱は押えられる
。こへで各軸上を移動するバーランサの移動の制御量は
、変えるべき一軸、二軸、あるいは三軸回りの質量特性
で決り、その質量特性調整量はバランサの質量と移動量
の積である。バランサの質量はあらかじめ分っているの
で質量特性調整量をバランサの質量で除算することで得
られる。
-X-axis balancer (7), Z-axis balancer +41, -
When the Z-axis balancer (5) is moved, the attitude disturbances acting on the three-axis satellite (1) around the Y-axis and around the Y-axis are suppressed. Here, the amount of control of the movement of the balancer that moves on each axis is determined by the mass properties around one, two, or three axes that are to be changed, and the amount of mass property adjustment is the product of the balancer's mass and the amount of movement. . Since the mass of the balancer is known in advance, it can be obtained by dividing the mass characteristic adjustment amount by the mass of the balancer.

第3図はこの発明の装置の一実施例を示す図であり、第
3図において+41 、 (51、+61 、 (〕)
 、 (81は各々±2軸、±X軸、±Y軸方向に装着
したバランサ、aOは通信装置、任uはバランサの駆動
装置、 a2は姿勢センサ、0はジャイロ、a4は姿勢
制御装置、三軸衛星の質量特性(質量分布)を軌道上で
制御するに際してはマニュアルで行う場合は地上局で三
軸衛星の姿勢変化率をモニタして三軸衛星が保持するべ
き姿勢と比較し三軸衛星に働く重力傾度トルクを検出し
、・天体(地球)の質量特性の不拘−分との積算が最少
となる衛星の質量特性を計算し、打上時の衛星の質量特
性との差を求めその質量特性の差に相当する土2軸、±
X軸、±Y軸方向に設置されたバランサ+4) 、 +
5+ 、 +6+ 、(7)、 +8) 、 +91の
移動量を求めて地上局からコマンドを送信する。三軸衛
星の通信装置a・は受けたコマンドをバランサの駆動装
置0υに伝達し、バランサの駆動装置側では各軸方向の
バランサ(41、(51、+61 、 (71、(81
、(91をその移動貴ぶん移動せしめることで質量特性
を軌道上で制御する。質量特性の制御を三軸衛星上で自
動的に行う場合は、三軸衛星に搭載した姿勢センサ(1
2あるいはジャイロa3の検出する姿勢変化率データを
三軸衛星に搭載した姿勢制御系a4に入力し三軸衛星が
保持すべき姿勢と比較して各軸回りの姿勢外乱すなわち
重力傾度トルクを検出し、打上時の三軸衛星の質量特性
で検出した重力傾度トルクを除算し、天体の質量特性を
検出し、検出した天体の質量特性に対して積算が最少に
なる三軸衛星の質量特性を求め打上時の三軸衛星の質量
特性との差を三軸衛星の各軸について求め、その各軸に
ついての質量特性の差に相当する±2軸、±X軸、±Y
軸方向に装着されたバランサ+41 、 (51、+6
1 、 (71、+81 、 (91の各軸方向の伸縮
値を逆算しその値をバランサの駆動装置aυに入力する
とバランサの駆動装置aυは各軸方向のバランサ+41
 、 +51 、 +61 、 (7) 、 (8) 
、 (91をその移動量ぶん移動せしめることで質量特
性を軌道上で制御する。
FIG. 3 is a diagram showing an embodiment of the apparatus of the present invention, and in FIG. 3, +41, (51, +61, (])
, (81 is a balancer mounted in the ±2-axis, ±X-axis, and ±Y-axis directions, aO is a communication device, u is a balancer drive device, a2 is an attitude sensor, 0 is a gyro, a4 is an attitude control device, When controlling the mass characteristics (mass distribution) of a three-axis satellite in orbit manually, the rate of attitude change of the three-axis satellite is monitored at a ground station and compared with the attitude that the three-axis satellite should maintain. Detect the gravitational gradient torque acting on the satellite, calculate the mass characteristic of the satellite that minimizes the integration with the independent mass characteristics of the celestial body (Earth), and calculate the difference between it and the mass characteristic of the satellite at the time of launch. Soil two axes corresponding to the difference in mass properties, ±
Balancers installed in the X-axis and ±Y-axis directions +4) , +
A command is sent from the ground station to find the movement amount of 5+, +6+, (7), +8), +91. The communication device a of the three-axis satellite transmits the received command to the balancer drive device 0υ, and on the balancer drive device side, the balancer (41, (51, +61, (71, (81)
, (91) is moved as much as possible to control the mass characteristics in orbit. When controlling the mass characteristics automatically on a three-axis satellite, the attitude sensor (1) mounted on the three-axis satellite
2 or the attitude change rate data detected by gyro a3 is input to the attitude control system a4 mounted on the three-axis satellite, and compared with the attitude that the three-axis satellite should maintain, the attitude disturbance around each axis, that is, the gravitational tilt torque is detected. , divide the detected gravitational tilt torque by the mass characteristic of the triaxial satellite at the time of launch, detect the mass characteristic of the celestial body, and find the mass characteristic of the triaxial satellite that minimizes the integration with respect to the mass characteristic of the detected celestial body. The difference from the mass characteristics of the three-axis satellite at the time of launch is determined for each axis of the three-axis satellite, and the ±2 axes, ±X axis, and ±Y corresponding to the difference in mass characteristics for each axis are calculated.
Axially mounted balancer +41, (51, +6
1, (71, +81, (91) When the expansion/contraction values in each axis direction are calculated backwards and the values are input to the balancer drive device aυ, the balancer drive device aυ becomes the balancer +41 in each axis direction.
, +51, +61, (7), (8)
, (by moving 91 by the amount of movement, the mass characteristics are controlled on the orbit.

以上のようにこの発明によれば三軸衛星の全方向にわた
った重力傾度トルクを除去する為に軌道上で三軸衛星の
質量特性を制御できるので複数天体が存在する時の重力
傾度トルクにも対応でき、またこの方式を使用すること
によって三軸衛星の姿勢制御負荷を軽減でき三軸衛星に
搭載する燃料も節約できる等の利点がある。
As described above, according to the present invention, it is possible to control the mass characteristics of a triaxial satellite in orbit in order to remove the gravitational inclination torque in all directions of the triaxial satellite. This method also has the advantage of reducing the attitude control load on a three-axis satellite and saving fuel on board the three-axis satellite.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は天体の質量特性の例を示す図、第2図はこの発
明による三軸衛星の各軸方向に取付けたバランサの配置
を示した図、第3図はこの発明によるバランサを伸縮し
て質量を制御する場合を説明するための図である。 図中、Eは地球、(1)は三−軸衛星、(2)は観測機
器、(3)は軌道の進行方向、(4)は2軸ノ(ランサ
。 (5)は−2軸バランサ、(6)はX軸ノくランサ、(
71)ま−X軸バランサ、(8)はY軸ノくランサ、(
9)は−Y軸バランサ、 Q[lは通信装置、aυはバ
ランサの駆動装置、 (16は姿勢センサ、ajはジャ
イロ、 Q41は姿勢制御装置である。 なお図中同一あるいは相当部分には同一符号を付して示
しである。 代理人  葛 野 信 − 第1図 第2図
Fig. 1 is a diagram showing an example of the mass characteristics of a celestial body, Fig. 2 is a diagram showing the arrangement of balancers attached to each axis of a three-axis satellite according to the present invention, and Fig. 3 is a diagram showing the arrangement of the balancer according to the present invention, which is extended and contracted. FIG. 2 is a diagram for explaining a case where mass is controlled by In the figure, E is the Earth, (1) is the three-axis satellite, (2) is the observation equipment, (3) is the direction of orbit, (4) is the two-axis balancer, and (5) is the -2-axis balancer. , (6) is the X-axis lancer, (
71) - X-axis balancer, (8) is Y-axis balancer, (
9) is a −Y-axis balancer, Q[l is a communication device, aυ is a balancer drive device, (16 is an attitude sensor, aj is a gyro, and Q41 is an attitude control device. Note that the same or equivalent parts in the figure are the same. They are indicated with symbols. Agent Shin Kuzuno - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 +11  X軸、Y軸及びX軸の姿勢を制御する人工衛
星の各軸にバランサを設けるとともに上記バランサを各
軸方向に移動させる駆動装置を具備し、上記バランサを
天体の重力傾度に応じて移動させることにより上記人工
衛星の質量特性を軌道上で可変することを特徴とする人
工衛星の質量特性制御方式。 (2)  地上局からのコマンドによりバランサーの軸
の移動量を制御することを特徴とする特許請求の範囲第
1項記載の人工衛星質量特性制御方式。 (3)  人工衛星に姿勢センサあるいはジャイロを搭
載し、姿勢センサ、あるいはジャイロの検出する三軸姿
勢制御衛星の各軸の姿勢変化率データを用いてバランサ
を各軸方向に移動せしめる為の制御を行うことを特徴と
する特許請求の範囲第1項記載の人工衛星の質量特性制
御方式。
[Claims] +11 A balancer is provided on each axis of an artificial satellite that controls the attitude of the X-axis, Y-axis, and X-axis, and a drive device is provided to move the balancer in each axis direction, A mass characteristic control method for an artificial satellite, characterized in that the mass characteristic of the artificial satellite is varied in orbit by moving it according to the gravitational inclination. (2) The satellite mass characteristic control system according to claim 1, wherein the amount of movement of the axis of the balancer is controlled by a command from a ground station. (3) An attitude sensor or a gyro is mounted on the satellite, and the attitude change rate data of each axis of the three-axis attitude control satellite detected by the attitude sensor or gyro is used to control the balancer to move in each axis direction. 2. A mass characteristic control method for an artificial satellite according to claim 1, characterized in that:
JP56121680A 1981-08-03 1981-08-03 Control system for mass characteristic of artificial satellite Pending JPS5822799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56121680A JPS5822799A (en) 1981-08-03 1981-08-03 Control system for mass characteristic of artificial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56121680A JPS5822799A (en) 1981-08-03 1981-08-03 Control system for mass characteristic of artificial satellite

Publications (1)

Publication Number Publication Date
JPS5822799A true JPS5822799A (en) 1983-02-10

Family

ID=14817213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56121680A Pending JPS5822799A (en) 1981-08-03 1981-08-03 Control system for mass characteristic of artificial satellite

Country Status (1)

Country Link
JP (1) JPS5822799A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452598A (en) * 1987-08-20 1989-02-28 Nissan Motor Tetherd satellite system
JPH01249600A (en) * 1988-03-31 1989-10-04 Toshiba Corp Gravitational environment producing device for space navigating vehicle
JP2008500908A (en) * 2004-06-01 2008-01-17 ロロマティック エス.アー. Tip-fixed steady rest clamp for holding a member to be polished by a polishing machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452598A (en) * 1987-08-20 1989-02-28 Nissan Motor Tetherd satellite system
JPH01249600A (en) * 1988-03-31 1989-10-04 Toshiba Corp Gravitational environment producing device for space navigating vehicle
JP2008500908A (en) * 2004-06-01 2008-01-17 ロロマティック エス.アー. Tip-fixed steady rest clamp for holding a member to be polished by a polishing machine

Similar Documents

Publication Publication Date Title
JP3027734B2 (en) Method and device for autonomously determining the position of a satellite on board
JP3244717B2 (en) Method and apparatus for tilt-orbit attitude control of a momentum bias spacecraft
CA2117192C (en) Three-axis stabilized, earth oriented satellite and corresponding sun and earth acquisition device
JP3782193B2 (en) Single axis correction for orbit tilt
US20100228407A1 (en) Method of determining and controlling the inertial attitude of a spinning, artificial satellite and systems therefor
US5433402A (en) Attitude control process and device for a spacecraft to be rotated around an axis of a body
JPH0577245B2 (en)
US6417798B1 (en) Method and apparatus for position and attitude control of a satellite
JP2003521424A (en) Systems and methods for controlling spacecraft attitude
US20050242241A1 (en) Method and system for steering a momentum control system
JP2004196290A (en) Method and device for dynamic compensation of reaction wheel in spreading of large-sized reflector for long duration
US2902772A (en) Gyroscopic compass
US4272045A (en) Nutation damping in a dual-spin spacecraft
JP2004196289A (en) Method and device for solar tacking momentum maintenance in spreading of large-sized reflector for long duration
JPS5822799A (en) Control system for mass characteristic of artificial satellite
GB2350596A (en) Three axis position control for low-orbiting satellites
AU2020245116B2 (en) Device and method for determining the attitude of a satellite equipped with gyroscopic actuators, and satellite carrying such a device
WO1987000653A1 (en) Autonomous spin axis attitude controller for a spinning spacecraft
JP3174174B2 (en) Satellite attitude control system
US3490281A (en) Local vertical control apparatus
EP0544241A1 (en) Method and apparatus for dynamic precompensation of solar wing stepping motions of a satellite
EP1134640A2 (en) Attitude control system for a spacecraft
DENNEHY et al. On-board attitude determination for the Topex satellite
Crassidis et al. Attitude determination improvements for GOES
Somov et al. Robust nonlinear gyromoment control of agile remote sensing spacecraft