JPS582272B2 - Electrolysis method of chlorine compound corrosive solution - Google Patents

Electrolysis method of chlorine compound corrosive solution

Info

Publication number
JPS582272B2
JPS582272B2 JP53075479A JP7547978A JPS582272B2 JP S582272 B2 JPS582272 B2 JP S582272B2 JP 53075479 A JP53075479 A JP 53075479A JP 7547978 A JP7547978 A JP 7547978A JP S582272 B2 JPS582272 B2 JP S582272B2
Authority
JP
Japan
Prior art keywords
tank
chlorine gas
anode chamber
chlorine
corrosive solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53075479A
Other languages
Japanese (ja)
Other versions
JPS552763A (en
Inventor
椿秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP53075479A priority Critical patent/JPS582272B2/en
Publication of JPS552763A publication Critical patent/JPS552763A/en
Publication of JPS582272B2 publication Critical patent/JPS582272B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】 本発明は,塩素化合物腐蝕液の電解方法,特にプリント
基板などの銅の腐蝕を行なった腐蝕液中より腐蝕された
銅を金属銅として回収する電解方法に関するものである
[Detailed Description of the Invention] The present invention relates to an electrolytic method for a chlorine compound corrosive solution, and particularly to an electrolytic method for recovering corroded copper as metallic copper from the corrosive solution that has corroded copper such as printed circuit boards. .

この種の電解方法においては,電解中に陽極より塩素ガ
スが発生する。
In this type of electrolysis method, chlorine gas is generated from the anode during electrolysis.

この塩素ガスは猛毒モあり,公害防止上また塩素化合物
腐蝕液への塩素の補充の観点から,塩素ガスの発生を極
力抑える必要がある。
This chlorine gas is highly toxic, and it is necessary to suppress the generation of chlorine gas as much as possible from the viewpoint of preventing pollution and replenishing the chlorine compound corrosive solution with chlorine.

そして,上述の塩素ガスの発生を抑える電解方法として
、従来から電解電圧調節方法、腐蝕液温を下げる方法、
隔膜方法等が知られている。
Conventional electrolytic methods for suppressing the generation of chlorine gas include methods for adjusting the electrolytic voltage, methods for lowering the corrosive liquid temperature,
Diaphragm methods and the like are known.

第1の方法は,電解電圧を通常の電解電圧4.5〜5v
より下げて約2vにして電解を行い、塩素ガスの発生を
抑えるものである。
The first method is to change the electrolysis voltage to the normal electrolysis voltage of 4.5 to 5V.
Electrolysis is performed at a lower voltage of about 2V to suppress the generation of chlorine gas.

第2の方法は,電解前に腐蝕液の温度を約25°に下げ
てこの低温腐蝕液にて電解を行って塩素ガスの発生を抑
え,銅回収後腐蝕液の温度を約45°に上げて銅の腐蝕
に使用するものである。
The second method is to lower the temperature of the etchant to about 25° before electrolysis, conduct electrolysis with this low-temperature etchant to suppress the generation of chlorine gas, and raise the temperature of the etchant to about 45° after copper recovery. It is used for corrosion of copper.

第3の方法は、電解槽中に隔膜を配置し,腐蝕液を陰極
側に供給して塩素の発生を抑えるようにしたものである
The third method is to arrange a diaphragm in the electrolytic cell and supply a corrosive solution to the cathode side to suppress the generation of chlorine.

しかしながら,上記何れの方法においても、塩素ガスの
発生を抑えようとしても必らず塩素ガスが発生するため
,その発生した塩素ガスを中和塔に導き,この中和塔に
て薬液により中和させてから大気中に放出させる必要が
ある。
However, in any of the above methods, chlorine gas is inevitably generated even if attempts are made to suppress the generation of chlorine gas, so the generated chlorine gas is led to a neutralization tower, where it is neutralized with a chemical solution. must be released into the atmosphere.

さらに,前記第1の方法は,電解電圧を電解効率の最も
良い電圧4.5〜5vより下げて約2Vするため,電解
効率が極端に低下する欠点がある。
Furthermore, the first method lowers the electrolysis voltage to about 2V, which is lower than the voltage of 4.5 to 5V that provides the best electrolysis efficiency, and therefore has the disadvantage that the electrolysis efficiency is extremely reduced.

また,前記第2の方法は,電解液の温度を下げるため,
電解の反応速度が遅くなり,しかも電解前に腐蝕液を冷
却する冷凍機や電解後の腐蝕液を加温する加熱機を必要
とする欠点がある。
In addition, in the second method, in order to lower the temperature of the electrolyte,
The disadvantage is that the reaction rate of electrolysis is slow and that a refrigerator is required to cool the corrosive liquid before electrolysis and a heater is required to heat the corrosive liquid after electrolysis.

前記第3の方法は、電解槽中に隔膜を配置するので電解
槽の構造が複雑になる欠点がある。
The third method has the disadvantage that the structure of the electrolytic cell becomes complicated because the diaphragm is disposed in the electrolytic cell.

本発明は,上述の従来技術の欠点を改善した電解方法を
提供せんとするものである。
The present invention aims to provide an electrolytic method that improves the above-mentioned drawbacks of the prior art.

本発明者は,塩素ガスの発生をできる限り抑えようとし
た従来技術の欠点に鑑み、陽極室を密閉させた電解槽に
より電解を積極的に行い、その陽極室内に発生した塩素
ガスと,金属を回収した腐蝕液とを密閉された吸収槽に
導き,該吸収槽において塩素ガスを腐蝕液中に強制的に
吸収させ,それにも拘らず腐蝕液中に吸収し得なかった
塩素ガスを前記電解槽の陽極室に戻してリサイクルさせ
、さらにその陽極室と吸収槽のガス圧を所定限度内に維
持し得るようにしたことを特徴とする。
In view of the shortcomings of the conventional technology, which attempts to suppress the generation of chlorine gas as much as possible, the present inventor actively carried out electrolysis using an electrolytic tank with a sealed anode chamber, and removed the chlorine gas generated in the anode chamber and the metal. The recovered corrosive liquid is introduced into a sealed absorption tank, where the chlorine gas is forcibly absorbed into the corrosive liquid. It is characterized in that it is recycled by returning it to the anode chamber of the tank, and that the gas pressure in the anode chamber and the absorption tank can be maintained within predetermined limits.

以下.本発明に係る塩素化合物腐蝕液の電解方法の具体
例を添付図面を参照して説明する。
below. A specific example of the method for electrolyzing a chlorine compound corrosive solution according to the present invention will be described with reference to the accompanying drawings.

添付図面は本発明の電解方法の一実施例を示したフロー
シート図である。
The accompanying drawing is a flow sheet diagram showing one embodiment of the electrolysis method of the present invention.

図中,1はプリント基板などを腐蝕して銅を多量に含ん
だ腐蝕液を貯える貯槽である。
In the figure, 1 is a storage tank that stores a corrosive solution containing a large amount of copper that corrodes printed circuit boards and the like.

2は陽極室23を完全密閉させた電解槽で,その陰極側
に析出した銅を回収するための取出口21を設けると共
に、銅を回収した腐蝕液を排出する排出口22を設ける
Reference numeral 2 designates an electrolytic cell having a completely sealed anode chamber 23, and is provided with an outlet 21 on the cathode side for recovering the deposited copper and an outlet 22 for discharging the corrosive solution that has recovered the copper.

3は完全密閉された吸収槽であって,底部と天部とに吹
出パイプ31とノズル32とを配設し,その吹出バイプ
31とノズル32の間に充填材33を配し、下部に塩素
ガスを吸収させた腐蝕液をオーバーフローにより排出さ
せるオーバーフロー室34を設ける。
Reference numeral 3 denotes a completely sealed absorption tank, in which a blow-off pipe 31 and a nozzle 32 are arranged at the bottom and the top, a filler 33 is placed between the blow-off pipe 31 and the nozzle 32, and a chlorine gas is placed in the lower part. An overflow chamber 34 is provided in which the corrosive liquid that has absorbed gas is discharged by overflow.

4は前記電解槽2および吸収槽3内のガス圧を一定にす
る圧力調節槽で、下部に塩素ガスを中和させる薬液を収
容し,その薬液に浮沈してガス圧を調節するフロート4
1を浮せ、上部にノズル42を設け,該ノズル42とフ
ロート41,薬液の間に充填材43を配設する。
Reference numeral 4 denotes a pressure regulating tank that keeps the gas pressure in the electrolytic cell 2 and absorption tank 3 constant, and a float 4 that contains a chemical solution for neutralizing chlorine gas in the lower part and floats and sinks in the chemical solution to adjust the gas pressure.
1 is floated, a nozzle 42 is provided at the top, and a filler 43 is provided between the nozzle 42, the float 41, and the chemical solution.

5は塩酸槽、6は混合槽、7は再生貯槽である。5 is a hydrochloric acid tank, 6 is a mixing tank, and 7 is a regeneration storage tank.

前記貯槽1と電解槽2,その電解槽2の排出口22と吸
収槽3の下部,その吸収槽3の底部とノズル32,前記
吸収槽3のオーバーフロー室34と混合槽6,その混合
槽6と再生貯槽7の間にそれぞれ腐蝕液流路管81,8
2,83,84および85を接続し,前記電解槽2の陽
極室23と吸収槽3の吹出バイプ31,吸収槽3の大部
と電解槽2の陽極室23にそれぞれ塩素ガス流路管86
,87を接続し、その塩素ガス流路管87と前記圧力調
節槽4のフロート41に同じく塩素ガス流路管88を接
続し、前記圧力調節槽4の下部の薬液収容部とノズル4
2との間に薬液送給管89を接続し,前記塩酸槽5と混
合槽6との間に塩酸送給管80を接続する。
The storage tank 1 and the electrolytic tank 2, the outlet 22 of the electrolytic tank 2 and the lower part of the absorption tank 3, the bottom of the absorption tank 3 and the nozzle 32, the overflow chamber 34 of the absorption tank 3 and the mixing tank 6, and the mixing tank 6 Corrosive liquid flow pipes 81 and 8 are provided between the storage tank 7 and the regeneration storage tank 7, respectively.
2, 83, 84 and 85, and a chlorine gas flow pipe 86 is connected to the anode chamber 23 of the electrolytic cell 2, the blow-off pipe 31 of the absorption cell 3, and the majority of the absorption cell 3 and the anode chamber 23 of the electrolytic cell 2, respectively.
.
2, and a hydrochloric acid feed pipe 80 is connected between the hydrochloric acid tank 5 and the mixing tank 6.

また、前記腐蝕液流路81,83,85,塩素ガス流路
管86,薬液送給管89にポンプ91 ,92,93,
94,95を設け、前記塩酸送給管80の途中に前記吸
収槽3からの腐蝕液中の不足分の塩素に応じた量の塩酸
を送給する電磁弁96を設ける。
In addition, pumps 91, 92, 93,
94 and 95 are provided, and an electromagnetic valve 96 is provided in the middle of the hydrochloric acid feed pipe 80 for feeding an amount of hydrochloric acid corresponding to the shortage of chlorine in the corrosive liquid from the absorption tank 3.

次に、上述のプラントによる本発明の電解方法を説明す
る。
Next, the electrolysis method of the present invention using the above-mentioned plant will be explained.

貯槽1中のプリント基板などを腐蝕して銅を多量に含ん
だ腐蝕液をポンプ91により電解槽2に送給し,該電解
槽2において電解を行う。
A corrosive solution containing a large amount of copper by corroding printed circuit boards and the like in the storage tank 1 is fed to the electrolytic tank 2 by a pump 91, and electrolysis is performed in the electrolytic tank 2.

これにより、陰極に銅が析出して取出口21から回収さ
れると共に,かくして銅を回収された腐蝕液は排出口2
2から吸収槽3の下部に送給される。
As a result, copper is deposited on the cathode and collected from the outlet 21, and the corrosive solution with the copper thus collected is discharged from the outlet 21.
2 to the lower part of the absorption tank 3.

一方前記電解により陽極側に塩素ガスが発生するが,そ
の塩素ガスは陽極室23が密閉されているため、大気中
に放散されることなく,ポンプ94により陽極室23か
ら吸収槽3の吹出バイプ32に送給される。
On the other hand, chlorine gas is generated on the anode side due to the electrolysis, but since the anode chamber 23 is sealed, the chlorine gas is not dissipated into the atmosphere and is blown from the anode chamber 23 to the absorption tank 3 by the pump 94. 32.

吸収槽3は、前記の如く密閉型であるので,吹出バイプ
32より吹出された塩素ガスは吸収槽3の下部に収容さ
れた腐蝕液中に1次吸収され、さらにポンプ92、腐蝕
液流路管83,ノズル32によりスプレー循環する腐蝕
液中に2次吸収され,それでも吸収されなかった塩素ガ
スは吸収槽3の大部から塩素ガス流路管87を経て電解
槽2の陽極室23に戻されて塩素ガスはリサイクルする
Since the absorption tank 3 is of a closed type as described above, the chlorine gas blown out from the blow-off pipe 32 is primarily absorbed into the corrosive liquid stored in the lower part of the absorption tank 3, and then the pump 92 and the corrosive liquid flow path. The chlorine gas that is secondarily absorbed into the corrosive liquid sprayed and circulated through the pipe 83 and nozzle 32 and is not absorbed is returned from the majority of the absorption tank 3 to the anode chamber 23 of the electrolytic tank 2 via the chlorine gas flow pipe 87. The chlorine gas is then recycled.

一方,塩素ガスを吸収した腐蝕液は吸収槽3のオーバー
フロー室34から流路管84を経て混合槽6に送給され
,該腐蝕液中の塩素の不足分が計測され,その不足分に
応じた量の塩酸が塩酸槽5から送給管80,電磁弁96
を介して前記混合槽6に送給され,該混合槽6において
腐蝕液と塩酸とが混合して腐蝕液が再生され,その再生
された腐蝕液はポンプ93により再生貯槽7に送給され
る。
On the other hand, the corrosive liquid that has absorbed chlorine gas is sent from the overflow chamber 34 of the absorption tank 3 to the mixing tank 6 via the flow pipe 84, the shortage of chlorine in the corrosive liquid is measured, and the amount of chlorine is adjusted accordingly. The amount of hydrochloric acid is transferred from the hydrochloric acid tank 5 to the feed pipe 80 and the solenoid valve 96.
The corrosive liquid and hydrochloric acid are mixed in the mixing tank 6 to regenerate the corrosive liquid, and the regenerated corrosive liquid is sent to the regeneration storage tank 7 by the pump 93. .

そして,前記電解槽2の陽極室23内および前記吸収槽
3内は前記の如き密閉されているが、これを塩素ガス流
路管87.88を介して圧力調節槽4のフロート41内
と連通しているため、電解槽2の陽極室23内および吸
収槽3内のガス圧が高くなったり低くなったりすると、
圧力調節槽4のフロート41が薬液上を浮沈し,これに
より電解槽2の陽極室23内および吸収槽3内のガス圧
を所定の限度内に保たせる。
The inside of the anode chamber 23 of the electrolytic cell 2 and the inside of the absorption tank 3 are sealed as described above, but these are communicated with the inside of the float 41 of the pressure regulating tank 4 through the chlorine gas flow pipes 87 and 88. Therefore, when the gas pressure in the anode chamber 23 of the electrolytic cell 2 and the absorption tank 3 increases or decreases,
The float 41 of the pressure regulating tank 4 floats and sinks above the chemical solution, thereby maintaining the gas pressure in the anode chamber 23 of the electrolytic tank 2 and the absorption tank 3 within predetermined limits.

なお,圧力調節槽4内の薬液はポンプ95により送給管
89,ノズル42,槽4内を循環しているので、万一電
解槽2の陽極室23内および吸収槽3内のガス圧が高く
なり,フロート41が薬液面上より浮き上って塩素ガス
がフロート41外に噴出した際には、前記の如くして圧
力調節槽内を循環している薬液により噴出塩素ガスを中
和して大気中に放出させることができる。
In addition, since the chemical solution in the pressure adjustment tank 4 is circulated through the feed pipe 89, the nozzle 42, and the tank 4 by the pump 95, the gas pressure in the anode chamber 23 of the electrolytic tank 2 and the absorption tank 3 should When the float 41 rises above the chemical liquid surface and chlorine gas is ejected outside the float 41, the ejected chlorine gas is neutralized by the chemical liquid circulating in the pressure regulating tank as described above. can be released into the atmosphere.

以上述べたように、本発明は,陽極室を密閉させた電解
槽に腐蝕により金属を含んだ塩素化合物腐蝕液を導いて
電解を行ない,該電解により陽極室に発生した塩素ガス
と金属を回収した腐蝕液とを密閉された吸収槽に導き,
該吸収槽において塩素ガスを腐蝕液中に強制的に吸収さ
せ.それにも拘らず腐蝕液中に吸収し得なかった塩素ガ
スを前記電解槽の密閉された陽極室に戻してリサイクル
させ,さらに前記電解槽の密閉された陽極室と密閉され
た吸収槽とを塩素ガス流路管を介して圧力調節槽の液面
上に浮かせたフロートに接続し,該フロートの浮沈によ
り電解槽の陽極室内および吸収槽内のガス圧を所定限度
内に保持すべくなしたので、従来の塩素ガスの発生を抑
える方法に比較すると,電解効率が良好な状態で積極的
に電解を行なうことができ、しかも電解により発生した
塩素ガスを中和させていたずらに排出するのではなく,
これを吸収槽中において積極的に腐蝕液中に吸収させる
ので,腐蝕液中に不足した塩素を補うための塩酸などの
注入量は従来技術に比べて非常に少なくてすみ,さらに
,前記の如く電解槽の陽極室と吸収槽とを密閉したにも
拘らず、圧力調節槽のフロートにより陽極室と吸収槽と
のガス圧を所定限度内に保ち,きわめて安全にかつ能率
的に電解を行なうことができる効果がある。
As described above, the present invention conducts electrolysis by introducing a chlorine compound corrosive solution containing metals through corrosion into an electrolytic tank with a sealed anode chamber, and recovers chlorine gas and metals generated in the anode chamber by the electrolysis. The corrosive liquid is introduced into a sealed absorption tank.
Chlorine gas is forcibly absorbed into the corrosive liquid in the absorption tank. Nevertheless, the chlorine gas that could not be absorbed into the corrosive solution is recycled by returning it to the sealed anode chamber of the electrolytic cell, and the sealed anode chamber and the sealed absorption tank of the electrolytic cell are further recycled. It is connected via a gas flow pipe to a float suspended above the liquid level in the pressure regulating tank, and the float floats up and down to maintain the gas pressure in the anode chamber and absorption tank of the electrolytic tank within a predetermined limit. Compared to conventional methods of suppressing the generation of chlorine gas, electrolysis can be actively carried out with good electrolysis efficiency, and the chlorine gas generated by electrolysis is not neutralized and discharged unnecessarily. ,
Since this is actively absorbed into the corrosive solution in the absorption tank, the amount of injection of hydrochloric acid, etc. to make up for the lack of chlorine in the corrosive solution is much smaller than in the conventional technology. Even though the anode chamber and absorption tank of the electrolytic cell are sealed, the float in the pressure regulating tank maintains the gas pressure in the anode chamber and absorption tank within a predetermined limit to perform electrolysis extremely safely and efficiently. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の塩素化合物腐蝕液の電解方法の一実
施例を示したフローシート図である。
The accompanying drawing is a flow sheet diagram showing one embodiment of the method for electrolyzing a chlorine compound corrosive solution according to the present invention.

Claims (1)

【特許請求の範囲】 1 陽極室を密閉させた電解槽に腐蝕により金属を含ん
だ塩素化合物腐蝕液を導いて電解を行ない,該電解によ
り陽極室に発生した塩素ガスと金属を回収した腐蝕液と
を密閉された吸収槽に導き,該吸収槽において塩素ガス
を腐蝕液中に強制的に吸収させ、それにも拘らず腐蝕巌
中に吸収し得なかった塩素ガスを前記電解槽の密閉され
た陽極室に戻してリサイクルさせ,さらに前記電解槽の
密閉された陽極室と密閉された吸収槽とを塩素ガス流路
管を介して圧力調節槽の液面上に浮かせたフロートに接
続し,該フロートの浮沈により電解槽の陽極室および吸
収槽のガス圧を所定限度内に保持すべくなしたことを特
徴とする塩素化合物腐蝕液の電解方法。 2 前記圧力調節槽の下部に塩素ガスの中和薬液を収容
してその中和薬液上に前記フロートを浮かせ、かつその
中和薬液をポンプを介して圧力調節槽の上部に配設した
ノジルよ6散布して圧力調節槽内の中和薬液を循環させ
、万一フロートが薬液面上に浮き上って塩素ガスが噴出
した際にはその塩素ガスを中和させて大気中に放出させ
るようにした特許請求の範囲第1項に記載の塩素化合物
腐蝕液の電解方法。
[Scope of Claims] 1. A corrosive solution in which a chlorine compound corrosive solution containing metal due to corrosion is introduced into an electrolytic tank with a sealed anode chamber, and chlorine gas and metals generated in the anode chamber are recovered by the electrolysis. is introduced into a sealed absorption tank, and the chlorine gas is forcibly absorbed into the corrosive solution in the absorption tank. The electrolytic cell is returned to the anode chamber for recycling, and the sealed anode chamber and the sealed absorption tank of the electrolytic cell are connected via a chlorine gas flow pipe to a float suspended above the liquid level of the pressure regulating tank. 1. A method for electrolyzing a chlorine compound corrosive solution, characterized in that the gas pressure in an anode chamber and an absorption tank of an electrolytic cell is maintained within a predetermined limit by floating and sinking a float. 2 A neutralizing chemical solution for chlorine gas is stored in the lower part of the pressure regulating tank, the float is floated on top of the neutralizing chemical solution, and the neutralizing chemical solution is delivered to a nozzle provided at the upper part of the pressure regulating tank via a pump. 6 Spray to circulate the neutralizing chemical solution in the pressure adjustment tank, and in the event that the float rises above the chemical surface and chlorine gas spews out, the chlorine gas will be neutralized and released into the atmosphere. A method for electrolyzing a chlorine compound corrosive solution according to claim 1.
JP53075479A 1978-06-23 1978-06-23 Electrolysis method of chlorine compound corrosive solution Expired JPS582272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53075479A JPS582272B2 (en) 1978-06-23 1978-06-23 Electrolysis method of chlorine compound corrosive solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53075479A JPS582272B2 (en) 1978-06-23 1978-06-23 Electrolysis method of chlorine compound corrosive solution

Publications (2)

Publication Number Publication Date
JPS552763A JPS552763A (en) 1980-01-10
JPS582272B2 true JPS582272B2 (en) 1983-01-14

Family

ID=13577462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53075479A Expired JPS582272B2 (en) 1978-06-23 1978-06-23 Electrolysis method of chlorine compound corrosive solution

Country Status (1)

Country Link
JP (1) JPS582272B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997110B2 (en) * 1991-10-28 2000-01-11 日鉄鉱業株式会社 Etching solution treatment method
JPH06240475A (en) * 1993-02-16 1994-08-30 Nittetsu Mining Co Ltd Treatment of iron chloride based etchant containing nickel
DE10326767B4 (en) * 2003-06-13 2006-02-02 Atotech Deutschland Gmbh A method of regenerating ferrous etchant solutions for use in etching or pickling copper or copper alloys, and an apparatus for performing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119632A (en) * 1975-04-15 1976-10-20 Chiyuuoo Kk Process for treating etching agents

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119632A (en) * 1975-04-15 1976-10-20 Chiyuuoo Kk Process for treating etching agents

Also Published As

Publication number Publication date
JPS552763A (en) 1980-01-10

Similar Documents

Publication Publication Date Title
CN104313584B (en) The electrolysis containing copper etchant solution obtains copper coin cyclic utilization method and system
US4545877A (en) Method and apparatus for etching copper
US4181580A (en) Process for electro-tin plating
CN111394726B (en) Acid etching solution recycling process
CN115135806B (en) Method and equipment for regenerating and recycling alkaline etching waste liquid
CN101417838A (en) Scale and corrosion inhibitor formula for high concentration multiple operation of recirculated cooling water system and method of use thereof
US4339321A (en) Method and apparatus of injecting replenished electrolyte fluid into an electrolytic cell
JP6721537B2 (en) Electrolyte tank for hydrogen electrolysis production, electrolysis device for hydrogen electrolysis production, and hydrogen production system
JPS582272B2 (en) Electrolysis method of chlorine compound corrosive solution
US4149702A (en) Method and apparatus for recycling heat treating salts
CN210765518U (en) Acid etching solution cyclic regeneration system
CN108004545A (en) A kind of circuit board corrosion liquid regenerating unit and its method
CN111394727A (en) Acid etching solution cyclic regeneration system
JPH09279376A (en) Production of chlorine dioxide
CN207659528U (en) A kind of circuit board corrosion liquid regenerating unit
JP4143235B2 (en) Copper chloride etchant electrolytic regeneration system
SE455706B (en) SET FOR PREPARATION OF ALKALIA METAL CHLORATE
CN220413569U (en) Electrolytic zinc anode plate pre-plating equipment
CN217203011U (en) Electrolytic phosphating equipment containing regeneration tank
CN113957489B (en) Method and device for stabilizing working condition of electrolytic manganese cell
GB2109621A (en) Metal halogen electrical energy storage system and method of use thereof
CN210657140U (en) Circulation tank
JP2794815B2 (en) Gold electrolytic smelting equipment
JPS6247954B2 (en)
US3338748A (en) Method for removing particles of undesirable material from an amalgam system