JPS58224727A - Manufacture of foamed object - Google Patents

Manufacture of foamed object

Info

Publication number
JPS58224727A
JPS58224727A JP57107551A JP10755182A JPS58224727A JP S58224727 A JPS58224727 A JP S58224727A JP 57107551 A JP57107551 A JP 57107551A JP 10755182 A JP10755182 A JP 10755182A JP S58224727 A JPS58224727 A JP S58224727A
Authority
JP
Japan
Prior art keywords
foam
foaming
polyolefin
blowing agent
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57107551A
Other languages
Japanese (ja)
Inventor
Yoichi Suzuki
洋一 鈴木
Fumio Suzuki
文雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57107551A priority Critical patent/JPS58224727A/en
Publication of JPS58224727A publication Critical patent/JPS58224727A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7404Mixing devices specially adapted for foamable substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • B29C44/507Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying extruding the compound through an annular die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To obtain the foamed object having the foaming ratio of more than three times, by supplying the permixed polyolefine pellet, chemical foaming agent powder and polyolefine powder dispersant to a molder, melting and mixing there, then making the foaming agent decompose and lowering a temperature, extruding it. CONSTITUTION:After premixing the foaming material composed mainly of a polyolefine pellet, chemical foaming agent powders {the use of two kinds having different thermal decomposition temperatures is preferable, e.g., a 4,4'-oxybis (benzene sulfonyl hydrazide) and an azodicarbonamide} and a polyolefine powder dispersant (the powder of the same polyolefine as the pellet) it is supplied to a molder and melted, mixed there, then its temperature is raised above the thermal decomposition temperature of the chemical foaming agent, then lowered and it is extruded from a die. The total amount of the foaming agent and the dispersant is preferably 1.1-10wt% of the pellet, the foaming agent is preferably more then 1.0wt% and the dispersant is preferably 0.1-1.0pt.wt. of the foaming agent.

Description

【発明の詳細な説明】 本発明は化学発泡剤を用いてポリオレフィンを3倍以上
の発泡倍率で発泡せしめるための新規な製造法に関する
。特に従来の化学発泡剤を用いる方法(以下、単に化学
発泡法と略す)では不可能であった高発泡体を得るため
の発泡成形方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel manufacturing method for foaming polyolefin at a foaming ratio of 3 times or more using a chemical foaming agent. In particular, the present invention relates to a foam molding method for obtaining a highly foamed body, which has been impossible with conventional methods using chemical foaming agents (hereinafter simply referred to as chemical foaming method).

従来の化学発泡法によるポリオレフィン発泡体の製造方
法としては、まずポリオレフィン(例えばポリエチレン
)に化学発泡剤(例えばアゾ−ジ−カルボンアミド)を
混線機(例えば造粒用押出機)で均一に混練りし、ペレ
ット化された非発泡のベレットが製造される。次にこの
ベレットを発泡体製造装置(例えば押出機)で加熱し、
発泡剤を熱分解せしめた後、押出され、発泡体が得られ
る。
In the conventional method for producing polyolefin foam using the chemical foaming method, first, a chemical blowing agent (e.g., azo-dicarbonamide) is uniformly kneaded into polyolefin (e.g., polyethylene) using a mixer (e.g., an extruder for granulation). Then, pelletized non-foamed pellets are produced. Next, this pellet is heated with a foam manufacturing device (e.g. extruder),
After the blowing agent is thermally decomposed, it is extruded to obtain a foam.

ただし、この従来法では発泡倍率が2倍程度1でしか上
らず、6倍以上の良質な高発泡体を得ることはできなか
った。その理由は色々、考えられるが、おそらく最大の
理由は発泡用材料とその加工条件の選択が不適−であっ
たためと考えられる。例えば従来から市販されている発
泡用ポリオレフィンとしては、低密度ポリエチレンに化
学発泡剤を混練りしたものがあるが〔米国ユニオンカー
バイド社のDFD 4960(西品名)他〕、これらは
一般に低密度ポリエチレンと化学発泡剤を各1種類しか
用いていないために、低密度ポリエチレンの溶融粘度と
化学発泡剤の熱分解温度のバランスがとり難く、発泡倍
率が十分上らなかったものと考えられる。
However, with this conventional method, the foaming ratio increased only by about 2 times to 1, and it was not possible to obtain a high quality foamed product of 6 times or more. There are various possible reasons for this, but perhaps the biggest reason is that the foaming material and its processing conditions were inappropriately selected. For example, conventionally commercially available foaming polyolefins include those made by kneading low-density polyethylene with a chemical blowing agent [DFD 4960 (Western product name) manufactured by Union Carbide Co., Ltd., etc.]; It is thought that because only one type of each chemical blowing agent was used, it was difficult to balance the melt viscosity of the low density polyethylene and the thermal decomposition temperature of the chemical blowing agent, and the expansion ratio was not sufficiently increased.

まだ従来法では、発泡用材料としてポリオレフィン中に
発泡剤が均一に練り込まれたものが必要で、その練り込
み費用が近年の人件費の高騰に伴い、原料単価に匹敵す
るほどとなり、発泡用利料を自社で製造するにしろ、他
社より購入するにしろ、いずれにしても高くつくもので
あった。また種々の状況に合わせて発泡用材料の配合、
特に発泡剤量を変更したいことがしばしば生ずるが、こ
の場合、新たな配合で練り込みベレットを製造するのは
容易でなく、上記のように経費のかかることであった。
Conventional methods still require a foaming material in which a blowing agent is uniformly kneaded into polyolefin, and as labor costs have soared in recent years, the cost of mixing has become comparable to the unit cost of raw materials. Regardless of whether they produced their own products or purchased them from other companies, they were expensive. We also adjust the formulation of foaming materials to suit various situations.
In particular, it often happens that it is desired to change the amount of blowing agent, but in this case it is not easy to manufacture kneaded pellets with a new formulation, and as mentioned above, it is expensive.

一方、従来の化学発泡法では発泡倍率が6倍以上の発泡
体は得られないが、5倍以上の高発泡体を製造する方法
として、物理発泡剤を用いる方法(以下、物理発泡法と
略す)とポリオレフィンを架橋後、発泡せしめる方法(
以下、架橋発泡法と略す)が知ら扛ているが、各々、以
下の欠点を有する。
On the other hand, with the conventional chemical foaming method, it is not possible to obtain a foam with a foaming ratio of 6 times or more, but as a method to produce a highly foamed product with a foaming ratio of 5 times or more, there is a method using a physical foaming agent (hereinafter abbreviated as the physical foaming method). ) and polyolefin are crosslinked and then foamed (
Hereinafter, the cross-linking foaming method is well known, but each method has the following drawbacks.

物理発泡法では炭化水素やノ・ロゲン化炭化水素系の液
化ガスを発泡剤として用いるために、これらの引火、爆
発性に注意を要し、また人体への影響を考慮する必要が
ある。まだ発泡剤をポリオレフィンに混合するには特殊
な装置、例えば液体圧入ポンプシステムや液体圧入用押
出機が必要であり、一般の成形機では物理発泡法は採用
不可能である。
Since the physical foaming method uses liquefied gases such as hydrocarbons and halogenated hydrocarbons as blowing agents, it is necessary to be careful about their flammability and explosiveness, and also to consider their effects on the human body. Mixing the foaming agent with the polyolefin still requires special equipment, such as a liquid injection pump system or a liquid injection extruder, and the physical foaming method cannot be used with general molding machines.

架橋発泡法では発泡以前の問題としてポリオレフィンを
架橋するだめの手段が大変である。
In the crosslinking and foaming method, the problem before foaming is that it is difficult to crosslink the polyolefin.

例えば電子線照射や過酸化物触媒が必要であり、また架
橋度が変動すると発泡度がばらつくので発泡度の管理は
容易ではない。
For example, electron beam irradiation and a peroxide catalyst are required, and if the degree of crosslinking varies, the degree of foaming will vary, so controlling the degree of foaming is not easy.

以上の如く、従来の化学発泡法では発泡倍率が6倍以上
の良質な高発泡体を得ることはできず、高発泡体を得る
だめの方法として例えば物理発泡法や架橋発泡法がある
ものの、いずれも特殊な工程、設備を必要とすることか
ら、生産性やコスト面で問題がある。そこで従来の化学
発泡法を改善して容易に高発泡体を製造する技術の開発
が待望されていた。
As mentioned above, it is not possible to obtain a high-quality, high-quality foam with a foaming ratio of 6 times or more using conventional chemical foaming methods.Although there are alternative methods for obtaining high-quality foams, such as the physical foaming method and the crosslinking foaming method, Both methods require special processes and equipment, which poses problems in terms of productivity and cost. Therefore, there has been a long-awaited development of a technology that can easily produce highly foamed products by improving the conventional chemical foaming method.

本発明は従来の化学発泡法の問題点を改善することによ
って、従来法では製造し得なかった6倍発泡以上の高発
泡体を容易に製造する方法に関する。
The present invention relates to a method for easily producing a highly foamed product of 6 times or more foaming, which could not be produced using conventional methods, by improving the problems of conventional chemical foaming methods.

すなわち、ポリオレフィン、化学発泡剤および分散剤を
主体とする発泡用材料をタンブラ−や連続混合機等で予
備混合後、成形機へ供給し、成形機中で溶融、混合した
後、化学発泡剤の熱分解温度以上に昇温せしめ、次いで
降温せしめて成形機のダイスより押出すことを特徴とす
る、発泡用予備混合組成物より直接、発泡倍率6倍以上
の発泡体を製造する方法である。またそれにより実用可
能な良質の高発泡体を製造するための重要な製造条件を
開示したものでもある。
In other words, foaming materials mainly consisting of polyolefin, chemical blowing agents, and dispersants are premixed in a tumbler or continuous mixer, then fed to a molding machine, melted and mixed in the molding machine, and then mixed with chemical blowing agents. This is a method for producing a foam with an expansion ratio of 6 times or more directly from a premixed composition for foaming, which is characterized by raising the temperature to a temperature higher than the thermal decomposition temperature, then lowering the temperature, and extruding it from a die of a molding machine. It also discloses important manufacturing conditions for producing high-quality, high-quality foams that can be put to practical use.

特徴 本発明の第1の目的は、従来の化学発泡法では不可能で
あった6倍以上の高発泡体をいかにして容易に製造する
かという点にある。そのだめの本発明の特徴的な手段と
効果を以下に述べる。
Characteristics The first object of the present invention is to easily produce a foam with a foaming ratio of 6 times or more, which was impossible with conventional chemical foaming methods. To that end, the characteristic means and effects of the present invention will be described below.

(1)  本発明ではポリオレフィンベレット、化学発
泡剤およびポリオレフィン分散剤粉末を主体とする発泡
用材料を、予備混合した状態で直ちに発泡体製造用の成
形機へ供給する。
(1) In the present invention, a foaming material consisting mainly of polyolefin pellets, a chemical blowing agent, and a polyolefin dispersant powder is immediately supplied in a premixed state to a molding machine for producing a foam.

従来の化学発泡法においては、前記のように、発泡用利
料を予め混練機等で均一に混練しペレットを製造した後
、発泡体製造用成形機へ供給する方法が一般に行なわれ
ておシ、良質の発泡体を得るためには発泡剤をポリオレ
フィンに予め均一に練シ込み混合することが極めて重要
と考えられていた。
In the conventional chemical foaming method, as mentioned above, the foaming materials are generally kneaded in advance in a kneader or the like to produce pellets, and then fed to a molding machine for foam production. In order to obtain a high-quality foam, it was considered extremely important to uniformly knead and mix the blowing agent into the polyolefin in advance.

しかし本発明者等の検討結果では、3倍以上の高発泡体
を製造する場合には発泡用材料を均一に混合するよシも
予備混合程度にとどめておき、これを、直接、発泡用成
形機へ供給し、発泡せしめる方がよいという予想外の事
実が判明した。例えば、従来と同じく化学発泡剤を均一
に練り込んだ発泡用樹脂を押出量で押出しだ場合に比べ
て発泡度が著しく安定し、押出速度を変えても発泡状態
が変化せず、押出量も安定することが判った。との理由
としては、練シ込みの場合に比べて本発明の方法(予備
混合)の場合は押出機中でのシェアの影響を受は難いた
めとも考えられるが、いずれにせよ従来の常識からは全
く予想外の事実である。この結果高発泡体の製造が可能
となったばかシでなく、発泡用材料の製造法が簡略化さ
れ、生産性が飛躍的に向上し低コスト化できる。また材
料配合面では、発泡体の製品の仕上シ状態に応じてその
場にあった配合に容易に変更出来、不良対策等が早く行
なえる等の多くのメリットが生じる。
However, according to the study results of the present inventors, when producing a highly foamed product of 3 times or more, it is better to mix the foaming materials uniformly, but only at a premix level, and to directly mix the foaming materials into the foaming molding material. It was unexpectedly discovered that it is better to feed the foam to a machine and allow it to foam. For example, compared to the conventional method of extruding a foaming resin uniformly mixed with a chemical blowing agent at the extrusion rate, the degree of foaming is significantly more stable, the foaming state does not change even if the extrusion speed is changed, and the extrusion rate also increases. It was found to be stable. The reason for this may be that the method of the present invention (premixing) is less affected by shear in the extruder than in the case of kneading, but in any case, based on conventional common sense, is a completely unexpected fact. As a result, it is not only possible to produce a highly foamed body, but also the method for producing the foaming material is simplified, which dramatically improves productivity and reduces costs. In addition, in terms of material formulation, there are many advantages such as the ability to easily change the formulation to suit the situation depending on the finished state of the foam product, and the ability to quickly take measures against defects.

(2)  本発明で用いるポリオレフィンは少くとも融
点等の熱的特性が異質のものを併用すると良好な高発泡
体が得られる。例えば低密度ポリエチレン(LDPE 
) ト高密度ポリエチレン(HDPE。
(2) When polyolefins used in the present invention are used in combination with polyolefins having different thermal properties such as at least melting points, a good highly foamed product can be obtained. For example, low density polyethylene (LDPE)
) High-density polyethylene (HDPE).

密度095以上)を併用°すること、ポリエチレンにポ
リプロピレン(PPr )又はポリスチレンを併用・す
る等の手段が好ましい。
It is preferable to use polypropylene (PPr) or polystyrene in combination with polyethylene.

従来の市販品は例えばユニオンカーバイド社のDFD 
4960には、低密度ポリエチレン単品が用いられてお
シ、特に均一な気泡径の発泡体を得るためには単品のポ
リエチレンの方が好ましいものと考えられていた。
Conventional commercially available products include Union Carbide's DFD.
4960 uses a single piece of low-density polyethylene, and it was thought that a single piece of polyethylene was more preferable, especially in order to obtain a foam with a uniform cell diameter.

しかし本発明の如〈従来得られなかったような高発泡体
を製造する上では、むしろ異質のもの例えば融点、浴融
粘度、ダイスエル性等の異なるものの方が高発泡体をう
る上では好ましいという予想外の結果が得られた。
However, in order to produce a highly foamed product that could not be obtained conventionally, as in the present invention, it is preferable to use different materials, such as those with different melting points, bath melt viscosity, die swell properties, etc. The results were unexpected.

従来の発泡技術ではLDPKよりもHDPK。With conventional foaming technology, HDPK is preferred over LDPK.

PPrの方が高発泡化が回能であった。しかしこの高発
泡化がむずかしい樹脂をLDPKにブレンドすることに
より高発泡化を容易にならしめるととなどは全く予想し
得ぬものであった。
PPr had a higher foaming ability. However, it was completely unexpected that by blending this resin, which is difficult to achieve high foaming, with LDPK, high foaming could be easily achieved.

(3)  化学発泡剤は従来よシ市販のものが用いられ
るが、この場合も熱分解温度等の熱的特性が異なるもの
を併用すると最適の結果が得られる。
(3) Conventionally, commercially available chemical blowing agents have been used, but in this case as well, optimal results can be obtained by combining agents with different thermal properties such as thermal decomposition temperature.

例工Id 4.4’−オキシ−ビス−ベンゼン−スルホ
ニルヒドラジド(熱分解温度:約150℃)とアゾ−ジ
カルボンアミド(熱分解温度:約200℃)を併用した
り、熱分解反応が前記二重のように発熱型のものと、吸
熱型のもの(重炭酸ソーダ等)を併用する。
Example Id 4.4'-oxy-bis-benzene-sulfonyl hydrazide (thermal decomposition temperature: about 150°C) and azo-dicarbonamide (thermal decomposition temperature: about 200°C) are used together, or the thermal decomposition reaction is Use a combination of exothermic types such as heavy duty and endothermic types (such as bicarbonate of soda).

従来の市販品は一般に化学発泡剤の単品が用いられてお
り、一方今泡体のベースとなるポリオレフィンも単品が
用いられている。したがってポリオレフィンの融点と化
学発泡剤の熱分解温度の主に2点から、最適発泡成形条
件(温度)が限定されてしまうので、通常ごく狭い条件
範囲をとる必要が生じ、良質の高発泡体を製造すること
はできなかった。
Conventional commercially available products generally use a single chemical blowing agent, and now a single polyolefin, which is the base of the foam, is also used. Therefore, the optimal foam molding conditions (temperature) are limited mainly by two points: the melting point of the polyolefin and the thermal decomposition temperature of the chemical blowing agent, so it is usually necessary to take a very narrow range of conditions, and it is necessary to maintain a high quality foam. could not be manufactured.

他方、本発明では、化学発泡剤好ましくはポリオレフィ
ンも共に併用する関係上発泡条件範囲を広くとることが
出来、そゝの結果高発泡体を容易に製造することが可能
となる。
On the other hand, in the present invention, since a chemical blowing agent, preferably a polyolefin, is also used, the range of foaming conditions can be widened, and as a result, highly foamed products can be easily produced.

(4)  本発明では発泡用材料として発泡剤の分散剤
を用いることが不可欠であることが判明した。
(4) In the present invention, it has been found that it is essential to use a dispersant for a foaming agent as a foaming material.

これは3倍以上の発泡倍率の高発泡体を得るためには、
従来の化学発泡法の約2倍以上という多量の化学発泡剤
を用いる必要があるためである。特に本発明の如く、発
泡用材料の予備混合後、直接、発泡成形機へ供給する場
合には、化学発泡剤とポリオレフィンを極力分散むらの
ないように均一に予備混合する必要がある。また本発明
で用いるポリオレフィンはペレット状であり、化学発泡
剤は粉末状であるため、特にポリオレフィン100重量
部に対し2部以上配合する場合、両者を単にタンブラ−
等で予備混合しただけでは、混合後にペレットと粉末が
分離したり、混合物の流動性が低下して成形機のホッパ
一部でブリッジしたシする問題が生じ、実施が困難であ
ることが判明した。本発明ではこのポリオレフィンペレ
ットと発泡剤粉末との・りなぎの役目を為す分散剤を用
いることによって、予備混合後の分離やブリッジ現象の
ない高発泡用材料を得ることを可能としたものでsb、
長時間、安定した品質の高発泡体全製造する上で極めて
重要な手段゛である。分散剤としては、少くともポリオ
レフィンペレットよりも粒子径の細かい粉末が特に好ま
しく、ペレットと同種のポリオレフィンの粉末を用いる
のが特に好ましい。粉ネ以外に粘着剤等の湿式分散剤を
併用することも、特に化学発泡剤粉末を多量に用いる場
合にはよい結果をもたらす。好ましい粘着剤の例として
はポリイソブチレン、ポリエチレングリコール、シリコ
ンオイル等が挙けられる。
In order to obtain a high foam with a foaming ratio of 3 times or more,
This is because it is necessary to use a large amount of chemical foaming agent, about twice as much as in the conventional chemical foaming method. Particularly in the case of supplying the foaming material directly to the foam molding machine after premixing as in the present invention, it is necessary to premix the chemical foaming agent and polyolefin as uniformly as possible to prevent uneven distribution. Furthermore, since the polyolefin used in the present invention is in the form of pellets and the chemical blowing agent is in the form of powder, especially when blending 2 parts or more to 100 parts by weight of the polyolefin, both can be simply tumbled.
It was found that it was difficult to carry out the premixing process because the pellets and powder separated after mixing, the fluidity of the mixture decreased, and bridging occurred in a part of the hopper of the molding machine. . In the present invention, by using a dispersant that acts as a link between the polyolefin pellets and the blowing agent powder, it is possible to obtain a highly foamable material without separation or bridging phenomenon after premixing. ,
This is an extremely important means for producing high-quality foams with stable quality over a long period of time. As the dispersant, it is particularly preferable to use a powder whose particle size is at least smaller than that of the polyolefin pellets, and it is particularly preferable to use a powder of the same type of polyolefin as the pellets. In addition to powder, the use of a wet dispersant such as an adhesive can also bring about good results, especially when a large amount of chemical blowing agent powder is used. Examples of preferred adhesives include polyisobutylene, polyethylene glycol, silicone oil, and the like.

これらの配合割合については、化学発泡剤粉末と分散剤
としてのポリオレフィンの粉末を両者総量で1.1〜1
00重量%配合し、かつ化学発泡剤粉末は1.0重量%
以上で、この発泡剤粉末1重量部に対し粉末ポリオレフ
ィンを0.1重量部以上、好ましくは05〜10重量部
の範囲で配合することが好ましい。
Regarding these blending ratios, the total amount of chemical blowing agent powder and polyolefin powder as a dispersant is 1.1 to 1.
00% by weight, and chemical blowing agent powder is 1.0% by weight.
As mentioned above, it is preferable to mix powdered polyolefin in an amount of 0.1 part by weight or more, preferably in the range of 0.5 to 10 parts by weight, per 1 part by weight of the blowing agent powder.

化学発泡剤は前記の如く熱分解点の異なるものを併用す
るのが好ましいが、この場合、低温分解性発泡剤を1.
0電量チ以上配合し、そして上記低温分解性発泡剤1重
量部に対し高温分解性発泡剤を0.05〜1重量部を配
合することが特に好ましい。
As mentioned above, it is preferable to use chemical blowing agents with different thermal decomposition points in combination;
It is particularly preferable that the high temperature decomposable foaming agent is used in an amount of 0.05 to 1 part by weight per 1 part by weight of the low temperature decomposable foaming agent.

(5)  本発明の発泡用材料の予備混合法としては、
バッチ式(タンブラ−等)でも連続式(静的混合機等)
でもよいが、通常は湿式よりも乾式混合法(通称トライ
ブレンド法)が特に好ましい。
(5) As a premixing method for the foaming material of the present invention,
Batch type (tumbler, etc.) or continuous type (static mixer, etc.)
However, a dry mixing method (commonly known as a tri-blend method) is usually particularly preferable than a wet method.

従来の化学発泡法で低発泡体をうるには、ポリオレフィ
ンに化学発泡剤を均一に練りこみ分散せしめたコンパウ
ンドを一旦製造したのち、発泡成形機へ供給し発泡体を
うろことが高品質の発泡体を     °−うる上 で重要とされていた。しかし本発明の如く3倍以上の高
発泡体を製造する上ではむしろ逆で、練りこみ式にする
よりもむしろトライブレンドの方が好ましいという予想
外の結果が得られた。
In order to obtain a low-foam product using the conventional chemical foaming method, a chemical blowing agent is uniformly kneaded and dispersed into polyolefin to produce a compound, which is then fed to a foam molding machine and allowed to flow through the foam to produce high-quality foam. It was thought to be important in keeping the body warm. However, in producing a highly foamed product of 3 times or more as in the present invention, the unexpected result was obtained that the triblend method is preferable to the kneading method.

練りこみ式にする場合では少くともマスターノ(ツチ程
度までにすべきである。
If you are going to use the kneading method, it should be at least up to the level of masterno (tsuchi).

したがって本発明によれば、発泡用材料を極めて短時間
で費用をかけずに製造することができ、生産性とコスト
面から極めて有利となる。
Therefore, according to the present invention, a foaming material can be produced in a very short time and at low cost, which is extremely advantageous in terms of productivity and cost.

また発泡成形機の性能上カバーしきれない面を発泡用材
料の配合面を検討することにより、各成形機に最適の配
合となシ成形機個有の欠点をカバーすることも極めて容
易と々る。もちろん高発泡体をうる上で最も重要な発泡
剤量が、従来のねりこみ式の時のような練9こみ工程を
経ることにより部分的に分解したり揮散することによる
消費がなく、従って製造ロットによるバラツキがなく、
かつ高価な発泡剤が100%有効に用いられることも本
発明の大きな利点である。
In addition, by considering the formulation of foaming materials that cannot be covered due to the performance of the foam molding machine, it is extremely easy to find the optimal formulation for each molding machine and to cover up the unique shortcomings of each molding machine. Ru. Of course, the most important amount of foaming agent in obtaining a highly foamed product is not consumed due to partial decomposition or volatilization during the kneading process, which is the case with conventional kneading methods. There is no variation between lots,
Another great advantage of the present invention is that an expensive blowing agent can be used 100% effectively.

(6)本発明の発泡用材料を成形機へ供給する場合は特
に発泡剤の分散むらに注意が必要で、そのためには各発
泡用材料会連続的に定量供給し、連続混合機を通して発
泡成形機のホッパーへ供給するのが最も好ましい。その
理由は本発明ではトライブレンド状の発泡用材料を用い
るため、従来の練り込みベレットを用いるときのような
取扱いは好ましく、なく、例えばバッチ式予備混合後、
ホッパーへ空送供給する等の手段では発泡用材料が分離
する問題が生ずることが判明した。従、って本発明の発
泡用材料を成形機へ供給するには連続混合機を通して行
なうのが最良であるが、次善の手段としてタンブラ−等
によりバッチ式で混合したものをバッチ式で発泡成形機
へ供給することも可能である。いずれにせよ予備混合し
た発泡用材料が組成変化(ムラ)をおこさぬように発泡
成形機へ供給することが高発泡体を製造する上で極めて
重要である。但し特に空送が必要で混合物の分離が心配
される場合には、分散剤として粘着剤等を併用すること
は非常に好ましい。
(6) When supplying the foaming material of the present invention to a molding machine, particular care must be taken to prevent uneven distribution of the foaming agent. For this purpose, each foaming material must be continuously fed in a fixed amount and passed through a continuous mixer to form the foam. Most preferably, it is fed into the machine's hopper. The reason for this is that since the present invention uses a tri-blend foaming material, it is not preferable to handle it like when using a conventional kneading pellet, and for example, after batch-type premixing,
It has been found that methods such as air feeding into a hopper cause the problem of separation of the foaming material. Therefore, it is best to feed the foaming material of the present invention to a molding machine through a continuous mixer, but as a second best method, it is possible to mix the material in a batch manner using a tumbler or the like and then foam it in a batch manner. It is also possible to supply it to a molding machine. In any case, in producing a highly foamed product, it is extremely important to feed the premixed foaming material to the foam molding machine without causing compositional changes (unevenness). However, especially when air transport is required and separation of the mixture is a concern, it is highly preferable to use an adhesive or the like as a dispersant.

(力 本発明で発泡用材料から高発泡体を製造するため
に必要な発泡成形機の条件としては、まず押出口の開孔
面積を極力小さくして少くとも押出口を出る前の発泡を
防ぎ、大きなダイスウェル(Die Swell )を
生じる条件下で押出すことが一般に重要である。具体的
には、発泡用材料よシ発泡剤を除いた組成物を押出した
場合、吐出口(ダイス)の口径よりも押出物の径が大き
くなるような押出条件を設定し、発泡用材料を含む本発
明組成物をこれと同一条件で押出すことが好ましい。
(Force) In order to produce a highly foamed product from a foaming material in the present invention, the conditions for a foam molding machine are as follows: First, the opening area of the extrusion port is made as small as possible to prevent foaming at least before exiting the extrusion port. It is generally important to extrude under conditions that produce a large die swell.Specifically, when extruding a composition that does not contain a foaming material or foaming agent, it is important to extrude under conditions that produce a large die swell. It is preferable to set extrusion conditions such that the diameter of the extrudate is larger than the diameter of the extrudate, and extrude the composition of the present invention containing the foaming material under the same conditions.

(8)  高発泡体を得る上で発泡成形条件に不可欠の
要件としては発泡時に生ずるガスをいかに有効に利用す
るかということである。本発明では発泡剤ガスが発泡時
に発泡体表面より揮散するのを防止するだめに少くとも
発泡時に表面を成形することを一つの要件とする。例え
ば押出口の近くに設けた円筒状の成形ダイスの中で連続
的に発泡させながら成形を行うものである。
(8) In order to obtain a highly foamed product, an essential requirement for foam molding conditions is how effectively the gas generated during foaming can be used. In order to prevent the blowing agent gas from evaporating from the foam surface during foaming, one requirement of the present invention is to mold the surface at least during foaming. For example, molding is performed while continuously foaming in a cylindrical molding die provided near the extrusion port.

従来の化学発泡法では発泡剤の使用量が少いこともあっ
て、発泡時のガスの発生量が少なく、ポリオレフィンの
粘度も高く、したがって発泡剤ガスが効率よく発泡に寄
与するために、特別の脱ガス防止手段など全く必要とし
なかった。
In the conventional chemical foaming method, the amount of blowing agent used is small, so the amount of gas generated during foaming is small, and the viscosity of polyolefin is also high. Therefore, the blowing agent gas efficiently contributes to foaming, so special There was no need for any means to prevent degassing.

しかしながら、本発明では従来の倍相当量以上の発泡剤
を用いる必要上、発泡剤自身によるポリオレフィンの粘
度低下効果の他に、発泡剤の熱分解により生じた熱によ
るポリオレフィンの粘度低下が著しい。このため発生し
た発泡剤ガスはポリオレフィンを発泡させるものの、そ
の後ポリオレフィンの膜を通って大気中へ飛散し、発泡
体はしほんで結局低発泡体となってしまう。
However, in the present invention, since it is necessary to use a blowing agent in an amount more than double that of the conventional blowing agent, in addition to the effect of reducing the viscosity of the polyolefin due to the blowing agent itself, the viscosity of the polyolefin is significantly reduced due to the heat generated by thermal decomposition of the blowing agent. Although the generated blowing agent gas foams the polyolefin, it then passes through the polyolefin membrane and scatters into the atmosphere, causing the foam to shrivel and eventually become a low-foam product.

これを防止するには、発泡剤ガスのポリオレフィンから
の飛散通路を断つことが最も有効と考え、本発明では飛
散通路(面)の大半をなす発泡体表面側を成形ダイスに
よっておさえこもうとするものである。従って発泡体が
未だ内部に発泡用ガスを含み、発泡力を内蔵する間に成
形ダイスを通すことが高発泡体を製造する上で好ましい
要件となる。
In order to prevent this, it is believed that the most effective way is to cut off the scattering path of the blowing agent gas from the polyolefin, and in the present invention, the surface side of the foam, which makes up the majority of the scattering path (surface), is suppressed by a molding die. It is something. Therefore, in producing a highly foamed product, it is desirable to pass the foam through a molding die while the foam still contains foaming gas and has built-in foaming power.

本発明では6倍発泡以上、特に4倍発泡以上の高発泡体
を得る上で成形ダイスの使用は不可欠ともいうべき著効
を奏することが判明した。
In the present invention, it has been found that the use of a molding die is indispensable and extremely effective in obtaining a highly foamed product of 6 times or more foaming, especially 4 times or more foaming.

従来の架橋発泡法、物理発泡等の高発泡体の製造法では
成形ダイスを全く必要としないのに対し、一つの大きな
特徴である。
One major feature is that conventional methods for producing highly foamed materials such as cross-linking foaming and physical foaming do not require molding dies at all.

成形ダイスとしては単に円筒状のパイプ(少くとも発泡
体の最大発泡外径よυも内径の小さいパイプ)を用いる
のが最も簡便である。しかし発泡体の最大発泡外径は常
に一定ではなく、例えば成形機の作業開始時や終了時、
または作業中止時は著しく変化する。したがってこの変
化に追従し得るような内径可変型の成形ダイスが最も好
ましい。本発明では巻紙型で伸縮自在のザイジングダイ
を用いて、発泡体の表面に常に一定の抵抗を与えるよう
にして成形することを一つの好ましい条件としている。
It is easiest to simply use a cylindrical pipe (a pipe whose inner diameter is at least υ smaller than the maximum foamed outer diameter of the foam) as the molding die. However, the maximum foamed outer diameter of the foam is not always constant; for example, when the molding machine starts or finishes working,
Or it changes significantly when work is stopped. Therefore, a molding die with a variable inner diameter that can follow this change is most preferable. In the present invention, one preferable condition is to use a paper wrapper-type expandable sizing die to mold the foam so that a constant resistance is always applied to the surface of the foam.

(9)  高発泡化する上での発泡成形機の温度条件の
設定も極めて重要である。すなわち本発明は化学発泡法
であるから、発泡剤の熱分解温度以上に加熱することは
当然であるが、その熱分解せしめた温度のま′ま押出し
だのでは高発泡体が得られない。というのは高温のため
に発生したガスが発泡体中より飛散してし壕い、その後
にはしぼんだ気泡の低発泡体が残るという結果となる。
(9) Setting the temperature conditions of the foam molding machine is also extremely important in achieving high foaming. That is, since the present invention is a chemical foaming method, it is natural to heat the blowing agent to a temperature higher than the thermal decomposition temperature, but if extrusion is continued at the temperature at which the blowing agent is thermally decomposed, a highly foamed product cannot be obtained. This is because the gas generated due to the high temperature is dispersed from within the foam, leaving behind a low foamed material with deflated cells.

本発明では熱分解せしめた後、一旦そ扛よりも低温度に
冷却した後ダイスよシ押出すこiによυ高発泡体を得る
ことを一つの要件とするものであり、その目的は発泡剤
ガスの飛散を防ぎ、気泡の崩壊による発泡後の収縮を防
ぐことにある。押出前に冷却する温度としては操業条件
にもよるが、一般の押出機で押出す場合、5℃以上、好
ましくは60〜50℃冷却するとよいことが判明した。
One of the requirements of the present invention is to obtain a high-υ foam by extruding it through a die after being thermally decomposed, once cooled to a temperature lower than that of the blowing process, and the purpose of this is to obtain a high-υ foam by extruding it through a die. The purpose is to prevent gas from scattering and to prevent shrinkage after foaming due to the collapse of bubbles. Although the cooling temperature before extrusion depends on the operating conditions, it has been found that when extruding with a general extruder, cooling is preferably 5° C. or higher, preferably 60 to 50° C.

QO)  発泡剤ガスの有効利用という観点から、発泡
利料がダイスから押出され発泡する前に、発泡用拐料の
表面まだは内面、好ましくは表面と内面に、少くとも発
泡体よりもガスバリア性の被覆を施すことが好ましい。
QO) From the viewpoint of effective use of the blowing agent gas, before the foaming agent is extruded from the die and foamed, the surface or inner surface of the foaming agent, preferably the surface and the inner surface, must have at least a gas barrier property better than that of the foam. It is preferable to apply a coating of.

これによって発泡体中のガスは殆んどポリオレフィンの
発泡に利用されることになる。これらのガスバリア性の
被覆を行う好ましい方法の一つは、発泡用材料の押出口
に連結した別の押出機の押出口より非発泡のポリオレフ
ィンを押出すことである。また本発泡体を金属元締やプ
ラスチックパイプ等の上へ押出被僅する場合には、発泡
前または発泡中はこれらの石材と発泡層とを十分密着せ
しめ、両者の界面に脱ガスの通路を生じさせぬことが極
めて重要である。そのだめには、予め芯材上に発泡層と
の接着層を設けることが有効である。壕だ発泡剤押出機
よシ接着層となる材料と発泡材層とを同時に押出すこと
も好ましい。
As a result, most of the gas in the foam is used for foaming the polyolefin. One preferred method for producing these gas barrier coatings is to extrude the unfoamed polyolefin through the outlet of a separate extruder connected to the outlet for the foaming material. In addition, when extruding this foam onto a metal base, plastic pipe, etc., the stone and foam layer should be brought into close contact with each other before or during foaming to create a path for degassing at the interface between the two. It is extremely important not to let this happen. To prevent this, it is effective to provide an adhesive layer with the foam layer on the core material in advance. It is also preferred to simultaneously extrude the material that will become the adhesive layer and the foam layer using a trench foam extruder.

更に特殊な例としては、芯材が発泡層と類似材料からな
る場合には、芯材と発泡層とを同時に同一押出口より押
出すことも可能となる。もちろん前記の如く、発泡層の
表面にも脱ガス防止層を同時に設けることは好ましい。
As a more special example, if the core material is made of a similar material to the foam layer, it is possible to extrude the core material and the foam layer simultaneously from the same extrusion port. Of course, as mentioned above, it is preferable to simultaneously provide a degassing prevention layer on the surface of the foam layer.

θυ 高発泡体を得る上で最後に重要な問題は、高発泡
化したあとの冷却等による体積収縮をいかに防ぐかにあ
る。本発明では発泡倍率が6倍以上であるから発泡体中
の気体の体積分率は約70チ以上である。換言すれば発
泡体の中ではわずか30チ以下のポリオレフィンが気体
の中に浮んでいる状態である。従来の2倍発泡以下の低
発泡体の場合は気体は50%以1であり、ポリオレフィ
ンが気体を包んでいる状態であるから主体が全く逆転す
る。したがって本発明では、発泡後の冷却により発泡体
の中の気体の体積減少による内径降下(減圧化)による
ポリオレフィンの収縮は大きいものである。
θυ The final important issue in obtaining a highly foamed product is how to prevent volumetric shrinkage due to cooling, etc. after the foam has been made highly foamed. In the present invention, since the expansion ratio is 6 times or more, the volume fraction of gas in the foam is about 70 times or more. In other words, within the foam, only 30 inches or less of polyolefin is floating in the gas. In the case of a conventional low-foamed material with double foaming or less, the gas content is 50% or more, and since the polyolefin is in a state of enveloping the gas, the main character is completely reversed. Therefore, in the present invention, the shrinkage of the polyolefin due to the decrease in inner diameter (reduced pressure) caused by the volume reduction of gas in the foam due to cooling after foaming is large.

本発明では最大発泡度に到達するまでの時点で、表面層
のみを急激に冷却固化することを一つの好ましい条件と
する。これにより未固化部分である内層の発泡(気泡)
層は以後の冷却による体積収縮が防止されることとなる
。この表面層の急激な冷却の手段としては、前記の成形
ダイスを用いる方法が有利であり、ポリオレフィンの軟
化または融点以下の温度に保持された成形ダイスで表面
を冷却することが好ましい。
In the present invention, one preferable condition is to rapidly cool and solidify only the surface layer until the maximum foaming degree is reached. This causes foaming (bubbles) in the inner layer, which is the unsolidified part.
The layer is prevented from shrinking in volume due to subsequent cooling. As a means for rapid cooling of the surface layer, it is advantageous to use the above-mentioned molding die, and it is preferable to cool the surface with a molding die maintained at a temperature below the softening or melting point of the polyolefin.

他の表面冷却法としては、少くとも最大発泡に達するま
での間に発泡体の表面を水等の冷媒で冷却することであ
る。
Another surface cooling method is to cool the surface of the foam with a coolant, such as water, at least until maximum foaming is reached.

上記の表面冷却法とは多少、趣を異にするが、発泡体の
収縮防止法として、発泡体の表面に発泡層よりも体積収
縮しにくい材質を被覆することも好ましい。例えば非発
泡のポリオレフィンを発泡層の表面上に密着して被覆し
た後、該ポリオレフインを急冷する方法である。非発泡
ポリオレフィンの方が高発泡層よりも早く冷却すること
が可能であり、また冷却によって固い表皮層が早く形成
されるので、以後内層の発泡層(気泡)が冷却したとし
ても表皮層によって体積収縮を防止できる。もちろん表
皮層の目的によっては発泡層と異なるポリオレフィンま
たは低発泡ポリオレフィン材料を用いることも可能であ
る。
Although the method is somewhat different from the surface cooling method described above, as a method of preventing shrinkage of the foam, it is also preferable to coat the surface of the foam with a material that is less likely to shrink in volume than the foam layer. For example, there is a method in which a non-foamed polyolefin is tightly coated on the surface of a foamed layer and then the polyolefin is rapidly cooled. Non-foamed polyolefin can be cooled faster than a highly foamed layer, and a hard skin layer is formed quickly by cooling, so even if the inner foam layer (bubbles) cools, the skin layer will reduce the volume. Can prevent shrinkage. Of course, depending on the purpose of the skin layer, it is also possible to use a polyolefin or low foam polyolefin material different from that of the foam layer.

6.26 高発泡体の外形安定化のだめの手段と特徴 本発明の第2の目的は高発泡体の外形状をいかに安定化
せしめるかにある。前記の種々の手段によって化学発泡
法によっても6倍以上の発泡倍率の高発泡体が容易に得
られることは判明した。しかしながら高発泡体ではある
ものの、その形状、特に外形寸法は極めて不安定であり
、外径寸法、を安定化させようと□す゛ると結局従来の
2倍発泡程度の倍率に抑えなけ扛ばならず、4倍発泡以
上では一般に実用に供し得ぬものしか得られないことが
判明した。したがって本発明を実施する上で、この外形
状の安定化が大きな課題となる。以下にこの手段と特徴
を列記する。
6.26 Means and Features for Stabilizing the External Shape of a Highly Foamed Body The second object of the present invention is how to stabilize the external shape of a highly foamed body. It has been found that a highly foamed product with a foaming ratio of 6 times or more can be easily obtained by chemical foaming using the various means described above. However, although it is a highly foamed material, its shape, especially its external dimensions, is extremely unstable, and if you try to stabilize the external diameter, you will end up having to keep the foaming ratio to about twice that of conventional foaming. It has been found that foaming of 4 times or more generally results in products that cannot be put to practical use. Therefore, in carrying out the present invention, stabilization of this external shape becomes a major issue. The means and features are listed below.

(1)  成形ダイスの利用 前項では発泡倍率を上げるだめの手段としての成形ダイ
スの使用法について述べだが、発泡体の外形安定化のだ
めにも極めて有効である。
(1) Use of molding dies In the previous section, we described the use of molding dies as a means of increasing the expansion ratio, but they are also extremely effective in stabilizing the external shape of foams.

すなわち発泡時に成形ダイス中に通して発泡せしめるこ
とにより、発泡層の各表面層の発泡速度の不均一さが解
消され、成形ダイスの内径に沿った発泡体が得られる。
That is, by passing the foam through a molding die during foaming, non-uniformity in the foaming speed of each surface layer of the foamed layer can be eliminated, and a foamed product that conforms to the inner diameter of the molding die can be obtained.

そこで成形ダイスは発泡体の仕上り外形状と相似した内
形状のものを用いて、その中で発泡体の発泡と成形を同
時に行うことが可能となる。
Therefore, by using a molding die with an inner shape similar to the finished outer shape of the foam, it becomes possible to perform foaming and molding of the foam at the same time.

従来の化学発泡法においてはこの種の成形ダイスは用い
られない。その理由は約2倍発泡以下の低発泡であるた
、めに発泡による外形状の悪化は起らないためである。
This type of molding die is not used in conventional chemical foaming methods. The reason for this is that the foaming is low, about twice the foaming or less, so that the external shape does not deteriorate due to foaming.

また2倍程度の低元    ′泡体では発泡時は相当硬
いために奴形ダイスで成形するのが容易でないことも理
由の一つである。
Another reason is that a low-density foam of about twice the original size is quite hard when foamed, so it is not easy to mold it with a cross-shaped die.

他方、本発明では発泡倍率が6倍以上と高く、前記のよ
うに気体中にポリオレフィンが浮んでいる状態であシ、
極めて弾力性に富む。よってこれを成形ダイスに通して
成形することは極めて容易である。ただし外形の安定化
という面で成形ダイスの使用を考えるとき、前記の発泡
倍率の上昇のだめのそれとはまた異なった最適の使用法
が考えられる。
On the other hand, in the present invention, the expansion ratio is as high as 6 times or more, and the polyolefin is suspended in the gas as described above.
Extremely resilient. Therefore, it is extremely easy to mold this by passing it through a molding die. However, when considering the use of molding dies from the perspective of stabilizing the external shape, an optimal usage method that is different from that for increasing the expansion ratio mentioned above can be considered.

まず成形だけが目的であれば、発泡体が発泡状態下であ
る間に成形ダイスに通すことは必ずしも必要ではない。
First, if molding is the sole purpose, it is not necessarily necessary to pass the foam through a molding die while it is in the foamed state.

すなわち発泡体の表面が成形ダイスによって成形され得
るような条件下であればいつでも成形することができる
。極端な例でいえば発泡層が冷却固化した後で発泡層の
表面のみを加熱軟化せしめ、次いで成形ダイスに通して
成形することが可能である。反対に成形ダイス自身を発
泡層の熱軟化点以上の温度に加熱しておき、その中に発
泡体を通過せしめて成形することも可能である。
That is, it can be molded at any time under conditions such that the surface of the foam can be molded by a molding die. In an extreme example, after the foam layer is cooled and solidified, only the surface of the foam layer is heated and softened, and then the foam layer is passed through a molding die to be molded. On the other hand, it is also possible to heat the molding die itself to a temperature higher than the thermal softening point of the foam layer, and to mold the foam by passing the foam through the molding die.

このように成形する時点はこの場合は任意に選択するこ
とが可能である。しかし常に重要な点は、成形ダイスで
成形された形tその後も保持させるということであり、
そのための最良の手段は成形直後の発泡体の表面を極力
早く冷却固化せしめるか、または成形ダイス自体を発泡
ポリオレフィンの軟化点以下の温度に保持せしめた後、
そのダイス中で発泡せしめ表面を冷却固化することが極
めて重要である。
In this case, the time point at which the molding is performed can be arbitrarily selected. However, the important point is always to maintain the shape formed by the forming die.
The best means for this is to cool and solidify the surface of the foam immediately after molding as quickly as possible, or to maintain the molding die itself at a temperature below the softening point of the foamed polyolefin.
It is extremely important to foam in the die and to cool and solidify the surface.

また長時間安定した成形を行う上では更に成形ダイスの
工夫が要る。特に成形ダイスをある特定の位置に固定し
て用いる場合、発泡成形機より押出される発泡体の発泡
状態が静時変化して最大発泡位置が変動する。その結果
、成形ダイスでの成形さ扛る程度が変シ、成形品の形状
も変動する。もし成形ダイスで過度に成形されると成形
が不可能になり発泡体が成形ダイス中で破断する。破断
しないときは外観(表面)上は極めてきれいに成形され
ていても、その内層部の発泡状態をみると気泡が破壊さ
れ連続化していることが判る。これは成形ダイスで過度
に成形される際の摩擦抵抗によって引き起こされた欠点
である。逆に成形ダイスでの成形が不足な場合は成形ダ
イスを用いない場合に近づき、(社)形状が凹凸で経時
変化し易いものしか得られないことになる。
Furthermore, in order to perform stable molding over a long period of time, it is necessary to further devise a molding die. In particular, when a molding die is used while being fixed at a specific position, the foaming state of the foam extruded from the foam molding machine changes over time, and the maximum foaming position fluctuates. As a result, the degree of molding by the molding die changes, and the shape of the molded product also changes. If the molding die is overmolded, molding becomes impossible and the foam breaks in the molding die. When the molding does not break, even though the molding looks very clean on the outside (surface), when you look at the foaming state of the inner layer, you can see that the bubbles have been broken and become continuous. This is a drawback caused by frictional resistance during excessive shaping with the shaping die. On the other hand, if the molding die is insufficient, it will be similar to not using the molding die, and the result will be a product with an uneven shape that easily changes over time.

上記の成形状態の変動を防止するだめの最良の方法とし
ては成形ダイスを任意の位置に移動できるような機構と
し、一方、発泡状態の変動を非接触外径測定器等で検知
し、常に最適の位置へ成形ダイスを移動することである
。成形ダイスの内面に感圧または摩擦抵抗検出素子のご
とき検知器を取り付けることにより常に成形程度を検知
し、最適の成形が得られる位置へ成形ダイスを移動する
機構を設けることも極めて好ましい。
The best way to prevent the above fluctuations in the molding state is to create a mechanism that allows the molding die to be moved to any position, while at the same time detecting fluctuations in the foaming state using a non-contact outer diameter measuring device, etc. to ensure that the molding state is always optimal. The process is to move the molding die to the position. It is also highly preferable to provide a mechanism for constantly detecting the degree of molding by attaching a detector such as a pressure sensitive or frictional resistance sensing element to the inner surface of the molding die and moving the molding die to a position where optimum molding can be obtained.

更に成形ダイスの使用効果を上げるためには種k。工夫
ヵ、考えらゎお。先あ過度にヮ形さゎた場合の発泡体内
部の連続気泡化を赴けるためには成形ダイスでの摩擦抵
抗を減じてや扛はよい。そのために成形ダイスの内面を
滑性の大きい材質にするとか、滑剤を塗布する等の手段
が有効である。また地形ダイスを超音波振動等の手段に
よって滑性を与えることは極めて有効である。特に本発
明は化学発泡法をベースとするものであり、物理発泡法
の如き液体発泡剤を用いないので成形ダイスでの摩擦抵
抗が物理発泡法に比べて大きくなるので、摩擦抵抗の軽
減手段は時として本発明の適合可否を決する主要因とな
ることもある。
In order to further increase the effectiveness of the use of molding dies, type K. I can't think of any ingenuity. In order to make the inside of the foam open-celled when it has been over-shaped first, it is better to reduce the frictional resistance in the forming die. To this end, it is effective to make the inner surface of the molding die a highly slippery material or apply a lubricant. Furthermore, it is extremely effective to impart lubricity to the terrain die by means such as ultrasonic vibration. In particular, the present invention is based on a chemical foaming method and does not use a liquid foaming agent as in the physical foaming method, so the frictional resistance at the molding die is greater than that in the physical foaming method. This may sometimes be the main factor determining whether or not the present invention is compatible.

なお外径の安定化のだめには先の発泡倍率の上昇の項で
述べた如く、成形ダイスの径も仕上り径の変動に応じて
変更できるようにすることも極めて重要である。特に成
形ダイスの位置の変更だけでは仕上り品の寸法変動をカ
バーしきれぬ場合には成形ダイスの内径(形)から変え
る必要がある。
In order to stabilize the outer diameter, it is also extremely important to be able to change the diameter of the molding die in accordance with fluctuations in the finished diameter, as described above in the section on increasing the expansion ratio. In particular, if changing the position of the forming die alone cannot cover the dimensional variation of the finished product, it is necessary to change the inner diameter (shape) of the forming die.

(2)  ポリオレフィンの選択 前記成形ダイスによる外形安定化の手段は、外形変動原
因の如伺を問わず対策手段として極めてすぐれた効果を
有することが分った。しかし根本的には外形変動発生原
因をなくす必要がある。その観、点から発泡用材料を見
ると次のような手段が有効である。
(2) Selection of polyolefin It has been found that the method of stabilizing the external shape using the molding die is extremely effective as a countermeasure regardless of the cause of the external change. However, fundamentally, it is necessary to eliminate the cause of external shape variation. When looking at foaming materials from this point of view, the following measures are effective.

まずポリオレフィンとしては発泡倍率上昇手段として述
べた如く熱的な特性の異なるものを併用することがこの
場合も有効である。即ち、単一ポリオレフィンを用いる
よりも異種のものを併用すると発泡温度範囲が広くとれ
る。例えば低密度ポリエチレンを単独で用いるよりも、
これに高密度ポリエチレンを併用した方が、発泡倍率3
倍以上を得るだめの温度範囲は2倍以上広くとれる。こ
のような温度範囲の中から発泡体の外形が最もすぐれた
温度条件で押出すことが可能となる。特に高発泡体の外
形変形要因の中では発泡時にポリオレフィンの粘度が低
いので、外形を保持しえすたれおちてしまうことがしば
しばみられる。特に大径、厚肉の高発泡製品を製造する
場合にこの傾向が強い。このような場合には、ポリオレ
フィンとして低融点のものと高融点のものを併用したり
、場合によっては低粘度のものと高粘度のものを併用し
、前者は高発泡のだめに、後者はその形状保持のだめに
と目的を分担することにより外形の歪みの少い高発泡製
品を得ることができる。例えは、低密度ポリエチレンに
高密度ポリエチレンを約40%以上併用することにより
形くずれが彦く、かつ機械的強度も飛躍的に改善された
高発泡体が得られる。
First, as a means for increasing the expansion ratio, it is effective to use polyolefins having different thermal characteristics in combination in this case as well. That is, when different types of polyolefins are used together, the foaming temperature range can be wider than when a single polyolefin is used. For example, rather than using low density polyethylene alone,
It is better to use high-density polyethylene together with this, the foaming ratio is 3.
The temperature range for obtaining more than double the amount can be more than twice as wide. Within this temperature range, it is possible to extrude the foam under temperature conditions that provide the best external shape. In particular, among the factors that cause the external shape of highly foamed products to change, the viscosity of polyolefin is low during foaming, so it is often seen that the external shape is maintained and the product slumps. This tendency is particularly strong when manufacturing large-diameter, thick-walled, highly foamed products. In such cases, polyolefins with a low melting point and polyolefin with a high melting point are used together, or in some cases, polyolefins with a low viscosity and a high viscosity are used together. By sharing the purpose with the holding tank, a highly foamed product with less distortion in external shape can be obtained. For example, by using about 40% or more of high-density polyethylene in combination with low-density polyethylene, a highly foamed product that retains its shape easily and has dramatically improved mechanical strength can be obtained.

(3)  分散剤と配合方法 発泡体の外形安定化にはポリオレフィン、発泡剤、分散
剤を予備混合して発泡成形機へ供給することは従来の発
泡剤練り込み材料を用いる場合に比べて予想外の効果を
有する。その理由は、この方法によれば発泡成形機の操
作条件が変った場合でも安定した発泡体が得られるため
であり、例えば押出機のスクリュー回転数を変えても発
泡倍率や気泡径の変化が殆んどない。
(3) Dispersant and blending method To stabilize the external shape of the foam, it is expected that polyolefin, blowing agent, and dispersant should be premixed and fed to the foam molding machine compared to the case of using conventional blowing agent-mixed materials. It has an outside effect. The reason for this is that with this method, a stable foam can be obtained even if the operating conditions of the foam molding machine change; for example, even if the screw rotation speed of the extruder is changed, the expansion ratio and cell diameter will not change. There aren't many.

従って発泡成形を開始時や終了時、又は中断時等の非定
常作業時にも外形の安定した発泡体が容易に得られる利
点がある。
Therefore, there is an advantage that a foam with a stable outer shape can be easily obtained even during irregular operations such as when foam molding is started, finished, or interrupted.

(4)  発泡成形機への供給法 外形の安定化のためには発泡用材料の配合が変動しては
ならぬことは当然といえる。特に本発明では完全な練り
込みペレットを用いないで、予備混合物を直接成形機へ
供給するものであるから、特に各配合剤の変動には注意
が必要である。発泡剤のポリオレフィンとの分離を防止
するためには本発明では粉末ポリオレフィンの如き分散
剤を使用しているが、この予備混合物を空送等の手段で
成形機へ供給するには不安がある。そこで最も確実な方
法は成形機のホツノ<一部分で予備混合を行うことであ
り、特に定量的に各配合剤を計量供給し、連続的に予備
混合しながら直接成形機へ供給するのが最も安全であり
、かつ専用機で量産するには特に適している。
(4) Feeding method to the foam molding machine It goes without saying that the composition of the foaming material must not fluctuate in order to stabilize the external shape. In particular, in the present invention, a premix is directly supplied to the molding machine without using completely kneaded pellets, so special attention must be paid to variations in each compounding agent. In order to prevent the foaming agent from separating from the polyolefin, a dispersant such as powdered polyolefin is used in the present invention, but there are concerns about feeding this premix to a molding machine by means such as air transport. Therefore, the most reliable method is to perform premixing in one part of the molding machine.In particular, the safest method is to quantitatively feed each compounding agent and feed it directly to the molding machine while continuously premixing. And it is particularly suitable for mass production using a dedicated machine.

他の方法としてはドラムタンブラ−等でバッチ式に予備
混合して、これを取葡彬へ供給する方法があるが、この
場合は安全をみて極力1 +1’(ツチの混合鋤°を少
くして配合剤の分離を防ぐとか、長期間の保管品は成形
も;pへ供給前に再度、混合しなおすことは安定した外
形の製品を得る上で安全である。
Another method is to pre-mix in batches using a drum tumbler, etc., and then supply this to Tao Bin, but in this case, for safety reasons, we recommend using 1 + 1' as much as possible It is safe to mix the ingredients again before supplying them to the container to prevent separation of the ingredients, or to mold products stored for a long period of time to obtain a product with a stable external shape.

(5)冷却方法その他 発泡外形の悪化要因については冷却方法によるものが無
視しえない。例えば4倍以上の高発泡ポリエチレンの場
合、従来の化学発泡と同様に発泡体を水槽中に導入し急
水冷全行うと、水圧と急水冷による気泡内部のガス圧の
低下により発泡体がつぶれることが判明した。液体フレ
オン等をつかう物理発泡法ではこのような現象はおこり
にくいのに比べて、化学発泡法ではこの現象がおこシや
ずいととは驚くべきことである。この理由として恐らく
気泡内部のガスが熱いため、冷却により内圧が急激に低
下するためと考えられる。このような場合の最有力な対
策手段は、外圧のかからぬような条件で、冷媒で発泡体
の表面を冷却することである。例えば水をシャワー状に
して注ぎ冷却するとか、冷却気体を吹きつける等の手段
が考えらfLる。
(5) Cooling method and other factors that deteriorate the foamed shape cannot be ignored. For example, in the case of highly foamed polyethylene of 4 times or more, if the foam is introduced into a water tank and subjected to rapid water cooling in the same manner as conventional chemical foaming, the foam may collapse due to the drop in water pressure and the gas pressure inside the bubbles due to rapid water cooling. There was found. It is surprising that this phenomenon is less likely to occur in physical foaming methods that use liquid freon, etc., but it is more common in chemical foaming methods. The reason for this is probably that the gas inside the bubbles is hot and the internal pressure drops rapidly due to cooling. The most effective countermeasure in such a case is to cool the surface of the foam with a refrigerant under conditions where no external pressure is applied. For example, methods such as pouring a shower of water or blowing cooling gas may be considered.

ま/ζ水槽冷却時の他の外形変形要因として、高発泡体
パイプの鴨合は水槽にしずめ−(冷却することができす
、無理におさえローラ等で水中にしずめると局部的に発
泡体がつぶれる。このような点からも冷却方法にまで高
発泡体と得るだめの工夫が必要となる。
Another factor that causes deformation of the external shape when cooling the water tank is that the high foam pipe can be submerged in the water tank. From this point of view, it is necessary to use highly foamed materials and to be creative in the cooling method.

なお冷却効果を有効ならしめる方法としては、発油倍率
アンプでのべた如く発泡層の表面に非発泡ポリオレフィ
ン等の表皮層を施してのち冷却することが、均一な外径
を保つ上でも有効である。千の場合表皮層は発泡体の押
出しと同時に同一の押出口より押出してもよいが、発泡
層を押出してのち少くとも冷却槽に導入される以前に被
覆されるのが望ましい。後者の場合は表皮層の均一被覆
のためには、発泡層を前述の成形ダイスで成形したのち
に表皮層を施すことは極めてl要である。
In addition, as a method to make the cooling effect effective, it is effective to apply a skin layer such as non-foamed polyolefin on the surface of the foam layer and then cool it, as described in the oil expansion amplifier, which is also effective in maintaining a uniform outer diameter. be. In this case, the skin layer may be extruded from the same extrusion port at the same time as the foam is extruded, but it is preferable that the skin layer be coated after extruding the foam layer and at least before being introduced into the cooling bath. In the latter case, in order to uniformly cover the skin layer, it is extremely necessary to apply the skin layer after forming the foam layer with the aforementioned molding die.

3−2−4  石材上へ被覆するための手段と特徴 発泡倍率6倍以上の高発泡体・の外形状を整え、安定し
た状態で製造づる手段は既にのべた通りであるが、と7
tではまだ中空);イブの製造手段にすぎず、これを芯
材、例えば銅ノ(イブ等Gつ外部に密着して被覆するた
めには、更に多くの手段が必要である。その理由は3倍
以上の高発泡体の発泡時にはタト方向へ急激に大きく膨
張する必要上、芯桐と接する側も第1図に示すようにり
を方に大きく膨張する。故に芯月1との間に大きな空隙
ろが生じてしまい、発泡体2の芯材の様械的強度面での
保護効果が殆んどない。図中、4はニップル、5はダイ
スである。この界面に浸水すると、例えば、発泡体の断
熱効果か殆んどなくなる。電気絶縁物の場合は電気特性
の低下となる。このように芯材との密着は常に大切であ
る。従来の2倍発泡程度では発泡時の膨張は少いので、
この空隙は殆んど生ぜず、大低の場合、芯材を予熱する
程度ですべて解決し得た。
3-2-4 Means and characteristics for coating on stone The means for preparing the external shape of a highly foamed material with an expansion ratio of 6 times or more and producing it in a stable state are as already mentioned.
This is just a means of manufacturing a core material, such as a copper tube (still hollow at t); more means are needed to tightly cover the outside with a core material, such as a copper tube.The reason is When foaming with a foam that is more than 3 times larger, it is necessary to rapidly expand in the vertical direction, and the side in contact with the core paulownia also expands greatly in the vertical direction as shown in Figure 1. Large voids are formed, and there is almost no protective effect in terms of mechanical strength of the core material of the foam 2. In the figure, 4 is a nipple and 5 is a die. If water enters this interface, for example, , the insulation effect of the foam almost disappears.In the case of electrical insulators, the electrical properties deteriorate.In this way, adhesion with the core material is always important.If the foam is expanded twice as much as conventional foam, it will expand during foaming. Since there are few
This void hardly occurred, and in the case of large and low temperatures, it was possible to solve the problem by preheating the core material.

しかし6倍以上の高発泡体を得る本発明では従来の如く
、芒1材の予熱程度では解決し得す、また芯材の予熱を
するほど逆に芯月との密着が低1゛するという予想外の
結果となったので、以下にこの解決手段をのべる。
However, in the present invention, which obtains a foam with a foam that is 6 times or more higher, the problem can be solved by preheating one piece of the core material, as in the past, and the more the core material is preheated, the lower the adhesion with the core material. Since the result was unexpected, I will explain the solution below.

(1)  接着層の被覆 本発明ではこの解決手段として芯材上に発泡制別との接
着増分施すのが最良である。但し、その接着剤の塗布は
、発泡倍率上昇手段でのべたように発泡材料が発泡を開
始する以前に芯拐と発泡制料間に施すのが最も好゛まし
い。またこの場合芯材との密着力は強固なほど好まれる
場合と、人力で容易に発泡体を引抜くことができる程度
のものが望まれる場合があり、そのコントロール手段は
下記の通シである。
(1) Coating with adhesive layer In the present invention, the best solution to this problem is to apply an adhesive increments with foaming control on the core material. However, it is most preferable to apply the adhesive between the core and the foam material before the foam material starts foaming as described above in the foaming ratio increasing means. In this case, the stronger the adhesion to the core material, the better, and the better, and the more desirable it is to be able to easily pull out the foam manually, and the means for controlling this is as follows: .

接着層をタンデムで施す時二    □接着層を塗布す
るダイの角度、位置温度等の条件、 塗布後の冷却条件、 塗布前の芯材の温度、 離型剤の有無 発泡材料の温度、 接着層を発泡層と同時に被覆する時: 芯、桐の予M(・、温度、 離型剤の有無、 接着層・発泡層の温度、 発泡層押出時のダイスとニップルの間隔、接着層は予め
別工程で芯材上に被覆することも可能であるが、接着力
の安定化と生産性の面からは発泡層押出時に′4Ji覆
することか最良でちる。
When applying adhesive layers in tandem □ Conditions such as the angle of the die to apply the adhesive layer, position temperature, etc., cooling conditions after application, temperature of the core material before application, presence or absence of mold release agent, temperature of the foamed material, adhesive layer When coating with the foam layer at the same time: Core, paulownia pre-M (・, temperature, presence or absence of mold release agent, temperature of adhesive layer/foam layer, distance between the die and nipple when extruding the foam layer, adhesive layer is separated in advance) Although it is possible to coat the core material during the process, from the viewpoint of stabilizing the adhesive force and productivity, it is best to cover the core material during extrusion of the foam layer.

肋に接着層を被覆後、経時変化によって接着層の表面状
態が物理的にも(汚れ等)、化学的にも(劣化等)変質
して接着力の低下または変動ケ生ずることが多いだめで
ある。
After coating the adhesive layer on the ribs, the surface condition of the adhesive layer often changes physically (dirt, etc.) or chemically (deterioration, etc.) due to changes over time, resulting in a decrease or fluctuation in adhesive strength. be.

接着層を施す位置について補足すると、発泡層の偏肉が
問題の時は第2図に示すようにニップル4の先端で接着
層6を施すことが好ましい。
Regarding the position where the adhesive layer is applied, when uneven thickness of the foam layer is a problem, it is preferable to apply the adhesive layer 6 at the tip of the nipple 4 as shown in FIG.

図中、1は芯材、5はダイス、6′は接着剤である。こ
れは、例えば芯材がポリエチレン等のプラスチックの場
合はニップルに接すると融けるために、ニップル内径は
芯材の径よりも相当大きくとシ、ニップルにされらぬよ
うにして押出す。このためニップル内部で芯材の位置が
定まらず、その結果発泡層が偏肉することになる。
In the figure, 1 is a core material, 5 is a die, and 6' is an adhesive. This is because, for example, if the core material is a plastic such as polyethylene, it will melt when it comes into contact with the nipple, so the inner diameter of the nipple must be considerably larger than the diameter of the core material, so that it can be extruded without becoming a nipple. For this reason, the position of the core material within the nipple is not determined, resulting in uneven thickness of the foam layer.

これを防ぐためには、ニップルの先端部で接着剤をコー
ティングするものであり、これによってニップルの中心
部に芯利が保持され、偏肉の少い発泡層を押出すことが
できる。一方、接着層をクロスヘッドの入口で被覆する
と芯材との密着に好ましい結果を得ることもできる。例
えは発泡層を引落し方式で被覆する事か極めて容易にな
る。第3図の如く芯柑と発泡層の間を真空ポンプで脱気
7して密着せしめる方法がとられるが、クロスヘッドの
入口で接着剤を被怪した場合、真空ポンプでの排気が極
めて容易になり、また真空度を上げることができるので
芯材上の発泡層を強く密着ぜしめることが可能となる。
In order to prevent this, the tip of the nipple is coated with an adhesive, which maintains the center core of the nipple and allows extrusion of a foam layer with less uneven thickness. On the other hand, if the adhesive layer is coated at the entrance of the crosshead, it is possible to obtain favorable results in adhesion to the core material. For example, it is extremely easy to cover the foam layer by drawing it down. As shown in Figure 3, a method is used to evacuate the space between the wick and the foam layer with a vacuum pump to make them adhere, but if the adhesive is damaged at the inlet of the crosshead, it is extremely easy to evacuate with a vacuum pump. In addition, since the degree of vacuum can be increased, it is possible to tightly adhere the foam layer on the core material.

なお、接着剤は押出機その他の方法で供給する。その利
質はホットメルトタイプの接着剤が最も適し、押出機そ
の他のホソトメルトアグリケーターが用いられる。
Note that the adhesive is supplied using an extruder or other method. A hot melt type adhesive is most suitable for this purpose, and an extruder or other hot melt aggregator is used.

なお接着層には接着層および発泡層と芯材との接触によ
ってお互に劣化することを防止するだめの特別の配合剤
、例えは金属との接触劣化防止剤等を用いることも場合
によって極めて有効である。
In addition, in some cases, a special compound may be used in the adhesive layer to prevent mutual deterioration due to contact between the adhesive layer and foam layer and the core material, such as an agent that prevents deterioration due to contact with metal. It is valid.

(2)  発泡用材料 石材との密着をよくする上で発泡用材料の選択は、やは
り重要である。既に述べたように発泡用材料の粘度が不
適当であると、第4図に示すように発泡時にたれおちて
しまい(図中、8がたれ落ちによる空隙)、その結果片
側のみ、全く心材と密着しない発泡襟覆が得られる。特
に石材の径が細く厚肉の発泡層を被覆する場合は致命的
問題となる。これを防ぐためにはたれおちしないような
材料温度、粘度に保持する必要があυ、その手段として
ポリオレフィンの融点、粘度の異なるものを併用したシ
、熱分解温度の異なる発泡剤を併用することd極めて有
効である。
(2) Material for foaming The selection of material for foaming is still important in order to improve the adhesion to the stone. As already mentioned, if the viscosity of the foaming material is inappropriate, it will sag during foaming as shown in Figure 4 (in the figure, 8 is a gap due to dripping), and as a result, only one side will have no core material. A foam collar cover that does not stick tightly can be obtained. In particular, this becomes a fatal problem when the stone has a narrow diameter and is covered with a thick foam layer. In order to prevent this, it is necessary to maintain the temperature and viscosity of the material so that it does not sag, and as a means to do so, it is possible to use polyolefins with different melting points and viscosities, or to use blowing agents with different thermal decomposition temperatures. Extremely effective.

色 高発泡体とするためには発泡剤を多量に用いるだめに発
生ガス量も多くとわをいかに有効に発泡に利用しようと
してもやは9表面からの脱ガス員は多くなり、その結果
、表層に多数の脱ガス孔が生ずる。この数は従来の2倍
発泡の時よりも2倍以上多くなることが分った。故にこ
れt従来と同じく水槽中に浸水して冷却すると、脱ガス
孔より多量の吸水がおこり、結果として実質的な発泡倍
率の低下となる。即ち、発泡層の断熱性能の低下、電気
絶縁性能の低下となる。
In order to make a foam with a high color, a large amount of foaming agent must be used, and a large amount of gas will be generated.No matter how effectively the foam is used for foaming, the number of gases degassed from the surface will be large, and as a result, A large number of degassing holes are created in the surface layer. It was found that this number was more than twice as high as in the case of conventional double foaming. Therefore, if the material is cooled by immersing it in a water tank as in the past, a large amount of water will be absorbed through the degassing holes, resulting in a substantial reduction in the foaming ratio. In other words, the heat insulation performance and electrical insulation performance of the foam layer decrease.

故にこの問題を解決する方法を以下にのべる。Therefore, a method to solve this problem is described below.

+11  冷却法 最も吸水を促進する要因は、発泡体と水槽中に浸水して
冷却した場合の脱気孔からの浸水である。模式的に示す
と第5図の1の通りで、最大発泡領域に達するまでは生
成した気泡中より気泡壁を通して表面からガスが逃げる
が(脱気領域A)、それ以後は発泡体の冷却とともに気
泡内のガス圧力が低下して外圧″によって多少収縮する
傾向を示す。特に表面層にガスの微小な脱気孔9が生じ
ているのでこの気泡内の減圧によって水を気泡内に吸い
こむことになる(吸水領域B)。特に水槽10中に水圧
がかかつていると、著るしく多量の水を脱気孔より吸い
こむことが、6倍以上の高発泡体の場合にしばしばみら
れる。この対策として最も有望なのは水圧のかからぬ方
法で水冷するために、シャワー状又はミスト状にして発
泡体にふりかけることであシ、発泡体表面との接触によ
る吸熱冷却の他に熱い発泡体表面から水が蒸発する時の
多量の蒸発熱によって冷却され、水槽中に浸水した時と
同等の冷却効果が得られる。
+11 Cooling method The factor that most promotes water absorption is water seepage through the degassing holes when water is soaked into the foam and water tank for cooling. Schematically shown in Figure 5 1, gas escapes from the surface of the generated bubbles through the cell walls until the maximum foaming region is reached (degassing region A), but after that, as the foam cools, the gas escapes from the surface. The gas pressure inside the bubbles decreases and the bubbles tend to contract somewhat due to external pressure.In particular, since minute gas degassing holes 9 are formed in the surface layer, water is sucked into the bubbles by reducing the pressure inside the bubbles. (Water absorption area B).Especially when water pressure is applied in the water tank 10, it is often seen that a significantly large amount of water is sucked in through the deaeration hole in the case of a foam with a foam size of 6 times or more. The most promising method is to sprinkle water on the foam in the form of a shower or mist in order to cool the foam without applying water pressure. When it evaporates, it is cooled by a large amount of heat of evaporation, providing the same cooling effect as when immersed in water in an aquarium.

但し、水を用いる限り、第5図の■のように脱気孔がな
くても気泡壁を通して拡散して侵入する湿度は避は得な
い。よってわずかの湿気の浸水によって影響される特性
、例えば熱伝導率や電気特性を損わぬようにするために
は、水冷は少くとも最大発泡位置までにとどめ、以後は
冷却気体等の非水物による冷却が必要であり、望ましく
はすべて冷気による冷却を行うと特に好ましい結果を得
る。
However, as long as water is used, it is unavoidable that moisture will diffuse and enter through the cell walls even if there are no deaeration holes as shown in (2) in FIG. Therefore, in order to avoid damaging properties that are affected by slight moisture infiltration, such as thermal conductivity and electrical properties, water cooling should be limited to at least the maximum foaming position, and after that, non-aqueous substances such as cooling gas should be used. Particularly favorable results are obtained when cooling is preferably performed entirely by cold air.

(2)  防水椙の被覆 発泡体の表面に機械強度向上用の保護層を施すことはす
でに述べたが、この場合発泡層を水冷却する前に表皮層
を施しだのちに冷却槽に通すことが吸水防止の面でも極
めて望ましい。
(2) It has already been mentioned that a protective layer is applied to the surface of the waterproof foam coating foam to improve mechanical strength, but in this case, a skin layer is applied before the foam layer is cooled with water and then passed through a cooling tank. is also extremely desirable in terms of preventing water absorption.

なお表面の脱気孔は最大発泡になるまで自由に発泡させ
た場合に多量に生成するものであり、9L径安定化の際
にのべた如く、成形ダイで発泡層の表面の発泡を抑制す
ることは吸水防止の面で有効である。さらにこの場合に
、成形グイ部で撥水性の潤滑剤を塗布しながら成形する
ことは脱気孔の生成をさらに減少し、まだたとえ脱気孔
が生じたとしても、その孔を撥水剤がおおうため、以後
の水冷による吸水の心配は殆んどなくなる。
Note that a large amount of deaeration pores on the surface are generated when foaming is allowed to reach maximum foaming, and as mentioned above when stabilizing the 9L diameter, foaming on the surface of the foam layer must be suppressed using a molding die. is effective in preventing water absorption. Furthermore, in this case, molding while applying a water-repellent lubricant to the molding part will further reduce the formation of degassing pores, and even if degassing pores occur, the pores will be covered by the water-repellent. There is almost no need to worry about water absorption due to subsequent water cooling.

(3)  発泡用材料 本発明は化学発泡剤を用いる関係上、その分解残渣か吸
湿性を有するものが多くなることは大きな問題であり、
製品の用途によっては発泡体を製造後に乾燥する等の手
段が必要になることは止むをえない。しかし、この乾燥
を極力容易に、できれば省略するためには発泡材料の選
択も重要である。
(3) Foaming material Since the present invention uses chemical foaming agents, it is a big problem that many of the decomposition residues are hygroscopic.
Depending on the use of the product, it is unavoidable that a method such as drying the foam after manufacturing is required. However, in order to make this drying process as easy as possible, or even omit it if possible, the selection of the foam material is also important.

例えば化学発泡剤では熱分解生成物に水を含むものや、
吸湿性の物質を生ずるものの使用は極力おさえ、窒素ガ
ス、炭酸ガス等のガスを併用するものが望ましい。また
ポリオレフィンの中では吸湿性の極めて少いポリマー、
例えはポリエチレン、ポリプロピレン等を棲力多く用い
るのが好ましい。その他の配合剤についても吸湿性の少
い方が好寸しくない。
For example, chemical blowing agents contain water as a thermal decomposition product,
The use of substances that produce hygroscopic substances should be minimized, and it is desirable to use gases such as nitrogen gas and carbon dioxide gas together. In addition, among polyolefins, polymers with extremely low hygroscopicity,
For example, it is preferable to use polyethylene, polypropylene, etc. with a high vigor. As for other compounding agents, the less hygroscopic the better.

但し、これらはいずれも発泡体の吸湿が発泡体の実効的
な倍率を低下せしめる場合、例えば断熱材や電気絶縁材
に重要なことであシ、例えばクッション材、吸音材、充
填剤的な用途に用いる時は必ずしも吸湿にそれほど気に
する必要はない。
However, both of these are important in cases where the moisture absorption of the foam reduces the effective magnification of the foam, such as in thermal and electrical insulation materials, such as cushioning materials, sound absorbing materials, and filler applications. There is no need to worry too much about moisture absorption when used for.

最後に本発明方法により管状発泡体を製造する際の最も
iましい態様例を第6図で説明すると、金属又はプラス
チックノ(イブ等の芯材1上に、接着層塗布装置17に
よシ薄層ポリオレフィン層を被覆しだ後、押出機11に
発泡用ポリオレフィン、押出機12により表皮層ポリオ
レフィンを押出被覆し、サイジングダイ13により均一
な管状高発泡体2が形成される。この管状高発泡体は、
サイジングダイ16に隣接した冷却水槽10に進行して
散水ノズル14によりンヤワー冷却された後エアワイパ
ー15によシ水分を除去され、巻取機16により巻取ら
れる。
Finally, the most desirable embodiment of manufacturing a tubular foam according to the method of the present invention is explained with reference to FIG. 6. After coating the thin polyolefin layer, the extruder 11 is used to extrude and coat the foaming polyolefin, the extruder 12 is used to extrude and coat the skin layer polyolefin, and the sizing die 13 forms a uniform tubular highly foamed body 2. The body is
After proceeding to a cooling water tank 10 adjacent to a sizing die 16 and being cooled down by a water spray nozzle 14, moisture is removed by an air wiper 15, and the material is wound up by a winding machine 16.

本方法による発泡体は、電線・ケーブル類の絶縁体、特
に同軸ケーブルの絶縁体やソーラーシステム、温水ある
いは蒸気暖房用の保温ないし冷房等に用いる給水用保冷
パイプに使用される断熱パイプの断熱層へ応用出来る。
The foam produced by this method can be used as an insulator for electric wires and cables, especially for coaxial cables, and as a heat insulating layer for insulated pipes used for solar systems, water supply cold pipes used for hot water or steam heating, etc. It can be applied to.

実施例1 ペレット状の低密度ポリエチレン(MI−4、密度09
2)に発?包剤としてアゾジカルボンア□ ミド粉末(変量)および低密度ポリエチレンの粉末(変
量)を配合して、各々の混合物の流出速度、粒度偏析を
測定した。
Example 1 Pellet-shaped low density polyethylene (MI-4, density 09
Departed on 2)? Azodicarbonamide powder (variable) and low-density polyethylene powder (variable) were mixed as packaging materials, and the outflow rate and particle size segregation of each mixture were measured.

流出速度゛は、し、7図の(単位祁)のホッパーに材料
5002のサンプルを入れ、流出速度(2/分)を測定
した。
The outflow rate was measured by placing a sample of material 5002 into the hopper shown in Figure 7 (in units of 2/min).

粒度偏析は、流出速度測定に用いたホッパーを使用し、
サンプルをホッパー一杯に入れて後、流出させ、流出す
る間に4回に分けて流出物を採取し、粉末とペレットの
含有率を測定した。
Particle size segregation was performed using the same hopper used to measure the flow rate.
After the sample was filled in the hopper, it was allowed to flow out, and during the outflow, the effluent was collected in four portions to measure the powder and pellet content.

第1表に示す結果から、粉末低密度ポリエチレンの配合
量が発泡剤1重量部に対し01重量部以上になると、混
合物の流出速度が著しく速くなり、かつ粒度偏析も起こ
りにくくなっている。実験10において粒度偏析が現わ
扛てきたのは粉末分の総すが10東量チ以上と多くなっ
てきたため、粉末低密度ポリエチレンの効果が薄れたた
めである。
From the results shown in Table 1, when the blending amount of powdered low density polyethylene is 0.1 parts by weight or more per 1 part by weight of the blowing agent, the outflow rate of the mixture becomes significantly faster and particle size segregation becomes less likely to occur. The reason why particle size segregation appeared in Experiment 10 was because the total powder content increased to more than 10%, which weakened the effect of the powdered low-density polyethylene.

ペレットに比べて粉末は流動性が劣りホッパーブリッジ
を起こ5すことは常識であったが、両者を併用すること
により流動性が改善されることは全く予想外の事実であ
り、又ペレットと粉末という全く異形の物質を併用する
と粒歴偏析が起こりにくくなることも驚くべき事実であ
る。
It was common knowledge that powder has poor fluidity compared to pellets and causes hopper bridging5, but it was a completely unexpected fact that the fluidity was improved by using both together. It is also a surprising fact that grain history segregation becomes less likely to occur when a substance with a completely unusual shape is used in combination.

実施例2 ポリオレフィンのベレットとして、低密度ポリエチレン
(Mニー4、密度0.92 )と高密度ポリエチレン(
Mニー04、密度0.95 ) f併用し、発泡剤とし
てアゾジカルボンアミドの粉末を配合したときの混合物
の流出速度、粒度偏析を測定した。
Example 2 As polyolefin pellets, low density polyethylene (M knee 4, density 0.92) and high density polyethylene (
Mnee 04, density 0.95) f was used in combination with azodicarbonamide powder as a blowing agent, and the outflow rate and particle size segregation of the mixture were measured.

幽」2表 第2表から、ポリオレフィンペレツ)カ数棟のポリオレ
フィン併用の場合は、粉末ポリオレフ・インは配合量の
多いポリオレフィンの粉末を併用するのが効果的である
。実験14.15のように□異種のポリオレフィンの策
か同一の場合は、いずれのポリオレフィンの粉末でも効
果は認められる。
Table 2 shows that when using several polyolefin pellets in combination, it is effective to use powdered polyolefin in combination with a large amount of polyolefin powder. As in Experiments 14 and 15, when the measures for different types of polyolefins are the same, the effect is observed with either polyolefin powder.

実施例6 B 泡剤として4.4′−オキシビスベンゼンスルボニ
ルヒドラジド粉末を用いた発泡用樹脂混合物を、65祁
スクリユ一押出機を用いて18閣φ銅パイプ上に約14
0℃の押出温度で3咽厚に被覆して、発泡体被覆チュー
ブを製作した。
Example 6 B A foaming resin mixture using 4,4'-oxybisbenzenesulfonyl hydrazide powder as a foaming agent was injected onto an 18mm diameter copper pipe using a 65mm screw extruder.
Foam coated tubes were produced by coating to a thickness of 3 mm at an extrusion temperature of 0°C.

得られた試作品の特性を第3表に示す。Table 3 shows the characteristics of the obtained prototype.

これらの扶施例から、ポリオレフィンのペレットに粉末
の化学発泡剤と粉末のポリオレフィンを加えることによ
シ特性の良好な発泡体が容易に得られることが判る。
These examples show that a foam with good properties can be easily obtained by adding a powdered chemical blowing agent and a powdered polyolefin to polyolefin pellets.

本発明の方法は従来の発泡剤の練ν込み方式に比較して
練り込み費用がかからないばかりか発泡用樹脂混合時の
発泡剤のロスが少なくなる効果もあり、従来法よりも安
価な発泡用樹脂組成物がK”Aられるものである。
The method of the present invention not only requires less kneading cost than the conventional method of kneading the blowing agent, but also has the effect of reducing the loss of the blowing agent when mixing resin for foaming, and is less expensive than the conventional method. The resin composition is K''A.

但し、この例でも実験19は主なるポリエチレンと異な
る種類のポリエチレン粉末を用いたため、また実験20
は粉末発泡剤よりも多量の粉末ポリエチレンを用いたた
め、更に実験22は粉末の発泡剤と粉末ポリエチレンの
合計量がペレットポリエチレン100に対して10軍量
部を超えた為に、発泡体の外観や気泡径が多少、悪化す
る傾向を示している。
However, in this example, because Experiment 19 used a different type of polyethylene powder from the main polyethylene, experiment 20
In Experiment 22, a larger amount of powdered polyethylene was used than the powdered foaming agent, and in addition, in Experiment 22, the total amount of powdered foaming agent and powdered polyethylene exceeded 10 parts by mass per 100 parts of pelleted polyethylene, so the appearance of the foam and The bubble diameter shows a tendency to deteriorate to some extent.

実施例4 各樹脂に発泡剤粉末として4,4′−オキシビスベンゼ
ンスルボニルヒドラジッド2.5 重量%、アゾジカル
ボンアミド0,2車量係を配合して、65酵押出機に供
給し、18陥φ銅・;イブ上に3咽厚に被覆して断熱用
発泡体被稙ノ々イブを製作した。得られた試作品の特性
を次に示1゜尚、樹脂として低密度ポリエチレンペレッ
ト(Mニー5、密度0.920 )を用い、この樹脂に
種々ノ高密度ポリエチレンベレットおよび粉末ポリエチ
レンを配合した。この発泡体の特性を第4表に示す。
Example 4 2.5% by weight of 4,4'-oxybisbenzenesulfonyl hydrazide and 0.2% by weight of azodicarbonamide were added to each resin as blowing agent powder, and the mixture was fed to a 65 fermentation extruder. A heat-insulating foam-covered tube was fabricated by coating a 18-diameter copper tube to a thickness of 3 mm. The characteristics of the obtained prototype are shown below.1. Low-density polyethylene pellets (M knee 5, density 0.920) were used as the resin, and various high-density polyethylene pellets and powdered polyethylene were blended with this resin. The properties of this foam are shown in Table 4.

密度0950以上+7) HDPKを10〜50iit
ftHチ配合することにより、これを配合しない場合に
比べて、発、泡倍率、気泡径、外観はflら影響をうけ
ずに、圧縮強度が改善される。HDPIIOを50%以
上配合した場合にI」六発泡体の気泡径が粗大化する傾
向を示し、このため逆に圧縮強度が低1する傾向を示す
。又、HD P E単独の場合は圧縮強艮が大きくなる
ものの、これは発泡倍率が低重し、た為である。
Density 0950 or more +7) HDPK 10-50iit
By blending ftH, the compressive strength is improved without affecting the expansion, foaming ratio, cell diameter, appearance, etc., compared to the case where it is not blended. When 50% or more of HDPIIO is blended, the cell diameter of the I"6 foam tends to become coarser, and as a result, the compressive strength tends to decrease. Furthermore, when using HDPE alone, the compression strength increases, but this is due to the low foaming ratio.

このように化学発泡剤で高密度ポリエチレンの高発泡体
を製造することは、極めて困難とさn従来不可能であっ
たか低密度ポリエチレンを併用することにより予想外に
容易に高密度ポリエチレンの高発泡体をうることかでき
ることか判明した。
In this way, it is extremely difficult to produce high-density polyethylene foam using chemical blowing agents, and it has previously been impossible to produce high-density polyethylene foam with unexpected ease by using low-density polyethylene in combination. It turned out that it was possible to do this.

実施例5 低密度ボ!Jエチレンペレット(M工=20゜密度0.
92 f/′tが)100重量部に表記の発泡剤および
粉末低密度ポリエチレン05電量部を配合した発泡用樹
脂を65叫押出機を用いて、18箇φ銅パイプ上に6W
I+I+厚に被覆して、発泡体被覆パイプを製作した。
Example 5 Low density bo! J ethylene pellets (M work = 20° density 0.
A foaming resin containing 100 parts by weight of the specified blowing agent and 05 parts by weight of powdered low-density polyethylene (92 f/'t) was applied to 6W onto 18 diameter copper pipes using a 65cm extruder.
A foam coated pipe was produced by coating to a thickness of I+I+.

得られた試作品の特性を第5表に示す。Table 5 shows the characteristics of the obtained prototype.

第  5  表 注1) アゾジカルボンアミドはLDPEK練シこんで
配合2)  4.4’−オキシビスベンゼンスルホニル
ヒドラジ情ドは、粉末を直接ペレット状のLDPKに配
合してトライブレンド 低温分解性発泡剤(4,4’−オキシピスベンゼンスル
ホニルヒドラジヘド)1に置部に対し、高温分解性発泡
剤(アゾジカルボンアミド)を0、05〜1や粗部配合
することにより、適度の大きさの気泡のかつ外観の良好
な発泡体を容易に得ることが出来る。
Table 5 Note 1) Azodicarbonamide is blended with LDPEK kneading. 2) 4.4'-Oxybisbenzenesulfonylhydrazide is blended with powder directly into pelletized LDPK to form a tri-blend low-temperature decomposable foam. By blending 0.05 to 1 or coarse part of a high temperature decomposable blowing agent (azodicarbonamide) to 1 part of the agent (4,4'-oxypisbenzenesulfonyl hydrazihede), an appropriate size can be obtained. It is possible to easily obtain a foam that has many cells and has a good appearance.

実施例6 発泡用ポリオレフィン樹脂 第6図の製造装置において、接着層塗布装置で線速5m
/′分で走行している18咽φ銅バイブ上に、エチレン
系アイオノマー(サーリンA。
Example 6 Polyolefin resin for foaming In the production equipment shown in Figure 6, the adhesive layer coating equipment was used at a linear speed of 5 m.
Ethylene ionomer (Surlyn A) was placed on an 18-throat copper vibrator running at /' min.

デュポン社製、商品名〕を01”!l;mm厚に被覆し
た。
DuPont Co., Ltd., trade name] was coated to a thickness of 01"!l; mm.

そして上記光泡用樹脂を65胴押出機1に供給して押出
ダイ2を通して3 mn厚に被護した。その直後内径1
4覗、長さ550 mmのサイジングダイで発泡体を成
形後、サイジングダイから5クル離れた位置にあるシャ
ワ一式ノズルを設置した10mの冷却水槽で冷却した。
Then, the resin for photofoaming was supplied to a 65-barrel extruder 1 and passed through an extrusion die 2 to cover it to a thickness of 3 mm. Immediately after that, inner diameter 1
After molding the foam using a sizing die with 4 holes and a length of 550 mm, it was cooled in a 10 m cooling water tank equipped with a shower set nozzle located 5 km away from the sizing die.

得られた管状高発泡体被覆パイプの特性を第6表に示す
Table 6 shows the properties of the obtained tubular high foam coated pipe.

第6表 WS:試験片の重重 ρ0 ; 発泡前の密度 v日= 試験片の見掛けの体積 接着層及びサイジングダイを使用することにより、独立
気泡で中心パイプとの密着の良い良好な外観の管状高発
泡体被覆パイ、プが得られる。
Table 6 WS: Weight of test piece ρ0; Density before foaming v days = Apparent volume of test piece By using an adhesive layer and a sizing die, a tubular shape with closed cells and good adhesion to the center pipe with a good appearance was created. A high foam coated pipe is obtained.

実施例7 実施例6、実験へ41の製造朱ヂ↓下におけるシャワ一
式冷却と充満水による水冷方法の2つの冷却方式を比較
した結果を・第7表に示す。
Example 7 Example 6, Experiment 41 Manufacture The results of a comparison of two cooling methods, namely, the shower set cooling method under Zhuji↓ and the water cooling method using filled water, are shown in Table 7.

第7表 注)偏平度−長径−短径 シャワ一式冷却の方が、水冷式に比べて発泡体の偏平化
が少なく、1だ吸湿性が無く、すぐれでいることがわか
る。
Table 7 Note: Flatness - major axis - minor axis It can be seen that the shower set cooling method is superior, with less flattening of the foam and less hygroscopicity than the water cooling method.

実施例8 実施例7、実験隔44の条件下で、発泡体の吸溝量が大
きいので、新たに押出機11により゛発泡層の外側に被
覆厚1祁の低密度ポリエチレン表皮層を被砂した結果を
第8表に示す。
Example 8 Under the conditions of Example 7 and Experimental Section 44, the amount of suction in the foam was large, so a low-density polyethylene skin layer with a coating thickness of 1 yen was newly coated on the outside of the foam layer using the extruder 11. The results are shown in Table 8.

媚8表 このように発泡層を水冷却する前に、表皮層を施して冷
却槽に通1ことによシ、吸水を防止することができる。
Before cooling the foam layer with water, a skin layer can be applied to the foam layer to prevent water absorption by passing it through a cooling bath.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は芯材に高発泡体を被覆する際の問題点
、あるいは本発明の態様を示す断面図であシ、第1図は
思料と発泡体との間に空隙が生じる様子を示す縦断面図
(a)および横断面図(1))であり、卯2図iI′j
芯月と発泡体の間に接着層を施J位置の例を示す図であ
り、第6図は芯材と発泡層の間を真空引きする際の接着
剤を施す位置2示す図であり、第4図は発泡時のたれ落
ち現象を示す図であり、第5図は発泡層の脱気孔からの
浸水ケ示す模式図である。第6図は本発明方法の一実施
態様を示すフローシートであり、第7図は本発明方法の
効果tみるために、発泡用材料の流出速度、粒度偏析を
測定するために用いたホッパーの構造を示す図である。 代理人  内 1)  明 代理人  萩 原 亮 − 手続補正書(方式) 昭和57年10月15日 特許庁長官若杉和夫殿 1、事(’lの大小 昭和574白、5許願第107551号21“!fl 
fl 8不?I;  発泡体の製造方法3 補正をする
音 を件との関係  特許出願人 fi’、  l’li  大阪市棄区北浜5丁目15番
地4、代理人 ti;  l’li  東京都港区虎)門−丁目24番
11号6、補正により増加する発明の数  な し7補
正の対象 (1)  明細書中ボールペン書きの頁a補正の内容 (1)  明細書の第46頁・47頁・49頁・52頁
・54頁・55頁・56頁・57頁・58頁を別紙の通
υ訂正する。 (内容に変更なし) 実施例2 ポリオレフィンのペレットとして、低密度ポリエチレン
(Mニー4、密度(192)と高密度ポリエチレン(M
ニー 0.4 、密度α95)を併用し、発泡剤として
アゾジカルボンアミドの粉末を配合したときの混合物の
流出速度、粒度偏析を測定した。 か2表 第2表から、ポリオレフィンベレットが数棟のポリオレ
フィン併用の場合は、粉末ポリオレ18w+mφ銅パイ
プ上に3−厚に被覆して、発泡体林覆パイプを製作した
。得られた試作品の特性を第5表に示す。 第5表 注1) アゾジカルボンアミドはLDPI!!にabこ
んで配合2)  4.4’−オキシビスベンゼンスルホ
ニルヒドラジマドは、粉末を直接ペレット状のLDPI
Cに配合してトライブレンド 低温分解性発泡剤(44′−オキシピスベンゼンスルホ
ニルヒドラジンド)1重量部に対し、高温分解性発泡剤
(アゾジカルボンアミド)を005〜1重量部配合置部
ことによシ、適度の大きさの気泡のかつ外観の良好な琴
泡体を容易に得ることが出来る。 実施例6 発泡用ポリオレフィン樹脂 第6図の製造装置において、接着層塗布装置で線速5m
/分で走行している18m+φ銅ノくイブ上に、エチレ
ン系アイオノマー(サーリンA。 デュポン社製、商品名)を15IIllI厚に被覆した
。 そして上記発泡用樹脂を65■押出機1に供給して押出
ダイ2を通して5vm厚に被覆した。その直後内径14
+m++、長さ350−のサイジングダイで発泡体を成
形後、サイジングダイから5惟離れた位置にあるシャワ
一式ノズルを設置した10惰の冷却水槽で冷却した。得
られた管状高発泡体被覆パイプの特性を第6表に示す。 第  6  表 Wθ :試験片の重量 Po:  発泡前O密度 v8: 試験片の見掛けの体積 接着層及びサイジングダイを使用することによシ、独立
気泡で中心パイプとの密着の良い良好な外観の管状高発
泡体被覆パイプが得られる。 実施例7 実施例6、実験Na41の製造条件下におけるシャワ一
式冷却と充満水による水冷方法の2つの冷却方式を比較
した結果を第7表に示す。 第  7  表 注) 偏平度−長径−短径 シャワ一式冷却の方が、水冷式に比べて発泡体の偏平化
が少なく、また吸湿性が無く、すぐれていることがわか
る。 実施例8 実施例7、実験−44の条件下で、発泡体の吸湿量が大
きいので、新たに押出機11によシ発泡層の外側に被覆
厚1wIの低密度ポリエチレン表皮層を被榎した結果を
第8表に示す。 第8表 このように発泡層を水冷却する前に、表皮層を施して冷
却槽に通すことによシ、吸水を防止することができる。 4、図面の簡単な説明
Figures 1 to 5 are cross-sectional views showing problems when covering a core material with a high foam material, or aspects of the present invention. It is a vertical cross-sectional view (a) and a cross-sectional view (1)) showing the state of the situation.
FIG. 6 is a diagram showing an example of the position where the adhesive layer is applied between the core material and the foam, and FIG. 6 is a diagram showing the position 2 where the adhesive is applied when vacuuming between the core material and the foam layer. FIG. 4 is a diagram showing the dripping phenomenon during foaming, and FIG. 5 is a schematic diagram showing water intrusion from the degassing holes in the foam layer. Figure 6 is a flow sheet showing one embodiment of the method of the present invention, and Figure 7 is a flow sheet of a hopper used to measure the flow rate and particle size segregation of the foaming material in order to see the effects of the method of the present invention. It is a figure showing a structure. Agents 1) Akira Agent Ryo Hagiwara - Procedural Amendment (Method) October 15, 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office 1, Matters ('l's Large and Small Showa 574 White, 5 Patent Application No. 107551, 21) !fl
fl 8? I; Process for producing foam 3 Relationship with the issue of the sound to be amended Patent applicant fi', l'li 5-15-4 Kitahama, Aki-ku, Osaka, agent ti; l'li Tora, Minato-ku, Tokyo) Gate-Chome 24-11 No. 6, Number of inventions increased by amendment None 7 Subject of amendment (1) Page a written in ballpoint pen in the specification Contents of amendment (1) Pages 46, 47, 49 of the specification Pages 52, 54, 55, 56, 57, and 58 will be corrected in the appendix. (No change in content) Example 2 As polyolefin pellets, low density polyethylene (M knee 4, density (192)) and high density polyethylene (M
The outflow rate and particle size segregation of the mixture were measured when azodicarbonamide powder was added as a blowing agent and azodicarbonamide powder was used as a blowing agent. Table 2 From Table 2, when polyolefin pellets were used in combination with several polyolefins, a foam covered pipe was produced by coating powdered polyolethane 18w+mφ copper pipe to a thickness of 3-3. Table 5 shows the characteristics of the obtained prototype. Table 5 Note 1) Azodicarbonamide is LDPI! ! 2) 4.4'-Oxybisbenzenesulfonyl hydrazimad is directly added to the powder form of pelleted LDPI.
0.005 to 1 part by weight of a high-temperature decomposable blowing agent (azodicarbonamide) is added to 1 part by weight of a triblend low-temperature decomposable blowing agent (44'-oxypisbenzenesulfonylhydrazine) in C. Therefore, it is possible to easily obtain a koto foam with bubbles of appropriate size and good appearance. Example 6 Polyolefin resin for foaming In the production equipment shown in Figure 6, the adhesive layer coating equipment was used at a linear speed of 5 m.
An ethylene-based ionomer (Surlyn A, manufactured by DuPont, trade name) was coated to a thickness of 15IIllI on a 18m+φ copper pipe running at a speed of 18m/min. Then, the foaming resin was supplied to a 65 mm extruder 1 and passed through an extrusion die 2 to coat the resin to a thickness of 5 μm. Immediately after that inner diameter 14
After molding the foam using a sizing die with a length of +m++ and a length of 350-, it was cooled in a cooling water tank with a diameter of 10 mm and a shower nozzle installed at a position 5 mm away from the sizing die. Table 6 shows the properties of the obtained tubular high foam coated pipe. Table 6 Wθ: Weight of test piece Po: O density before foaming v8: Apparent volume of test piece By using an adhesive layer and a sizing die, a good appearance with closed cells and good adhesion to the center pipe was obtained. A tubular high foam coated pipe is obtained. Example 7 Table 7 shows the results of a comparison between two cooling methods: the shower set cooling method and the water cooling method using full water under the production conditions of Example 6 and Experiment Na41. Table 7 (Note) Flatness - major axis - minor axis It can be seen that the shower set cooling system is superior to the water cooling system as it causes less flattening of the foam and has no hygroscopicity. Example 8 Under the conditions of Example 7 and Experiment 44, the amount of moisture absorbed by the foam was large, so a low density polyethylene skin layer with a coating thickness of 1 wI was newly applied to the outside of the foam layer using the extruder 11. The results are shown in Table 8. Table 8 Water absorption can be prevented by applying a skin layer to the foam layer and passing it through a cooling bath before cooling the foam layer with water. 4. Brief explanation of the drawing

Claims (1)

【特許請求の範囲】 (1)  ポリオレフィンペレット、化学発泡剤粉末お
よびポリ−オレフィン粉末分散剤を主体とする発泡用材
料を予備混合して成形機へ供給し、成形機中で溶融混合
した後、化学発泡剤の熱分解温度以上に昇温しだのち、
降温せしめてダイスよシ押出すことを特徴とする、発泡
倍率が3倍以上の発泡体の製造方法。 (2)化学発泡剤粉末とポリオレフィン分散剤粉末を両
者総量でポリオレフィンベレットに対し1.1〜10.
0重量%配合し、かつ化学発泡剤粉末は1.0重量%以
上で、該発泡剤粉末1重量部に対し粉末ポリオレフィン
を01重量部以上の範囲で配合する、特許請求の範囲第
1項記載の発泡体の製造方法。    ”(3)  ポ
リオレフィンペレットとして融点の異なるポリマーを特
徴する特許請求の範囲第1項記載の発泡体の製造方法。 (4)  ポリオレフィンベレットとして、低密度ポリ
エチレンに、密度0.950以上の高密度ポリエチレン
を10〜50重量%配合する、特許請求の範囲シ、3項
記載の発泡体の製造方法。 (5)  化学発泡剤として熱分解点の異なるものを特
徴する特許請求の範囲第1項記載の発泡体の製造方法。  。 (6)  化学発泡剤として低温分解性発泡剤を1.0
重量−以上配合し、そして該低温分解性発泡剤1重量部
に対し高温分解性発泡剤を0.05〜1重量部配合する
、特許請求の範囲第5項記載の発泡体の製造方法。 (7)成形機より押出されて後、少くとも発泡体が熱可
塑性を保持している間、好ましくは最大発泡径に達する
前に、表面を目的仕上シ形と相似形の成形ダイスで成形
する、特許請求の範囲第1項記載の発泡体の製造方法。 (8)  芯材上に6倍以上の発泡体が被覆されると同
時またはそれ以前に、芯材と発泡用材料との間に接着層
を特徴する特許請求の範囲第7項記載の発泡体の製造方
法。 (9)3倍以上の発泡体の表面に、これより少くとも低
発泡度の表皮層を、発泡用材料が発泡を開始する前から
少くとも発泡後表面を水で冷却されるまでの間に発泡体
の表面に被覆する、特許請求の範囲第7項記載の発泡体
の製造方法。 Q(e  押出した発泡体をシャワー状の水で冷却する
、特許請求の範囲第7項記載の発泡体の製造方法。
[Claims] (1) Foaming materials mainly consisting of polyolefin pellets, chemical blowing agent powder, and polyolefin powder dispersant are premixed and supplied to a molding machine, and after being melt-mixed in the molding machine, After the temperature rises above the thermal decomposition temperature of the chemical blowing agent,
A method for producing a foam having an expansion ratio of 3 times or more, characterized by cooling the temperature and extruding through a die. (2) The total amount of both chemical blowing agent powder and polyolefin dispersant powder is 1.1 to 10.
0% by weight, and the chemical blowing agent powder is 1.0% by weight or more, and the powdered polyolefin is blended in an amount of 0.1 parts by weight or more per 1 part by weight of the blowing agent powder, according to claim 1. A method for producing a foam. (3) A method for producing a foam according to claim 1, wherein the polyolefin pellets are made of polymers with different melting points. (4) The polyolefin pellets are a low-density polyethylene and a high-density polyethylene having a density of 0.950 or more. A method for producing a foam according to claim 3, wherein 10 to 50% by weight of the foam is blended. Method for producing foam. (6) Using a low temperature decomposable blowing agent as a chemical blowing agent at a concentration of 1.0
6. The method for producing a foam according to claim 5, wherein 0.05 to 1 part by weight of the high-temperature decomposable foaming agent is blended per 1 part by weight of the low-temperature decomposable foaming agent. (7) After being extruded from the molding machine, at least while the foam retains its thermoplasticity, preferably before reaching the maximum foam diameter, the surface is molded using a molding die with a similar shape to the desired finishing shape. , a method for producing a foam according to claim 1. (8) The foam according to claim 7, characterized in that an adhesive layer is provided between the core material and the foaming material at the same time or before the core material is coated with 6 times or more of the foam material. manufacturing method. (9) Apply a skin layer with a foaming degree of at least 3 times or more on the surface of the foam from before the foaming material starts foaming to at least after the foaming until the surface is cooled with water. The method for producing a foam according to claim 7, wherein the surface of the foam is coated. Q(e) The method for producing a foam according to claim 7, wherein the extruded foam is cooled with shower-like water.
JP57107551A 1982-06-24 1982-06-24 Manufacture of foamed object Pending JPS58224727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57107551A JPS58224727A (en) 1982-06-24 1982-06-24 Manufacture of foamed object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57107551A JPS58224727A (en) 1982-06-24 1982-06-24 Manufacture of foamed object

Publications (1)

Publication Number Publication Date
JPS58224727A true JPS58224727A (en) 1983-12-27

Family

ID=14462044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57107551A Pending JPS58224727A (en) 1982-06-24 1982-06-24 Manufacture of foamed object

Country Status (1)

Country Link
JP (1) JPS58224727A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877840A (en) * 1987-01-28 1989-10-31 Du Pont Canada Inc. Polyolefin concentrate
JP2007261267A (en) * 2006-03-28 2007-10-11 Brugg Rohr Ag Holding Heat insulation conduit
WO2022202174A1 (en) * 2021-03-24 2022-09-29 株式会社オートネットワーク技術研究所 Electric wire for communication

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877840A (en) * 1987-01-28 1989-10-31 Du Pont Canada Inc. Polyolefin concentrate
JP2007261267A (en) * 2006-03-28 2007-10-11 Brugg Rohr Ag Holding Heat insulation conduit
WO2022202174A1 (en) * 2021-03-24 2022-09-29 株式会社オートネットワーク技術研究所 Electric wire for communication

Similar Documents

Publication Publication Date Title
US4468435A (en) Process for the production of highly expanded polyolefin insulated wires and cables
US5574074A (en) Foamable organic polymer composition and production of foamed article
US4352701A (en) Process for the production of highly expanded polyolefin insulated wires and cables
JPH10230528A (en) Thermoplastic resin foamed injection-molded body and manufacture thereof
US5096638A (en) Method for extruding a thermoplastic plastics material foam
JP7282162B2 (en) 3D printing system for preparing three-dimensional objects
US4204086A (en) Process for the production of highly expanded polyolefin insulated wires and cables
US4552708A (en) Method for producing crosslinked foam
JPS5840326A (en) Foamable polyolefin resin composition
JP4230375B2 (en) Composite board
GB2145961A (en) Method of producing crosslinked foam articles
JPH08108441A (en) Polyolefinic resin foamed molding having communicating gap and production thereof
JPS58224727A (en) Manufacture of foamed object
JP4023911B2 (en) Cylindrical polyolefin resin foam particles having through holes and a method for producing a polyolefin resin foam molded body having continuous voids
JPH1076560A (en) Thermoplastic resin foamed body and its manufacture
EP0413255B1 (en) Method for manufacturing a foam-insulated electric wire
JP3860243B2 (en) Foamable resin composition for highly foamed insulated polyethylene and highly foamed insulated polyethylene coated wire made by coating this
JP2001138377A (en) Method for foam molding thermoplastic resin
JP3482519B2 (en) Mixtures for the production of expanded cellular polymer products and methods of making using the mixtures
JP4126491B2 (en) Foamable resin composition and propylene-based resin foam
JPH0911318A (en) Foamed polypropylene resin and production thereof
JP2012031219A (en) Crosslinked polyolefin open-cellular body with excellent recyclability, method of manufacturing the same, and shock-absorbing material for mask
JP2007276245A (en) Method for producing foamed resin-extruded body
JPH0770348A (en) Foamable organic polymer composition and production of foam
JPH03233815A (en) Manufacture of foam insulated electric cable