JPS58224573A - Plural spark ignition device - Google Patents

Plural spark ignition device

Info

Publication number
JPS58224573A
JPS58224573A JP57106140A JP10614082A JPS58224573A JP S58224573 A JPS58224573 A JP S58224573A JP 57106140 A JP57106140 A JP 57106140A JP 10614082 A JP10614082 A JP 10614082A JP S58224573 A JPS58224573 A JP S58224573A
Authority
JP
Japan
Prior art keywords
thyristor
thyristors
circuit
self
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57106140A
Other languages
Japanese (ja)
Other versions
JPH0256520B2 (en
Inventor
Susumu Kajiura
梶浦 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanshin Electric Co Ltd
Original Assignee
Hanshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanshin Electric Co Ltd filed Critical Hanshin Electric Co Ltd
Priority to JP57106140A priority Critical patent/JPS58224573A/en
Publication of JPS58224573A publication Critical patent/JPS58224573A/en
Publication of JPH0256520B2 publication Critical patent/JPH0256520B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To obtain a large spark energy for ignition by connecting a plurality of thyristors in series with each other, simultaneously triggering the thyristors correspondingly in the independently isolated gate circuits of the same number as the thyristors to automatically oscillate them, thereby increasing the number of discharging repetition. CONSTITUTION:A plurality of spark ignition devices are respectively composed of power source units A and operation units B. The thyristor section of a serial inverter circuit is composed, for example, of two thyristors 6a, 6b in the operation unit B. The thyristors 6a, 6b are respectively simultaneously triggered by exclusive gate circuits 28a, 28b. Each thyristor may be of that having one total number-th of counter withstand voltage.

Description

【発明の詳細な説明】 本発明は、自励サイリスタ直列インバータ式複数火花点
火装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a self-excited thyristor series inverter type multiple spark ignition device.

第1図には一般的なこの種点火装置の従来例−3− を示している。本図中の符号を付した各構成子の動作の
詳細は、後述する本発明実施例を示す第2図中の同一符
号(サフィックスα、bの有無は考えなくて良い)の構
成子と同様であるので、当該実施例に関する説明を援用
する。
FIG. 1 shows a conventional example-3 of this type of ignition device. The details of the operation of each constructor with a symbol in this figure are the same as the constructor with the same symbol (the presence or absence of the suffixes α and b does not need to be considered) in FIG. 2 showing the embodiment of the present invention described later. Therefore, the explanation regarding this example will be referred to.

而して、この種従来装置にあっては、基本機能に係る要
求として、放電間隙gに得られる放電エネルギをできる
だけ大きくしたいということがある訳だが、これに加え
て、実際的な一つの要望として、電源部Aにおける入力
交流電源lの電位系が低電圧系、例えば100v系であ
っても良いし、相対的高電圧系、例えば200v系であ
っても良い装置ができないか、ということがある。
For this type of conventional device, the basic functional requirement is to increase the discharge energy obtained in the discharge gap g as much as possible, but in addition to this, there is one practical requirement. Therefore, the question is whether it is possible to create a device in which the potential system of the input AC power supply l in the power supply section A can be a low voltage system, for example, a 100V system, or a relatively high voltage system, for example, a 200V system. be.

然し、在来の第1図示のような装置では、両電圧系に共
に合理的に無駄なく使用できるものが、作動部B中の各
構成子の電気的緒特性、物理的寸法、コスト等の実際的
制約から提供し得なかったのである。これは次のような
理由による。
However, in the conventional device shown in the first diagram, the electrical characteristics, physical dimensions, cost, etc. of each component in the actuating part B are such that it can be used reasonably and without waste for both voltage systems. This could not be provided due to practical constraints. This is due to the following reasons.

放電間隙gに得られる放電エネルギ乃至点火エネルギは
、作動部B中の共振コンデンサrに蓄えられる蓄積エネ
ルギEに比例し、この蓄積エネルギEは次式で表せられ
る。
The discharge energy or ignition energy obtained in the discharge gap g is proportional to the stored energy E stored in the resonant capacitor r in the operating section B, and this stored energy E is expressed by the following equation.

E=Cψ/2 C:コンデンサ容量 ■:コンデンサ電極間電位 従って、蓄積エネルギE1ひいては点火エネルギを犬と
するためには、コンデンサ容量を太とする手法、印加電
圧を犬とする手法、そして勿論、両者の組み合せの手法
がある。
E=Cψ/2 C: Capacitance ■: Potential between capacitor electrodes Therefore, in order to make the stored energy E1, and therefore the ignition energy, as small as possible, the method of increasing the capacitance, the method of making the applied voltage as small as possible, and, of course, There is a method that combines both.

然し、コンデンサ容量を成る程度以−りに太きくするこ
とは、この種点火装置の商品としての実際から行い得な
いことである。単位放電当たすの放電電流が増え、放電
作動用スイッチング素子としてのサイリスタ乙、点火コ
イルの一次巻線一/等の電流容量を増さねばならず、勿
論、      1コンデンサg自体も大型化するため
、結局は装置全体の大幅な大型化とコストアップに継か
ってしまうからである。
However, it is impossible to increase the capacitance of the capacitor beyond the specified limit from the practical point of view of this type of ignition device as a commercial product. The discharge current per unit discharge increases, and the current capacity of the thyristor (as a switching element for discharge operation), the primary winding of the ignition coil, etc. must be increased, and of course, the capacitor (g) itself becomes larger. This is because, in the end, the overall size and cost of the device will increase significantly.

一夕一 而して、電圧に関しての配慮が望ましいということにな
り、更に言えば100■駆動よシは200V駆動の方が
原理的には当然に大きな点火エネルギが得られることに
なる。が、今度は、作動部B中の各構成子の耐圧、スイ
ッチング素子の回復時間等が問題となってくるのである
All of a sudden, it was decided that consideration should be given to the voltage, and moreover, it would naturally be possible to obtain greater ignition energy with a 200V drive than with a 100V drive. However, this time, the withstand voltage of each component in the operating section B, the recovery time of the switching element, etc. become problems.

サイリスタtとしては勿論、高耐圧のものが必要となっ
てくる。例えば200V系用として考えると、共振電圧
の関係から800v程度の逆方向耐圧は必要となり、安
全を見込めばIKV級のものを要する。高耐圧のものは
それだけコストも高いが、のみならず、キャリア蓄積効
果による回復時間が一般に数十μsと長い欠点があり、
従って、単位放電動作乃至単位時間尚たりの放電回数を
多く採ることができなくなるのである。
Of course, the thyristor t needs to have a high breakdown voltage. For example, when considering a 200V system, a reverse withstand voltage of about 800V is required due to the resonance voltage, and an IKV class one is required for safety. High breakdown voltage products are not only expensive, but also have the disadvantage that recovery time due to carrier accumulation effect is generally several tens of microseconds.
Therefore, it becomes impossible to increase the number of discharges per unit discharge operation or unit time.

そのため、折角、−回当たシの放電エネルギを大きくし
得た所で、一般に成る時間中中の総体的エネルギ量で評
価される点火エネルギは結局は犬き0]得なかったので
ある。実際にも、こうした理由から、200v系用のこ
の釉点火装6− 置は殆ど実用化されていない。
For this reason, even though we were able to increase the discharge energy during the first two strokes, the ignition energy, which is evaluated by the total amount of energy during a typical period of time, was ultimately not as high as 0. In fact, for these reasons, this glaze ignition device for the 200V system is hardly ever put into practical use.

一方、仮に、第1図示の従来構成のままで、上述の欠点
はあるにしろ、200v系用として作動部Bを作ったと
してみよう。すると、このままで、先の要望に応じて、
100v系の適用を考えて、電源/を100vに変えた
だけでは、極めて無駄が多いことが判かる。即ち、既掲
の式から、単純に言っても点火エネルギが1/4に減小
するという不都合がある上に、サイリスタ乙の耐圧は不
要に大きなものを使っているのと同じことになるからで
ある。
On the other hand, let us assume that the operating part B is made for a 200V system using the conventional configuration shown in the first figure, although it has the above-mentioned drawbacks. Then, as it is, according to the previous request,
It can be seen that it would be extremely wasteful to simply change the power supply to 100V considering the application of the 100V system. In other words, from the above formula, to put it simply, there is an inconvenience that the ignition energy is reduced to 1/4, and the withstand voltage of thyristor B is the same as using one that is unnecessarily large. It is.

本発明は、以上のように、既存のこの種点火装置が持つ
錯綜した欠点を整理して、次のような要請i)、ii)
を満たす自励サイリスタ直列インバータ式複数火花点火
装置を提供せんとするものである。
As described above, the present invention addresses the complicated drawbacks of existing ignition devices of this type, and satisfies the following requirements i) and ii).
It is an object of the present invention to provide a self-excited thyristor series inverter type multiple spark ignition device that satisfies the requirements.

1)交流200■系のように、相対的高電圧系であって
も、単化動作当たシの放電回数を減らすことなく、高電
圧系であるが故のコンデンザ蓄積エネルギ増大という長
所を完全に発揮−7− できるようにすること。
1) Even if it is a relatively high voltage system such as an AC 200■ system, the advantage of increasing the capacitor storage energy due to the high voltage system can be completely achieved without reducing the number of discharges per unit operation. To be able to demonstrate -7-.

11)電源部Aとして相対的低電圧系としての100V
系を用いても、上述のように200V系として満足でき
る機能を持った作動部Bを無駄なく、そしてエネルギ低
下もなく用い得るようにすること。
11) 100V as a relatively low voltage system as power supply part A
To make it possible to use an operating part B having a satisfactory function as a 200V system as described above without waste and without energy loss even when using a 200V system.

そしてまた、この主目的i)、ii)を併せ鑑みて、2
00v系用としても満足で、しかも100V駆動でも良
いのなら、200V系を印加しても用い得るようにする
こと、即ち、異なる電位系の選択使用ができることも上
記主目的と表裏一体をなす付随的目的として有している
Also, considering the main objectives i) and ii), 2
If it is satisfactory for the 00V system and 100V driving is also acceptable, it is also possible to use it even when a 200V system is applied, that is, to be able to select and use different potential systems. It has as a purpose.

以下、本発明の実施例を第2図に即し、説明する。Embodiments of the present invention will be described below with reference to FIG.

先づ、作動部BKあって、直列インバータ回路回のサイ
リスタ部分を、複数個の個別サイリスタ(この実施例で
は6α、 j 6’・の二つ)の直列回路にて構成し、
各サイリスタを夫々専用のゲート回路(同じ(21a、
Lにbの二つ)で同時にトリガするようにしている。こ
のようにすると、各個のサイリスタとしては逆耐圧が全
個数分の−のもので良くなるため、そうしたものでは回
復時間も短いので、火花放電の繰返し回数も多く保てる
ようになる。
First, in the actuating part BK, the thyristor part of the series inverter circuit is composed of a series circuit of a plurality of individual thyristors (in this embodiment, two 6α and j 6').
Each thyristor has a dedicated gate circuit (same (21a,
The two triggers (L and B) are triggered at the same time. In this way, each thyristor can have a reverse withstand voltage as low as the total number of thyristors, and since such a thyristor has a short recovery time, it is possible to maintain a large number of repeated spark discharges.

以下、詳説していくが、各専用のゲート回路コIa、コ
rb自体の夫々は、従来の第1図示のゲート回路2gと
同様で良く、その他既存の任意の回路構成のものを用い
て良いのであって、図示のものはその一例にしか過ぎな
い。
As will be explained in detail below, each of the dedicated gate circuits Ia and Rb itself may be the same as the conventional gate circuit 2g shown in FIG. 1, or any other existing circuit configuration may be used. The illustrated one is only one example.

第2図示の場合は、後に述べる低電圧系電源1Lを実線
で示しているが、先づ、上述の構成により、例えば20
0v系等の高電圧系での動作を証するため、チョークコ
イル3、コンデンサ≠より成る入力部の電源入力端子3
1I、32に尚該200V等の高圧系電源IH(仮想線
)を接続した場合の動作に就き説明する。
In the case shown in the second diagram, the low voltage power supply 1L, which will be described later, is shown by a solid line.
In order to prove operation in a high voltage system such as a 0V system, the power input terminal 3 of the input section consisting of a choke coil 3 and a capacitor≠
The operation when the high-voltage power supply IH (virtual line) of 200 V or the like is connected to 1I and 32 will be explained.

先づ、当該電源1Hの正の半サイクル中においては、電
源線路/αから抵抗コ、抵抗7α、7bを介してコンデ
ンサ/≠α、l≠bが充電されていくが、その充電電圧
が適当なスイッチング素子/3α。
First, during the positive half cycle of the power supply 1H, capacitors /≠α, l≠b are charged from the power supply line /α through resistors 7α and 7b, but the charging voltage is not appropriate. switching element/3α.

2− t3bの閾値電圧乃至ブレークオーバ電圧に達すると、
このスイッチング素子が導通し、抵抗りα。
2- When the threshold voltage or breakover voltage of t3b is reached,
This switching element becomes conductive and the resistance is α.

りbを介して当該コンデンサ/pα、l≠bの充電電荷
をサイリスタ6α、tbのゲートに放出し、トリガ電流
とする。
The charged charge of the capacitor /pα, l≠b is discharged to the gate of the thyristor 6α, tb via the resistor b, and is used as a trigger current.

サイリスタ2α、tbが斯くして同時に導通すると、共
振インダクタj1当該サイリスタ6α、76 。
When the thyristors 2α, tb are thus conductive at the same time, the resonant inductor j1 becomes the corresponding thyristor 6α, 76.

共振コンデンサr1電源他線路lbの経路で共振コンデ
ンサにが充電される。この充電電流は共振インダクタj
と共振コンデンサざの共振にょシ振動し、充電電流が反
転する時にはサイリスタtα、tbは逆方向となること
にょ如オフとなる。
The resonance capacitor r1 is charged through the path of the power supply line lb. This charging current is the resonant inductor j
When the charging current is reversed, the thyristors tα and tb are turned off in the opposite direction.

すると、共振コンデンサr内に貯えられている充電電荷
はイグニッションコイルの一次巻線2/を介して放電さ
れ、二次巻線コ3に高電圧が発生して放電間隙gに火花
放電を起こす。同時に、イグニッションコイルの帰還巻
線乃至三次巻線ココα、ココbには、−次巻線に関して
図示の+、−の極性で電圧が発生するが、この時には、
この電圧は抵抗/lα、iBを介してツェナーダイオ−
70− ド/ga、 /Ibで短絡されるので、サイリスタ6α
Then, the charge stored in the resonant capacitor r is discharged through the primary winding 2/ of the ignition coil, and a high voltage is generated in the secondary winding 3, causing a spark discharge in the discharge gap g. At the same time, a voltage is generated in the feedback winding or the tertiary winding Coco α and Coco B of the ignition coil with the polarity of + and - shown in the figure with respect to the − order winding, but at this time,
This voltage is applied to the Zener diode through the resistor /lα, iB.
70- Since it is short-circuited at /ga and /Ib, thyristor 6α
.

6bのゲートにけ影替が及ばない。そしてまた、この時
点で先のコンデンサlすα、l≠bはリセットトランジ
スタ/7α、/7bのターンオンで確実にリセット(電
荷放出)される。
The shadow change does not reach gate 6b. Also, at this point, the previous capacitors lα, l≠b are reliably reset (charge discharged) by turning on the reset transistors /7α, /7b.

次いで、共振コンデンサlと一次巻線2/トの共振によ
り、共振電流が反転して図示のように一次巻線に(→、
0の極性で電圧が発生すると、この時にも二次巻線コ3
に高電圧が発生して放電電極gに火花放電が起きる一方
で、三次巻線2λα、ココbにも図示の極性(ト)、0
で電圧が発生し、ダイオードl/α、//b、コンデン
サ/jα、irb、抵抗/2α、lAbの経路で図示極
性(ト)、0でコンデンサ/jα、 /rbを充電して
いく。そして、三次巻線の電圧が零になると、それまで
に蓄積されていたコンデンサ/ra、trbの充電電荷
が抵抗りα、りbを介してサイリスタ+a、 Hのゲー
トに流入し、これをターンオンさせる。以下、この動作
が繰返されていく。
Next, due to the resonance between the resonant capacitor l and the primary winding 2/g, the resonant current is reversed and flows into the primary winding as shown in the figure (→,
If a voltage is generated with a polarity of 0, the secondary winding
While a high voltage is generated at the discharge electrode g and a spark discharge occurs, the tertiary winding 2λα and here b also have the polarity (G) and 0 as shown in the figure.
A voltage is generated at , and charges the capacitors /jα, /rb with the illustrated polarity (G) and 0 through the path of the diode l/α, //b, the capacitor /jα, irb, the resistor /2α, and lAb. When the voltage of the tertiary winding becomes zero, the charges accumulated in the capacitors /ra and trb flow into the gates of thyristors +a and H through resistors α and Rb, turning them on. let This operation is repeated thereafter.

尚、この実施例では、第一のサイリスタ6αに−//− 抵抗217(Lとコンデンサ2jαとの直列回路及び抵
抗:ltαを並列に、第二のサイリスタtbにも同じく
抵抗21/Lbとコンデンサ2jbとの直列回路及び抵
抗、2tbを並列に抱かせて夫々、サージ吸収兼バラン
ス回路コアα、 、27bとしているため、用いた二つ
のサイリスタAa、Al)間に若干の特性差があっても
共振コンデンサざと共振インダクタjの共振電圧を平等
に分担させることができ、一方のサイリスタにのみ高圧
逆方向電圧が印加される不都合を除くことができる。
In this embodiment, the first thyristor 6α is connected to a series circuit of a resistor 217 (L and a capacitor 2jα) and a resistor: ltα is connected in parallel, and the second thyristor tb is also connected to a resistor 21/Lb and a capacitor in series. Since the series circuit with 2jb and the resistor 2tb are held in parallel to form the surge absorption/balance circuit core α, 27b, even if there is a slight difference in characteristics between the two thyristors used (Aa, Al), The resonant voltage of the resonant capacitor and the resonant inductor j can be equally shared, and the inconvenience of applying a high reverse voltage to only one thyristor can be eliminated.

このように、複数個のサイリスタ(図示実施例では二個
であるが三個以上とすることもできる)を直列にし、独
立分離した同数個のゲート回路Jla、21b、・・・
により各対応するサイリスタlra。
In this way, a plurality of thyristors (in the illustrated embodiment, two thyristors, but three or more thyristors may be used) are connected in series, and the same number of independently separated gate circuits Jla, 21b, . . .
by each corresponding thyristor lra.

tb、・・・を同時にトリガして自励発振させるように
すると、電源電圧が高く、共振電圧が高くなっても、例
えば先の例で電源電圧2007共振電圧800vという
様な条件でも、各サイリスタtα、tbには例えば5o
ovt+圧というように低耐圧でターンオフ時間が数μ
8以下と高速なサイリスタを用いることができ、放電繰
返し回数を多く採れるため、従来のように大容量コンデ
ンサを用いる等の不都合もなく、大きな点火エネルギを
得ることができるのである。
If tb,... are triggered simultaneously to cause self-oscillation, each thyristor will be For example, 5o for tα and tb
The turn-off time is a few microns with low withstand voltage such as ovt+ pressure.
Since a high-speed thyristor of 8 or less can be used and a large number of discharge repetitions can be obtained, a large ignition energy can be obtained without the disadvantages of using a large capacity capacitor as in the conventional case.

而して、次に、本発明の目的11)に従って、このよう
に高電圧系で回復時間の問題もない優れた装置が提供で
きたなら、これを低電圧系、例えばioo v系でも有
効に使えるだめの方策を施す。
Next, in accordance with the objective 11) of the present invention, if such an excellent device that can be used in a high voltage system and has no problem with recovery time can be provided, it is possible to effectively use this device in a low voltage system, such as an IOOV system. Take measures that you can use.

端的には、半波倍圧回路3jを前段に設けて、この入力
端子3/、3.2(端子32はグランドライン/bに共
通で良い)に低電圧系電源1Lを接続し、出力端子33
.32を先の高電圧系入力端子紐、3コに接続する。同
様に端子3コはグランドバスで良いから、実際には図示
仮想線の接続線路36を介して端子33.3グ間の接続
をなす。
In short, a half-wave voltage doubler circuit 3j is provided at the front stage, and the low voltage power supply 1L is connected to the input terminals 3/ and 3.2 (terminal 32 may be shared with the ground line /b), and the output terminal 33
.. Connect 32 to the high voltage system input terminal string, 3. Similarly, since the three terminals may be ground buses, the connection between the terminals 33 and 3 is actually made via the connection line 36 shown as a virtual line.

半波倍圧回路の倍圧数nはこの実施例では−であり、コ
ンデンサー2とダイオード30とによるそれ自体は既存
構成のものとなっている。
In this embodiment, the voltage doubler number n of the half-wave voltage doubler circuit is -, and the half-wave voltage doubler circuit itself has an existing configuration including the capacitor 2 and the diode 30.

上述した動作で高電圧糸を200V系とするな73− と、作動部Bへの供給電位は殆ど同じとなるので、同様
の動作が期待できる1、 IIIち、半波倍圧回路3jの入力端子3/ 、 32
間に100v系の交流が印加されると、負の半サイクル
中、特に1/4ザイクル中に、端子32、ダイオード3
0.コンデンサ、2り、端子3/の経路で当該コンデン
サ2りが図中、−2十の極性で充電され、電源の反転と
共に図中、このコンデンサ電位が電源電位に重畳されて
電源線路/a、lb間に略々200V系と同電位が生ず
るからである。
If the high voltage line is set to 200V in the above operation, the potential supplied to the actuating part B will be almost the same, so similar operation can be expected. Terminal 3/, 32
When a 100V AC is applied between the terminals 32 and diode 3 during the negative half cycle, especially during the 1/4 cycle,
0. The capacitor 2 is charged with a polarity of -20 in the figure on the path between the capacitor 2 and the terminal 3/, and when the power supply is reversed, this capacitor potential is superimposed on the power supply potential in the figure, and the power supply line /a, This is because approximately the same potential as the 200V system is generated between lb and lb.

結局、本発明によれば、1ooV系であっても、200
v系として組むことのできた作動部Bを何の無駄もなく
稼動できることになる1、また、上述の説明及び第2図
から顕らかに判かる通り、端子33,3グ間の仮想線で
示した接続線路3tを取り外し可能にしておけば、使用
者が100V系、200V系を選択使用できることにガ
る。即ち、端子31〜31.t(中、端子3.2は共通
端子)を使用者が操作し易い装置位置に出しておいてや
る等すれば、100V系を用いたい時には端子−/4t
− 33,3≠をジャンパ3tで接続した上で、端子3/。
After all, according to the present invention, even in a 1ooV system, 200
This means that the actuating part B, which can be assembled as a V system, can be operated without any waste. If the shown connecting line 3t is made removable, the user can selectively use the 100V system or the 200V system. That is, terminals 31-31. If you place t (middle, terminal 3.2 is a common terminal) in a position where the user can easily operate the device, when you want to use the 100V system, terminal -/4t
- After connecting 33, 3≠ with jumper 3t, connect terminal 3/.

行間に当該電源1Lを接続すれば良いし、2ooV系を
用いたい場合には端子33.紐間は開放のまま、端子3
グ、32間に当該電源1Hを接続すれば良いのである。
It is sufficient to connect the power supply 1L between the lines, or if you want to use a 2ooV system, the terminal 33. Leave the string open and connect terminal 3.
It is only necessary to connect the power supply 1H between the terminals 1 and 32.

以上、詳記のように、本発明によれば、従来問題の多か
った200■系用等の高電圧系におけるこの種点火装置
として、欠点を除き、電位の高さという長所を諸に引き
出した装置が提供でき、しかもそれを100v系等とい
う低電圧系でも無駄なく駆動できる、極めて有用、合理
的な点火装置が得られ、従ってまた、両電圧系の選択使
用も合理的に行える等、極めて顕著な効果を呈し得るも
のである。
As described in detail above, according to the present invention, as this type of ignition device for high voltage systems such as 200 series, which had many problems in the past, the drawbacks have been eliminated and the advantages of high potential have been brought out. It is possible to provide an extremely useful and rational ignition device that can be driven even with a low voltage system such as a 100V system without waste, and it is also possible to select and use both voltage systems rationally. It can have significant effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自励サイリスタ直列インバータ式複数火
花点火装置の一例の概略構成図、第2図は本発明一実施
例の概略構成図、である。 図中、i 、 IL、 IHは交流電源、jは共振イン
ダクタ、乙、6α、zbはサイリスタ、lは共振コ−/
j− ンデンザ、21はイグニッションコイル−次巻線1.2
3は同じく二次巻線1.27α、27bはサージ吸収兼
バランス回路、21.−”α、−ざb はサイリスタト
リガ用ゲート回路、3jは半波倍圧回路、37〜3≠は
端子、である3゜ 特許出願人  阪神エレク) IJツク株式会社   
  29コ
FIG. 1 is a schematic diagram of an example of a conventional self-excited thyristor series inverter type multiple spark ignition device, and FIG. 2 is a schematic diagram of an embodiment of the present invention. In the figure, i, IL, and IH are AC power supplies, j is a resonant inductor, B, 6α, and zb are thyristors, and l is a resonant core/
21 is the ignition coil - next winding 1.2
3 is the same secondary winding 1.27α, 27b is a surge absorption/balance circuit, and 21. -"α, -zab are gate circuits for thyristor triggers, 3j is a half-wave voltage doubler circuit, and 37~3≠ are terminals. 3゜Patent applicant Hanshin Elec) IJ Tsuku Co., Ltd.
29 pieces

Claims (2)

【特許請求の範囲】[Claims] (1)  サイリスタ直列インバータ回路をイグニッシ
ョンコイルを負荷として自励発振させ、該イグニッショ
ンコイルの二次側に発生する高電圧で放電電極間に複数
の火花を飛ばす自励サイリスタ直列インバータ式複数火
花点火装置において、 上記サイリスタ直列インバータ回路中のサイリスタを複
数個の個別のサイリスタを直列にして構成し、各サイリ
スタ専用のゲート回路により各サイリスタを同時にトリ
ガして自励発振を起こさせると共に、 交流電源入力端子の前段に、半波倍圧回路を設け、該半
波倍圧回路の出力端子を上記交流電源入力端子に接続し
、該半波倍圧回路の入力端子に電源を接続することを特
徴とする一コー 複数火花点火装置。
(1) A self-excited thyristor series inverter type multiple spark ignition device that causes a thyristor series inverter circuit to self-oscillate using an ignition coil as a load, and uses the high voltage generated on the secondary side of the ignition coil to fly multiple sparks between discharge electrodes. In the thyristor series inverter circuit described above, the thyristor is configured by connecting a plurality of individual thyristors in series, each thyristor is triggered simultaneously by a gate circuit dedicated to each thyristor to cause self-oscillation, and an AC power input terminal is connected to the thyristor. A half-wave voltage doubler circuit is provided in the preceding stage, an output terminal of the half-wave voltage doubler circuit is connected to the AC power input terminal, and a power source is connected to the input terminal of the half-wave voltage doubler circuit. One-coil multiple spark igniter.
(2)  サイリスタ直列インバータ回路をイグニッシ
ョンコイルを負荷として自励発振させ、該イグニッショ
ンコイルの二次側に発生する高電圧で放電電極間に複数
の火花を飛ばす自励サイリスタ直列インバータ式複数火
花点火装置において、 上記サイリスタ直列インバータ回路中のサイリスタを複
数個の個別のサイリスタを直列にして構成し、各サイリ
スタ専用のゲート回路によシ各サイリスタを同時にトリ
ガして自励発振を起こさせると共に、 交流電源入力端子の前段に、半波倍圧回路を設け、該半
波倍圧回路の出力端子を上記交流電源入力端子に取外し
可能に接続したことを特徴とする複数火花点火装置。
(2) A self-excited thyristor series inverter type multiple spark ignition device that causes a thyristor series inverter circuit to self-excite oscillation using an ignition coil as a load, and sends multiple sparks between discharge electrodes using the high voltage generated on the secondary side of the ignition coil. In this case, the thyristor in the thyristor series inverter circuit is configured by connecting a plurality of individual thyristors in series, and each thyristor is simultaneously triggered by a gate circuit dedicated to each thyristor to cause self-oscillation, and an AC power source is used. A multi-spark ignition device characterized in that a half-wave voltage doubler circuit is provided upstream of the input terminal, and an output terminal of the half-wave voltage doubler circuit is removably connected to the AC power input terminal.
JP57106140A 1982-06-22 1982-06-22 Plural spark ignition device Granted JPS58224573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57106140A JPS58224573A (en) 1982-06-22 1982-06-22 Plural spark ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106140A JPS58224573A (en) 1982-06-22 1982-06-22 Plural spark ignition device

Publications (2)

Publication Number Publication Date
JPS58224573A true JPS58224573A (en) 1983-12-26
JPH0256520B2 JPH0256520B2 (en) 1990-11-30

Family

ID=14426057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106140A Granted JPS58224573A (en) 1982-06-22 1982-06-22 Plural spark ignition device

Country Status (1)

Country Link
JP (1) JPS58224573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074906A (en) * 2009-10-02 2011-04-14 Hanshin Electric Co Ltd Ignitor for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074906A (en) * 2009-10-02 2011-04-14 Hanshin Electric Co Ltd Ignitor for internal combustion engine

Also Published As

Publication number Publication date
JPH0256520B2 (en) 1990-11-30

Similar Documents

Publication Publication Date Title
US4386395A (en) Power supply for electrostatic apparatus
US4052177A (en) Electrostatic precipitator arrangements
US5623171A (en) High-voltage pulse generating circuit and electrostatic recipitator containing it
US3169212A (en) Transistorized ignition system
US4172268A (en) Direct current circuit interrupting apparatus
JPS6290989A (en) Electric source apparatus for pulse laser apparatus
US2589164A (en) Ignition system
KR940007076B1 (en) Circuit for producing high voltage pulse
US2782867A (en) Pulser circuit
JPS58224573A (en) Plural spark ignition device
US3900766A (en) Corona discharge apparatus for particle collection
US2632133A (en) Ignition means
US3813581A (en) Spark igniter for a plurality of gas burners
KR100433356B1 (en) High voltage power supply for an electrostatic precipitator and it's protective method
KR101651737B1 (en) Micro Pulse System Having Function for Restricting Current and Electrostatic Precipitator Using That Micro Pulse System
JP4245761B2 (en) Pulse superposition type high voltage generator for electrostatic application equipment and electrostatic application equipment
US2540177A (en) Ignition sxstem for fuel burners
US3624487A (en) Dual energy electrical pulse generating system
US3303385A (en) Ignition unit
US3222570A (en) Starter for multiple electrode lamps
JPS593246Y2 (en) Layered discharge type high energy ignition system
JPS631500B2 (en)
US3628089A (en) Pulse-generating apparatus
JPH0855669A (en) Pulse corona discharge circuit
JP2500508Y2 (en) Lighting circuit of electroluminescent lamp