JPS58224548A - Manufacture of composite material type rotor - Google Patents

Manufacture of composite material type rotor

Info

Publication number
JPS58224548A
JPS58224548A JP10764282A JP10764282A JPS58224548A JP S58224548 A JPS58224548 A JP S58224548A JP 10764282 A JP10764282 A JP 10764282A JP 10764282 A JP10764282 A JP 10764282A JP S58224548 A JPS58224548 A JP S58224548A
Authority
JP
Japan
Prior art keywords
magnetic
mold
core
casting space
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10764282A
Other languages
Japanese (ja)
Inventor
Noboru Fujimoto
登 藤本
Motoya Ito
元哉 伊藤
Masatoshi Watabe
渡部 正敏
Noriyoshi Takahashi
高橋 典義
Chisato Okada
千里 岡田
Nobutsugu Onishi
大西 修嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10764282A priority Critical patent/JPS58224548A/en
Publication of JPS58224548A publication Critical patent/JPS58224548A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0012Manufacturing cage rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Induction Machinery (AREA)

Abstract

PURPOSE:To facilitate the arrangement of magnetic materials by installing a rotor core in a casting mold, and applying a magnetic field radially to a casting space formed between the core and the mold. CONSTITUTION:A rotor core 2 is disposed coaxially in a casting mold 7 which has a cavity including an inner diameter larger than the outer diameter of the core, magnetic materials 5 which are filled in the casting space formed between the core 2 and the mold 7, a radial magnetic field is applied to the space to arrange it, and molten metal of conductive material 4 filled in the casting space is cooled and solidified while holding the radial arrangement of the materials 5. Then, the arrangement of the magnetic materials can be extremely readily and efficiently performed, and yet a conductive energizing sheath may be easily formed.

Description

【発明の詳細な説明】 本発明は、誘導電動機の回転子の製造方法および装置に
係り、特にインバータ運転に適する複合材型回転子の製
造方法および装置に関する〇一般に誘導電動機の回転子
には、回転子鉄心にスロットを形成し、その中に回転子
巻線を収納するよう圧した巻線形回転子と、同様にスロ
ットを形成し、そこにかご形の導体を収納するようにし
たかご形回転子と、回転子鉄心自体に導体の役割をもた
せた塊状回転子、の3種類がある。このうちでは、堅牢
で比較的安価であり、かつ電気特性も良好であるという
理由から、かご形回転子が最も広く用いらtている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for manufacturing a rotor for an induction motor, and more particularly to a method and apparatus for manufacturing a composite rotor suitable for inverter operation.In general, rotors for induction motors include: Wound rotor, in which slots are formed in the rotor core and compressed so that the rotor windings are housed in the slots, and squirrel-cage rotors, in which slots are similarly formed and squirrel-cage conductors are housed in them. There are three types: rotor rotors, and block rotors in which the rotor core itself functions as a conductor. Among these, squirrel cage rotors are most widely used because they are robust, relatively inexpensive, and have good electrical characteristics.

一方、誘導電導機はインバータ婢の可変周波数電源によ
り可変速運転される機会が近年増大している1、このイ
ンバータ等の可変周波数′電源は、通常、半導体回路で
構成され、その出力は一般にh調波を含む歪波となる。
On the other hand, in recent years, induction machines have been increasingly operated at variable speeds using variable frequency power supplies such as inverters.1 Variable frequency power supplies such as inverters are usually composed of semiconductor circuits, and their output is generally h The result is a distorted wave that includes harmonics.

このため誘導電動機の磁束には多(の高調波が含まれる
ことになり、正弦波電源による運転に比べ、電磁振動騒
音やトルク脈動が著しく増大する。この傾向は特にかご
形回転子の場合に顕著であるD そこで、回転子鉄心にスロットを有しない、イ′  、 ンバーク駆動に適した回転子として、鉄心の外周に導電
材料と磁性材料の複合材p・らなる通電外皮を設けたも
のが考えら粁ている。ここではこれを複合材型回転子と
称している1、この複合材型回転子の構造はおよそ第1
図および第2図のようなものである。
For this reason, the magnetic flux of an induction motor contains many harmonics, which significantly increases electromagnetic vibration noise and torque pulsation compared to operation using a sine wave power source.This tendency is particularly noticeable in the case of a squirrel cage rotor. Therefore, as a rotor that does not have slots in the rotor core and is suitable for in-bark drive, a current-carrying outer skin made of a composite material of a conductive material and a magnetic material is provided on the outer periphery of the core. This is called a composite rotor1.The structure of this composite rotor is approximately the same as the first one.
and FIG. 2.

すなわちこの回転子は、回転軸1の外周に、円板状の薄
鉄板を剛力向に積層してなる鉄心2な設け、この鉄心2
の外周に通電外皮3な設けたものである。この通電外皮
3は、アルミニウムなどの導電材料4と鉄などの磁性制
料5の複合相からな9、磁性材料5は放射方向(径方向
)に配列されている。なお鉄心2は積層体ではなく塊状
の場合もある。
That is, this rotor is provided with an iron core 2 formed by laminating disc-shaped thin iron plates in the rigid direction on the outer periphery of a rotating shaft 1, and this iron core 2
A current-carrying outer skin 3 is provided around the outer periphery. The current-carrying outer skin 3 is made of a composite phase 9 of a conductive material 4 such as aluminum and a magnetic material 5 such as iron, and the magnetic material 5 is arranged in the radial direction (radial direction). Note that the iron core 2 may be in the form of a block instead of a laminate.

このような構成の回転子では、その外周面の状態は、か
ご形回転子の鉄心の歯と導体とが周方向に無数に一様な
分布で存在していると考えてよ(、したかって外周面に
おける磁気変動は周方向に分散さ扛てきわめて小さくな
り、かご形回転子に比べ電磁振動騒音は格段に小さくな
る0 また、磁性制料5を放射方向に配列したことにより、通
電外皮30局方間の比透磁率μθと径方向の比透磁率μ
rの関係は、μθ〈附となり、磁気的異方性が付与され
ることになる。このμθ2μm と電動機出力の関係は
第3図のようになる。すなわち、電動機出力を大きくす
るには、μθをできるだけ小さく、かつμrを太き(す
ることが有効であるが、実際的には、周方向の比透磁率
μθが10以下で、径方向の比透磁率μ、が100以上
になれば、得られる最高出力に大差のないことがわかる
nさて、この新しく考えられた複合材型回転子をどのよ
うな方法で製造するかが本発明の課題である。特にこの
回転子の通電外皮は、周方向と径方向の磁気的異方性を
付与するため、導電材料の中で磁性材料が放射方向に配
列された状態としなければならないので、こtをいかに
容易に製造するかが問題となっている。普通に考えられ
ることは、鉄心の外周に導電材料を所望の厚さに被覆し
、この導電材料に放射方向に無数の穴をあけ、その穴の
中に磁性細線を埋込む方法であるが、これでは製造が面
倒であり、非能率的であるためコストアップにつなカー
るという欠点がある。
In a rotor with such a configuration, consider that the condition of the outer peripheral surface is that the teeth and conductors of the core of the squirrel-cage rotor exist in an infinitely uniform distribution in the circumferential direction. Magnetic fluctuations on the outer circumferential surface are dispersed in the circumferential direction and become extremely small, and electromagnetic vibration noise is much smaller than that of a squirrel cage rotor.In addition, by arranging the magnetic materials 5 in the radial direction, the current-carrying outer skin 30 Relative magnetic permeability μθ between the locals and relative magnetic permeability μ in the radial direction
The relationship of r is μθ<, and magnetic anisotropy is imparted. The relationship between this μθ2μm and the motor output is as shown in FIG. In other words, in order to increase the motor output, it is effective to make μθ as small as possible and μr as large as possible, but in reality, when the relative magnetic permeability μθ in the circumferential direction is 10 or less and the relative magnetic permeability in the radial direction is It can be seen that if the magnetic permeability μ is 100 or more, there is no significant difference in the maximum output that can be obtained.Now, the problem of the present invention is how to manufacture this newly conceived composite material rotor. In particular, in order to impart magnetic anisotropy in the circumferential and radial directions to the current-carrying outer skin of the rotor, magnetic materials must be arranged in the radial direction within the conductive material. The problem is how to easily manufacture the iron core.The usual idea is to coat the outer periphery of the iron core with a conductive material to a desired thickness, then drill countless holes in the conductive material in the radial direction. This method involves embedding thin magnetic wires in the holes, but this method has the disadvantage that manufacturing is troublesome and inefficient, leading to increased costs.

本発明の目的は、上記のような技術的銖題を解決し、複
合材型回転子を簡単に能率よく製造する方法とこの方法
に用いる装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned technical problems and to provide a method for easily and efficiently manufacturing a composite rotor, and an apparatus for use in the method.

この目的を達成するため、本発明は、回転子鉄心の外周
に導電材料と磁性材料の複合材からなる通電外皮を設け
た複合材型回転子の製造方法において、前記鉄心を、そ
の外径より大きい内径の型部を有する鋳型内に同軸状に
配置すること、前記鉄心と鋳型との間の鋳込空間に入n
た磁性材料を、その鋳込空間に放射方向の磁界をかけて
その方向に配列jろこと、および前記鋳込空間に入れた
導電材料の溶湯な、前記磁性材料の放射方向の配列を保
持したまま冷却固化させること、を含むことを特徴とす
る〇 またこの製造方法の実施に用いる本発明の装置は、回転
子鉄心の外径より大きい内径の型部を有し、その型窩内
に前記鉄心を同軸状に収納する鋳型と、このfJ8童の
外周を包囲jる外周磁極部、前記鉄心の中心部材に接す
る中心磁極部およびこれら磁極部間をつなぐ継鉄部から
なる磁気通路部側と、この磁気通路部材の中心磁極部に
巻装さnたコイルとを備えたことを特徴とする〇 以下、本発明の実施例を図面を参照して詳細に説明する
In order to achieve this object, the present invention provides a method for manufacturing a composite rotor in which a current-carrying outer skin made of a composite material of a conductive material and a magnetic material is provided on the outer periphery of a rotor core. It is arranged coaxially in a mold having a mold part with a large inner diameter, and the iron core is placed in a casting space between the core and the mold.
A radial magnetic field is applied to the casting space to arrange the magnetic material in that direction, and a molten conductive material placed in the casting space maintains the radial arrangement of the magnetic material. Further, the apparatus of the present invention used for carrying out this manufacturing method has a mold part with an inner diameter larger than the outer diameter of the rotor core, and the above-mentioned mold is placed in the mold cavity. A magnetic passage part side consisting of a mold that coaxially accommodates the iron core, an outer magnetic pole part surrounding the outer periphery of this fJ8 child, a central magnetic pole part that contacts the central member of the iron core, and a yoke part that connects these magnetic pole parts. , and a coil wound around the center magnetic pole portion of the magnetic path member. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第4因および第5図は本発明の製造方法および装置の一
実施例を示す。
Factor 4 and FIG. 5 show an embodiment of the manufacturing method and apparatus of the present invention.

第4図において、2は第1図で説明した回転子の鉄心で
あり、この鉄心2の両側には鉄心押え板&A、6Bが配
置されている。鉄心2は、その外径より大きい内径の警
鐘を有する円筒@型7内に同軸状に収納され、鋳型底板
8上に載置される。鉄心2、鉄心押え板5A、i5Bお
よび鋳型底板8の中心を貫通する心金9は、一端に鋳型
底板8の底面に保合するフランジ部10を有し、他端に
雄ねじ部11を有している。なお、円筒鋳型7は鋳型底
板8の外周に嵌着されている。この状態で、鉄心2は円
筒鋳型I内に同軸状に配置されるので、鉄心2と円筒鋳
型γとの間には通電外皮3(第1因参照)を形成するた
めの鋳込空間12が形成される【、なお、鉄心押え板6
A、6B、円筒鈎型7および心金9は磁性材料で製作さ
扛、鋳型底板8は非磁性材料で製作さnる。) 前記鋳込空間12内に放射方向(径方向)の磁界を発生
させるため、磁気通路部材13とコイル14とからなる
磁界発生器15が設げらjLる。磁気通路部材13は、
円筒鋳m7の外周を包囲してその中の鉄心2の外周面と
対向する外周磁極部16と、心金9の底面に当接する中
心磁極部17と、その間を磁気的につなぐ継鉄部18と
から構成されている。コイル14は中心磁極部1γに巻
装されており、かつ電源20に接続されている。
In FIG. 4, 2 is the iron core of the rotor explained in FIG. 1, and core holding plates &A and 6B are arranged on both sides of this iron core 2. The iron core 2 is housed coaxially in a cylindrical mold 7 having an inner diameter larger than its outer diameter, and placed on a mold bottom plate 8. A mandrel 9 passing through the center of the core 2, the core holding plates 5A, i5B, and the mold bottom plate 8 has a flange portion 10 at one end that is engaged with the bottom surface of the mold bottom plate 8, and a male threaded portion 11 at the other end. ing. Note that the cylindrical mold 7 is fitted onto the outer periphery of the mold bottom plate 8. In this state, the iron core 2 is placed coaxially within the cylindrical mold I, so there is a casting space 12 between the iron core 2 and the cylindrical mold γ for forming the current carrying skin 3 (see the first factor). Formed [, in addition, the core holding plate 6
A, 6B, the cylindrical hook mold 7 and the mandrel 9 are made of a magnetic material, and the mold bottom plate 8 is made of a non-magnetic material. ) In order to generate a radial (radial) magnetic field within the casting space 12, a magnetic field generator 15 consisting of a magnetic passage member 13 and a coil 14 is provided. The magnetic passage member 13 is
An outer peripheral magnetic pole part 16 that surrounds the outer periphery of the cylindrical casting m7 and faces the outer peripheral surface of the iron core 2 therein, a center magnetic pole part 17 that abuts the bottom surface of the mandrel 9, and a yoke part 18 that magnetically connects them. It is composed of. The coil 14 is wound around the central magnetic pole portion 1γ, and is connected to the power source 20.

以上の構成により、中心磁極部17から心金9、鉄心2
、鋳込空間12、円筒鋳型7、外周磁極部16、継鉄部
18を通って中心磁極部17に戻る磁気回路ができるか
ら、コイル14に通t−fると破線のような磁束Φが発
生し、鋳込空間12には放射方向の磁界が生じる。  
 。
With the above configuration, from the center magnetic pole part 17 to the core metal 9 and the iron core 2.
, a magnetic circuit is created that passes through the casting space 12, the cylindrical mold 7, the outer magnetic pole part 16, and the yoke part 18 and returns to the center magnetic pole part 17.When t-f is passed through the coil 14, a magnetic flux Φ as shown by the broken line is created. This generates a radial magnetic field in the casting space 12.
.

この状態で、鋳込空間12内に、その鋳込空間の径方向
の厚さに相鮨する長さで直径03〜l、Qrnm   
 ゛程度の磁性細線5Wを投入すると、磁性細線5Wは
磁界の作用により放射方向に向きが揃うことになろ。こ
の磁性細線5Wの投入を周方向にまんべんなく行い、適
当な訃になったら、非磁性体の押込みリング22で磁?
、細線5Wを鋳型底板8の方へ押込むようにする0この
投入と押込みを繰返し行い、磁4!L細線5Wの積上げ
高さが鉄心2の積層幅と同じになったら、円筒鋳型Tの
上部開口部に第5図に示すような鋳型上沓23を嵌着し
、さらに心金9の雄ねじ部11にナツト24をかげて締
付ける。この締付けにより鋳込空間12内で放射方向に
配列された磁性細線5Wはその位置を固定されるので、
この状態でコイル14への通電を停止し、円筒鋳型7以
内全体を磁界発生器15から抜き取る。
In this state, in the casting space 12, a diameter of 03~l, Qrnm is placed in a length corresponding to the radial thickness of the casting space.
When the magnetic wires 5W of about 200 mm are introduced, the magnetic wires 5W will be oriented in the radial direction due to the action of the magnetic field. The magnetic thin wire 5W is introduced evenly in the circumferential direction, and when it reaches a suitable level, it is removed by the non-magnetic pushing ring 22.
, Push the thin wire 5W toward the mold bottom plate 8. Repeat this insertion and pushing, until the magnet 4! When the stacked height of the L thin wires 5W becomes the same as the stacked width of the iron core 2, fit the mold upper shoe 23 as shown in FIG. 11 and tighten the nut 24. Due to this tightening, the magnetic wires 5W arranged in the radial direction within the casting space 12 are fixed in position.
In this state, the power supply to the coil 14 is stopped, and the entire inside of the cylindrical mold 7 is extracted from the magnetic field generator 15.

抜き取られた円筒鋳型7以内全体は第5図に示すように
真空チャンバ25内にセットされろ。真空チャンバ25
の台板26は、アルミニウムなどの導電材料の溶湯4L
が入ったルツボ28を蓋するように設けられている。ル
ツボ28は電気炉29で加熱されて、その中の溶湯4L
を所定の温度に保つようになっている。溶湯4L内には
合板26の底面に取付けら匙た溶湯吸上げ用のパイプ3
0が差込まれており、かつこのパイプ30に連通するよ
うに合板26内には溶湯4Lを周方向に分配するための
分岐通路31が形成されている。
The whole inside of the cylindrical mold 7 that has been extracted is set in a vacuum chamber 25 as shown in FIG. Vacuum chamber 25
The base plate 26 is made of 4L of molten metal of a conductive material such as aluminum.
It is provided so as to cover the crucible 28 containing the crucible. The crucible 28 is heated in an electric furnace 29 and contains 4L of molten metal.
is kept at a predetermined temperature. Inside the molten metal 4L is a pipe 3 for sucking up the molten metal attached to the bottom of the plywood 26.
0 is inserted, and a branch passage 31 for distributing the molten metal 4L in the circumferential direction is formed in the plywood 26 so as to communicate with the pipe 30.

一方、鋳型底板8には各分岐通路311C対応させて鋳
込空間12に連通する湯通孔32が形成されており、ま
た鋳型上蓋23には鋳込空間12内のカスを抜(ための
ガス抜き孔33が形成されている。
On the other hand, the mold bottom plate 8 is formed with a hot water hole 32 that communicates with the casting space 12 in correspondence with each branch passage 311C, and the mold upper lid 23 is provided with a gas for removing waste from the casting space 12. A punch hole 33 is formed.

この状態で真空ボンダ34を動作させて、真空チャンバ
25内のガスを抜き、チャンバ25内を真空にする。こ
れにより鋳込空間12内も真空になる。次に圧縮機35
を動作させてルツボ28内の湯面な加圧すると、溶湯4
Lは、パイプ30、分岐通路31、湯通孔32を通って
鋳込空間12内に流入する。磁性#1線5Wは鉄線など
からなり導電材料の溶湯4Lの温度では溶けないから、
溶湯4Lは磁性細線5Wの間隙に入り込むことKなろ。
In this state, the vacuum bonder 34 is operated to remove gas from the vacuum chamber 25 and make the chamber 25 a vacuum. As a result, the inside of the casting space 12 is also made vacuum. Next, the compressor 35
When the melt level in the crucible 28 is pressurized by operating the molten metal 4,
L flows into the casting space 12 through the pipe 30, the branch passage 31, and the hot water hole 32. The magnetic #1 wire 5W is made of iron wire, etc., and does not melt at the temperature of 4L of molten metal of conductive material.
The molten metal 4L should not enter the gap between the magnetic wires 5W.

このとき溶湯4Lが冷却されてすぐに固化しないように
するため、円筒鋳型7以内全体を予熱してお(ことか望
ましい。溶湯4L′h″−磁性細線5Wの間隙に完全に
充填されたら、圧縮機35による加圧を停止し、そのま
ま円筒鋳型7以内全体を冷却する。この冷却により磁性
細線5Wの間隙に充填された溶湯4Lは固化して導電材
料4となる(第2図参照)。
At this time, in order to prevent the molten metal 4L from cooling and solidifying immediately, it is desirable to preheat the entire area within the cylindrical mold 7. Once the gap between the molten metal 4L'h'' and the magnetic wire 5W is completely filled, The pressurization by the compressor 35 is stopped, and the entire inside of the cylindrical mold 7 is cooled. By this cooling, the molten metal 4L filled in the gap between the magnetic wires 5W is solidified and becomes the conductive material 4 (see FIG. 2).

溶湯4Lが固化したら、真空チャンバ25から円筒鋳型
γ以内全体を取出し、ナツト24をはずして、鋳型」二
蓋23、円筒鋳型7、鋳型底板8などを取りはずすと、
鉄心2の外周に、導電材料4とその中に放射方向に埋め
込まれた磁性細線5Wとの複合材からなる通電外皮3が
形成されたことになる(第1図、第2図参照)。また鉄
心2は鋳込まnた導電材料4と結合して通電外皮3と一
体化されるので、あとは鉄心2に回転軸1を挿入すれば
第1図のような回転子ができ上る。
When the molten metal 4L has solidified, take out the entire cylindrical mold γ from the vacuum chamber 25, remove the nut 24, and remove the mold lid 23, the cylindrical mold 7, the mold bottom plate 8, etc.
A current-carrying outer sheath 3 made of a composite material of the conductive material 4 and the magnetic thin wires 5W embedded in the conductive material 4 in the radial direction is formed around the outer periphery of the iron core 2 (see FIGS. 1 and 2). Further, since the iron core 2 is combined with the cast-in conductive material 4 and integrated with the current-carrying outer skin 3, all that is left to do is to insert the rotating shaft 1 into the iron core 2, and a rotor as shown in FIG. 1 is completed.

このように本実施例によればミ、′、鉄心と円筒鋳型の
間の鋳込空間内に投入した無数の磁性4411線を簡単
に放射方向に配列することができるとともに、この磁性
細線の間隙に導電材料を鋳込むことにより簡単に通電夕
1皮を製造することかでき4)OそしてこれによりtJ
造された通電外皮は、磁性細線か放射力向に怖1つてい
るので径方向の比透磁″4−は大きく、また周方向の比
透磁率(1磁性細線の間に勇解拐相が詰っているので径
方向のそれより格段に小さなものとなり、磁気的異方性
を持つものとなるO 第6区口ま上記のようにして製造された通電外皮の、磁
性細線のδ相1率S(と周方向および径方向の比透磁率
μθ、11rの関係を示したものである。
In this way, according to this embodiment, it is possible to easily arrange innumerable magnetic 4411 wires inserted into the casting space between the iron core and the cylindrical mold in the radial direction, and the gaps between the magnetic wires can be easily arranged. It is possible to easily produce an electrified layer by casting a conductive material into 4) O and thereby tJ
Since the current-carrying outer skin is made of thin magnetic wires, the relative magnetic permeability in the radial direction is large, and the relative magnetic permeability in the circumferential direction (the magnetic wire has a magnetic flux between the thin magnetic wires) is large. Since it is packed, it becomes much smaller than that in the radial direction, and has magnetic anisotropy. This figure shows the relationship between S() and relative magnetic permeability μθ, 11r in the circumferential direction and the radial direction.

こtにより、ば、[a ll1ll Mの占積率8fに
よりμθとμ、の比を適当に定められることかわかろo
したがって上記のようにして製造された回転イを持つ銹
専電動機の出力特性は磁g細線の占和率で定まることに
なる。
By doing this, we can determine the ratio of μθ and μ appropriately using the space factor 8f of [a ll1ll M.
Therefore, the output characteristics of the rotary electric motor manufactured as described above are determined by the occupation rate of the magnetic g-thin wire.

第7図は本発明Q)製造方法および装置の他の実施例を
示す。この図において第4図と同一部分または相当部分
には同一符号を付しであるrlこの実施例では、円筒鋳
型7以内を磁界発生器15内にセットしたまま、鋳込空
間12内に、導電材料の浴湯41ノ中に鉄粉などの磁性
粉体5Pを混入してなる混合#湯36を流し込むように
している。このため鋳型底板8には湯通孔は設けらtて
いない。混合溶湯36が鉄心2の積層厚さに相当するだ
け注入されたら、それが同化しないうちにコイル14に
通電し、混合溶湯36に放射方向の磁界をかけ、その中
の磁性粉体5Pを放射方向に配列させる。その俵、磁界
をかけたまま冷却して混合溶湯36を固化させる。こn
により、鉄心2の外周には、導′邂材料とその中で放射
方向に配列された磁性粉体との複合材からなる通電外皮
が形成されることになる。ただし、この方法では混合溶
湯の駒込時にコイル14が加熱されるので、耐熱性のコ
イルを用いるか、コイル14に水などを流して冷却する
ことが必歎である。
FIG. 7 shows another embodiment of the manufacturing method and apparatus of the present invention Q). In this figure, parts that are the same as or equivalent to those in FIG. A mixed hot water 36 made by mixing magnetic powder 5P such as iron powder into the bath water 41 of the material is poured. Therefore, no hot water holes are provided in the mold bottom plate 8. When the mixed molten metal 36 is injected in an amount equivalent to the laminated thickness of the iron core 2, before it is assimilated, the coil 14 is energized, a radial magnetic field is applied to the mixed molten metal 36, and the magnetic powder 5P therein is radiated. Arrange in the direction. The bale is cooled while a magnetic field is applied to solidify the mixed molten metal 36. Kon
As a result, on the outer periphery of the iron core 2, a current-carrying outer skin is formed, which is made of a composite material of the conductive material and the magnetic powder arranged in the radial direction therein. However, in this method, since the coil 14 is heated when the mixed molten metal is mixed, it is necessary to use a heat-resistant coil or to cool the coil 14 by flowing water or the like.

なお、先に説明した第1の実施例の場合でも、鋳込空間
内に所定音の磁性11III線を投入しそ扛を磁界によ
り放射方向に配列させた後、磁界をかけたままの状態で
mlJ込空間内に導電材料の浴湯を注ぎ込むようにして
もよい。
Note that even in the case of the first embodiment described above, after inserting a magnetic 11III wire with a predetermined sound into the casting space and arranging the wires in the radial direction by a magnetic field, mlJ is applied while the magnetic field is still applied. Alternatively, bathwater made of conductive material may be poured into the closed space.

以上説明したように本発明によりは、回転子鉄心を鋳型
内に設置し、その鉄心と鋳型の間にできる鋳込空間に放
射方向の磁界をかけて磁性月利を放射方向に配列するよ
うにしたので、磁性拐科の配列をきわめて容易に能率的
に行うことができ、また磁性材料を放射方向に配列した
状態で前記鋳込空間内の溶湯な固化させることにより、
鉄心の外周に、径方向の透磁率が周方向のそれより格段
に太き(しかも導電性のある通電外皮を容易に形成でき
るという利点がある。
As explained above, according to the present invention, the rotor core is installed in a mold, and a radial magnetic field is applied to the casting space created between the core and the mold to arrange the magnetic particles in the radial direction. Therefore, the magnetic material can be arranged very easily and efficiently, and by solidifying the molten metal in the casting space with the magnetic material arranged in the radial direction,
The magnetic permeability in the radial direction is much greater than that in the circumferential direction (and there is an advantage that a conductive outer skin can be easily formed on the outer periphery of the iron core).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複合材型回転子の一例を示す一部切開斜視図、
第2図は第1図のA部の拡大断[111図、第3図は同
回転子の通電外皮の径方向および周方向の比透磁率μr
、μθと1!動機出力との関係を示すグラフ、第4図は
本発明の製造方法および装置゛の一実施例を示す縦断面
図、第5図は同実施例における他の過程を示す断面図、
第6図は同実施例により製造された回転子の通電外皮の
、径方向および周方向の比透磁率μr、μθと 磁性a
imの占槓率Sfとの関係を示すクラン、第7図は本発
明の製造方法および装置の他の実施例を示す縦断面図で
ある。 1・・・・・・回転軸、2・・・・・・回転子鉄心、3
・・・・・・通電外皮、4・・・・・・導電材料、4L
・・・・・・導電材料の溶湯、5・・・・・・磁性材料
、5W・・・・・・磁性細線、5P・・・・・・磁性粉
体、7・・・・・・円筒鋳型、8・・・・・・鋳型底板
、9・・・・・・心金(中心部材)、12・・・・・・
鋳込空間、13・・・・・・磁気通路部材、14・・・
・・・コイル、15・・・・・・磁界発生器、16・・
・・・・外周磁極部、1γ・・・・・・中心磁極部、1
8・・・・・・継鉄部、23・・・・・・!1.j型上
蓋。 第1回 才2図 73図′ 才4図 2 T5図
FIG. 1 is a partially cutaway perspective view showing an example of a composite material rotor;
Figure 2 is an enlarged section of part A in Figure 1 [Figure 111 and Figure 3 are the relative magnetic permeability μr in the radial and circumferential directions of the current-carrying outer skin of the rotor.
, μθ and 1! FIG. 4 is a longitudinal sectional view showing an embodiment of the manufacturing method and apparatus of the present invention; FIG. 5 is a sectional view showing another process in the same embodiment;
Figure 6 shows the relative magnetic permeability μr and μθ in the radial and circumferential directions of the current-carrying outer skin of the rotor manufactured according to the same example, and the magnetic property a.
FIG. 7 is a vertical sectional view showing another embodiment of the manufacturing method and apparatus of the present invention. 1...Rotating shaft, 2...Rotor core, 3
・・・・・・Electricity-conducting outer skin, 4・・・Conductive material, 4L
... Molten metal of conductive material, 5 ... Magnetic material, 5W ... Magnetic thin wire, 5P ... Magnetic powder, 7 ... Cylinder Mold, 8... Mold bottom plate, 9... Mandrel (center member), 12...
Casting space, 13...Magnetic passage member, 14...
...Coil, 15...Magnetic field generator, 16...
......Outer magnetic pole part, 1γ...Central magnetic pole part, 1
8...Yoke section, 23...! 1. J-shaped top lid. 1st Year 2 Figure 73' Year 4 Figure 2 T5 Figure

Claims (1)

【特許請求の範囲】 1、回転子鉄心の外周に導電材料と破性材料の複合材か
らなる通電外皮を形成する方法において、前記鉄心を、
その外径より大きい内径の型窩を有する鋳型内に同軸状
に配置すること、前記鉄心と鋳型との間の鋳込空間に入
れた磁性材料を、その鋳込空間に放射方向の磁界をかげ
てその方向に配列すること、および前記鋳込空間に入n
た導電材料の溶湯な、前記磁性材料の放射方向の配列を
保持したまま冷却固化させることを含む複合材型回転子
の製造方法。 2、特許請求の範囲第1項において、前記磁性材料は磁
性細線であり、この母性細線を前記鋳込空間内で放射方
向に配列した後、その鋳込空間内に導電材料の溶湯を注
入することを特徴とする複合材型回転子の製造方法、 3、特許請求の範囲第1項において、前記磁性材料は磁
性粉体であり、この磁、性粉杯を混入した導電材料の溶
湯な前記鋳込空間内に注入した仮、前記磁性粉体を放射
方向に配列することを特徴と−fる被合材型回転子の製
造方法。 4、回転子鉄心の外周に導電拐料と磁性拐料の複合材か
らなる通電外皮を形成する装置において、前記鉄心の外
径より大きい内径の型Bを有し、その型窩内に前記鉄心
を同軸状に収納する鋳型と、この鋳型の外周を包囲する
外周磁極部、前記鉄心の中心部材に接する中心磁極部お
よびこれら磁極部間をつなぐ継鉄部からなる磁気通路部
材と、この磁気通路部材の中心磁極部に巻装されたコイ
ルとを備えたことを特徴とする複合材型回転子の製造装
置。
[Claims] 1. A method for forming a current-carrying outer skin made of a composite material of a conductive material and a rupture material on the outer periphery of a rotor core, the core comprising:
The magnetic material placed in the casting space between the iron core and the mold is placed coaxially in a mold having a mold cavity with an inner diameter larger than the outer diameter thereof, and the magnetic material placed in the casting space between the core and the mold is shaded with a radial magnetic field in the casting space. and arranging it in that direction, and entering the casting space.
A method for manufacturing a composite rotor, comprising cooling and solidifying a molten conductive material while maintaining the radial alignment of the magnetic material. 2. In claim 1, the magnetic material is a magnetic thin wire, and after the mother wire is arranged in a radial direction within the casting space, a molten metal of the conductive material is injected into the casting space. 3. In claim 1, the magnetic material is magnetic powder, and the magnetic material is a molten metal of a conductive material mixed with magnetic powder. 1. A method for manufacturing a mixed material type rotor, characterized in that the magnetic powder injected into a casting space is arranged in a radial direction. 4. In an apparatus for forming a current-carrying outer skin made of a composite material of a conductive material and a magnetic material on the outer periphery of a rotor core, a mold B having an inner diameter larger than the outer diameter of the core is provided, and the core is placed in the cavity of the mold B. a magnetic path member consisting of a mold coaxially housing the mold, an outer magnetic pole part surrounding the outer periphery of the mold, a central magnetic pole part in contact with the central member of the iron core, and a yoke part connecting these magnetic pole parts; 1. An apparatus for manufacturing a composite rotor, comprising: a coil wound around a central magnetic pole portion of a member.
JP10764282A 1982-06-24 1982-06-24 Manufacture of composite material type rotor Pending JPS58224548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10764282A JPS58224548A (en) 1982-06-24 1982-06-24 Manufacture of composite material type rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10764282A JPS58224548A (en) 1982-06-24 1982-06-24 Manufacture of composite material type rotor

Publications (1)

Publication Number Publication Date
JPS58224548A true JPS58224548A (en) 1983-12-26

Family

ID=14464363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10764282A Pending JPS58224548A (en) 1982-06-24 1982-06-24 Manufacture of composite material type rotor

Country Status (1)

Country Link
JP (1) JPS58224548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193079A2 (en) 1985-02-27 1986-09-03 Hitachi, Ltd. Method of manufacturing electromagnetic members
WO1994017581A1 (en) * 1993-01-22 1994-08-04 Fanuc Ltd Method of and apparatus for manufacturing cage rotor of induction motor
WO1994019857A1 (en) * 1993-02-18 1994-09-01 Fanuc Ltd Method for manufacturing cage rotor for induction motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193079A2 (en) 1985-02-27 1986-09-03 Hitachi, Ltd. Method of manufacturing electromagnetic members
WO1994017581A1 (en) * 1993-01-22 1994-08-04 Fanuc Ltd Method of and apparatus for manufacturing cage rotor of induction motor
US5538067A (en) * 1993-01-22 1996-07-23 Fanuc Ltd. Method and device of producing a squirrel-cage rotor for an induction motor
WO1994019857A1 (en) * 1993-02-18 1994-09-01 Fanuc Ltd Method for manufacturing cage rotor for induction motor
US5467521A (en) * 1993-02-18 1995-11-21 Fanuc Ltd. Method of producing squirrel-cage rotor for induction motor

Similar Documents

Publication Publication Date Title
US3979619A (en) Permanent magnet field structure for dynamoelectric machines
EP0282876B1 (en) Method for winding the coils for an air gap motor
US6362544B2 (en) Electromagnetic device with embedded windings and method for its manufacture
EP0193929A2 (en) Method for making a servomotor
US4242610A (en) Wedge-shaped permanent magnet rotor assembly
JP3017166B2 (en) Induction furnace
JP2009525018A (en) Rotor assembly for line start type permanent magnet synchronous motor
JP2005354821A (en) Motor
RU2492050C2 (en) Powder-based soft-magnetic inductive element and device for its production
KR101004065B1 (en) Continuous casting installation for the electromagnetic rotation of molten metal moving inside the nozzle
JPS58224548A (en) Manufacture of composite material type rotor
JP2001025189A (en) Permanent magnet of permanent magnet rotor
JP2011078166A (en) Method of manufacturing core
JPH0315255A (en) Axial gap type dc brushless motor
JP2000236649A (en) Liquid-cooled electromagnetic machine
JP2000166156A (en) Rotating electric machine and manufacture of magnetic wedge used therefor
JP2004254421A (en) Motor and its manufacturing method
JP3666123B2 (en) Molded motor and manufacturing method thereof
JPH07227053A (en) Magnetic wedge for rotary electric machine and its manufacture
JPH09135563A (en) Rotating field generator and continuous casting machine
JP4171619B2 (en) Iron core forming method and electromagnetic induction device using the iron core
JPH10270160A (en) Induction heating coil device and its manufacture
JPS6315707A (en) Thermoset resin molding device having molding tool with built-in high-frequency inductor
JP2020096468A (en) Manufacturing method of stator of rotating electric machine and rotating electric machine
JPH01126141A (en) Stator core