JPS58224524A - Branch reactor setting system - Google Patents

Branch reactor setting system

Info

Publication number
JPS58224524A
JPS58224524A JP57106863A JP10686382A JPS58224524A JP S58224524 A JPS58224524 A JP S58224524A JP 57106863 A JP57106863 A JP 57106863A JP 10686382 A JP10686382 A JP 10686382A JP S58224524 A JPS58224524 A JP S58224524A
Authority
JP
Japan
Prior art keywords
shunt reactor
line
transmission line
power transmission
setting system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57106863A
Other languages
Japanese (ja)
Inventor
野原 哈夫
益雄 後藤
渡辺 篤美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57106863A priority Critical patent/JPS58224524A/en
Publication of JPS58224524A publication Critical patent/JPS58224524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は騨路1頁付分路リアクトルの設置方式に係り、
特に、経済的にすぐれた分路リアクトルの設置方式に関
する。
[Detailed Description of the Invention] The present invention relates to an installation method for a shunt reactor with one page attached to the base,
In particular, it relates to an economically superior installation method for shunt reactors.

従来の線路直付分路リアクトルの設置に関しては、酸比
の変動幅の点より検討して送電線の両端全おさえるため
、送゛醒線の両端に設置することが考えられていた。
Regarding the installation of conventional line-mounted shunt reactors, it has been considered to install them at both ends of the transmission line in order to cover both ends of the transmission line, taking into account the fluctuation range of the acid ratio.

しかし、このような設置方式を採用した場合には、送電
線両端に分路リアクトルを設置するため、経済的に高価
になるという欠点があった本発明の目的は、定常状態お
よび過渡状態のいずれの状態でも、すぐれた特性を持ち
、かつ、経済的にもすぐれた線路直付分路リアクトルの
設置方式を提供するにある。
However, when such an installation method is adopted, shunt reactors are installed at both ends of the power transmission line, which is economically expensive.The purpose of the present invention is to To provide a method for installing a shunt reactor directly attached to a line, which has excellent characteristics even in the above-mentioned conditions and is also economically excellent.

分路リアクトルの設置目的の第1は、送電線の充電容量
の補償である。この目的の他、最高電圧をおさえること
も必費である。従来は、こねらを考慮し−で、送電線上
の電圧の変化幅が小さくなるよう、送電線の両端に設置
することが考えられてきた。しかt/、送電線の電圧は
最高電圧以下であれば、′電圧の変化幅は、あまり問題
とはならない。
The first purpose of installing a shunt reactor is to compensate for the charging capacity of the power transmission line. In addition to this purpose, it is also necessary to suppress the maximum voltage. Conventionally, it has been considered to install them at both ends of the power transmission line in order to reduce the range of voltage change on the power transmission line, taking into account the possibility of damage. However, as long as the voltage of the transmission line is below the maximum voltage, the range of voltage change does not matter much.

耐絶縁性の点からは最高電圧の方が重要である。From the standpoint of insulation resistance, the highest voltage is more important.

この点より、充電容量の総量を、線路中央に設置する方
式も採用可能である。
From this point of view, it is also possible to adopt a method in which the total charging capacity is installed in the center of the line.

以下、本発明の一実施例を、第1図により説明する。電
気所Gl 、 G2が母線Bl + 82 、送電線り
、、L、’(r介して、電力の授受を行なっている。
An embodiment of the present invention will be described below with reference to FIG. Electrical stations Gl and G2 exchange power via the bus line Bl + 82 and transmission lines ,L,'(r).

送”tjc#L+  、Ltにはしゃ断器CB、〜cB
4が設けられており、分路リアクトルは線路側に1)a
kl〜D−に+が、母線側にDnl〜DB4か、設置さ
ねている。
Transmission "tjc#L+, Lt has breaker CB, ~cB
4 is provided, and the shunt reactor is 1)a on the track side.
+ is installed on kl~D-, and Dnl~DB4 is not installed on the busbar side.

送酸′/1Ml、、の充区容址は分路リアクトルI)m
k++D s k2及びDBI 、 1)n2により補
償される。
The capacity of the oxygen supply '/1Ml is the shunt reactor I)m
k++D s k2 and DBI, 1) compensated by n2.

この図で、′畦気所0.側より、送電線Llを充電する
場合を考えると、ザージ電圧のため、送電線中央で過電
圧か生しる。′鑞気所G、側より充電した場合において
も、同様の結果となる。
In this figure, the ridge location is 0. If we consider the case where the power transmission line Ll is charged from the side, an overvoltage will occur at the center of the power transmission line due to the surge voltage. A similar result is obtained when charging from the side of the drying station G.

このたぬ、第2図のように、送電線中央に、線路直付分
路リアクトルl) m kH、D m kBを加えた容
量より定まるリアクトルDTIとして設ける。このよう
にすることにより、線路充電時の電圧上昇を抑制でき、
電気所G、、G2のいずfLから充電し7ても例等支障
がない。
As shown in Fig. 2, a reactor DTI is installed at the center of the transmission line, determined by the capacity of the shunt reactor directly attached to the line (l) m kH and D m kB. By doing this, it is possible to suppress the voltage rise during line charging,
There is no problem even if the battery is charged from any fL of electric stations G, G2.

このように、従来より考えらlていた分路リアクトルの
設置方式をかえるのみで送電線のサージによる電圧上列
全抑制できる。
In this way, by simply changing the shunt reactor installation method that has been considered in the past, it is possible to completely suppress voltage increases caused by power transmission line surges.

母線直付分路リアクトルも、同様に考えることができる
が、送心線開放時の共振を考えると、母線直付分路リア
クトルは両端に接地する必要がある。又、以上の説明は
分路リアクトルを中央に設置する側について行なったが
、第3図のように、(3) 分路リアクトルを送を線画調に設置した場合1は、Aの
ように、中央に設置した場合はBのように示される点か
ら考えて、送電線の両端以外では電圧の抑制Vこ関して
効果のあることば明らかである。
A shunt reactor directly attached to the busbar can be considered in the same way, but considering resonance when the center line is open, the shunt reactor directly attached to the busbar needs to be grounded at both ends. Also, the above explanation was given for the side where the shunt reactor is installed in the center, but as shown in Figure 3, (3) When the shunt reactor is installed in a line drawing style, as shown in A, When installed in the center, considering the point shown in B, it is clear that it is effective in suppressing the voltage at areas other than both ends of the power transmission line.

本発明によれは、線路直付分路リアクトルを線路中央に
一括して設置することにより、両端に分割(7て設置す
る場合に比べて経済性の向上全針ることかでき、その上
、送電線の開閉操作時に生ずる過電圧に関しても抑制で
き、効果は極めて大きい。
According to the present invention, by installing the shunt reactor directly attached to the line all at once in the center of the line, it is possible to install the shunt reactor at both ends, which improves economic efficiency compared to the case where the shunt reactor is installed at both ends. It is also possible to suppress overvoltages that occur when opening and closing power transmission lines, which is extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の分路リアクトルの設置図、第2図は本発
明の分路リアクトルの設置図、第3図は本発明の効果を
示す図である。 Gl  、G2・・・電気所、B、、B2・・・母線、
C,B。 〜CB 4・・・しf断器1.、Dmkl〜I)sk4
・・・線路直付分路リアクトル、Dal〜’Da2・・
・母線直付分路リアクトル、L、、L、・・・送電線、
F・・・事故点、DTI 。
FIG. 1 is an installation diagram of a conventional shunt reactor, FIG. 2 is an installation diagram of a shunt reactor according to the present invention, and FIG. 3 is a diagram showing the effects of the present invention. Gl, G2...Electric station, B,, B2...Bus bar,
C,B. ~CB 4...F disconnector 1. , Dmkl~I) sk4
...Shunt reactor directly attached to the line, Dal~'Da2...
・Shunt reactor directly attached to the bus bar, L,, L,...transmission line,
F... Accident point, DTI.

Claims (1)

【特許請求の範囲】[Claims] 1、送電線の充電容量を補償するりアクドルの設fk方
式に関し、送電線の充電容量相当の分路リアクトルを線
路中央に設置することを特徴とする分路リアクトル設置
方式。
1. A shunt reactor installation method, which is characterized by installing a shunt reactor equivalent to the charging capacity of the power transmission line in the center of the line, regarding the fk method for compensating the charging capacity of the power transmission line or setting the accelerator.
JP57106863A 1982-06-23 1982-06-23 Branch reactor setting system Pending JPS58224524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57106863A JPS58224524A (en) 1982-06-23 1982-06-23 Branch reactor setting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106863A JPS58224524A (en) 1982-06-23 1982-06-23 Branch reactor setting system

Publications (1)

Publication Number Publication Date
JPS58224524A true JPS58224524A (en) 1983-12-26

Family

ID=14444395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106863A Pending JPS58224524A (en) 1982-06-23 1982-06-23 Branch reactor setting system

Country Status (1)

Country Link
JP (1) JPS58224524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017146A1 (en) * 2014-07-31 2016-02-04 株式会社 東芝 Three-phase power transmission protection method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017146A1 (en) * 2014-07-31 2016-02-04 株式会社 東芝 Three-phase power transmission protection method and device
JP2016034183A (en) * 2014-07-31 2016-03-10 株式会社東芝 Three-phase power transmission protection method and device

Similar Documents

Publication Publication Date Title
CN105102090A (en) Method for constructing power distribution line by using combined overhead ground wire and extra high voltage neutral line having separated installation structure for extra high voltage neutral line and low voltage neutral line
JPS58224524A (en) Branch reactor setting system
US5712756A (en) Substation with surge arresters
Yamaguchi et al. Development of power supply system for obstruction lights exploiting induced current which flows through overhead ground wires
JPS61164414A (en) Lightning method of transmission line
CN221742205U (en) Single-loop Zhang Bian-resistant phase-change tower
CN106099798A (en) A kind of multichannel double-fed wind generator tube type bus groove structure
JPS60112223A (en) Transformer on post
JPS6145683Y2 (en)
JPS5828906Y2 (en) Feeding cable line for rail power supply
Winfield et al. The design of the 330 kV transmission system for Rhodesia
JPS5846805A (en) Method of increasing substation
JPH09154231A (en) Power transmission system using gas insulated pipeline
JPH10285794A (en) Distribution line thunderproof system
Halperin Economical utilization of electric power equipment
Report 500-kV AC Substation Design Criteria Summary of Industry Practices
JPS6331429A (en) Protector of reactive power compensator
JPS60162420A (en) Power distribution substation facility
Jancke The Development of the Swedish 400-Kv Network
JPS62185517A (en) Lightning protection of overhead distribution line
JPS5963907A (en) Substation facility
JPS61107709A (en) Transformer
Coventry Some notes on the design of hv transmission lines, with special reference to conditions in India and Pakistan
JPS5970107A (en) Ac/dc conversion station
JPS6065504A (en) Gas-insulation transformer