JPS58223788A - Overflow and pump-up feedwater device of reactor coolant - Google Patents

Overflow and pump-up feedwater device of reactor coolant

Info

Publication number
JPS58223788A
JPS58223788A JP57106757A JP10675782A JPS58223788A JP S58223788 A JPS58223788 A JP S58223788A JP 57106757 A JP57106757 A JP 57106757A JP 10675782 A JP10675782 A JP 10675782A JP S58223788 A JPS58223788 A JP S58223788A
Authority
JP
Japan
Prior art keywords
overflow
coolant
pumping
pumping supply
reactor vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57106757A
Other languages
Japanese (ja)
Inventor
洋平 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57106757A priority Critical patent/JPS58223788A/en
Publication of JPS58223788A publication Critical patent/JPS58223788A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子炉冷却材の溢流および汲上供給装置の改良
に係り、特に原子炉容器と冷却材の汲上供給配管との接
合部における熱応力を緩和した原子炉冷却材の溢流およ
び汲上供給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a nuclear reactor coolant overflow and pumping supply system, and in particular to improvements in thermal stress at the joint between a reactor vessel and a coolant pumping supply pipe. This invention relates to a reactor coolant overflow and pumping supply system that alleviates the problem.

〔発明の技術的背景〕[Technical background of the invention]

液体金属冷却型の原子力発電プラントにおいては、原子
炉の起動1、停止あるいは出力変更等によって運転状態
が変化すると、炉内温度が変化し、これに伴って冷却材
が膨張または収縮する。
In a liquid metal cooled nuclear power plant, when the operating state changes due to starting, stopping, or changing the output of the reactor, the temperature inside the reactor changes, and the coolant expands or contracts accordingly.

この冷却材の膨張や収縮を吸収するため、液体金属冷却
型原子炉には冷却材の溢流および汲上供給装置が付設さ
れている。
To accommodate this expansion and contraction of the coolant, liquid metal cooled nuclear reactors are equipped with coolant overflow and pumping systems.

第1図は従来の原子炉冷却材の溢流および汲上供給装置
の構成例を示すもので、原子炉容器1内の冷却材2の液
面レベルには冷却材の溢流口6が開口している。
FIG. 1 shows an example of the configuration of a conventional reactor coolant overflow and pumping supply device, in which a coolant overflow port 6 is opened at the liquid level of the coolant 2 in the reactor vessel 1. ing.

この溢流口6に一端を連結された溢流配管4は原子炉容
器1の壁面を貫通し、他端側な貯留タンク5内に開口せ
しめられている。
An overflow pipe 4 connected at one end to the overflow port 6 passes through the wall surface of the reactor vessel 1 and opens into a storage tank 5 at the other end.

また、このタンク5と原子炉容器1の間は、冷却材汲上
げ用の電磁ポンプ6を備えた汲上供給配管7で連結され
ている。
Further, this tank 5 and the reactor vessel 1 are connected by a pumping supply pipe 7 equipped with an electromagnetic pump 6 for pumping up coolant.

従って、原子炉の出力が上昇して冷却材が膨張すると、
原子炉容器1内の冷却材は溢流口6から溢流配管4を通
って貯留タンク5内に流れ込み、貯留される。
Therefore, as the reactor power increases and the coolant expands,
The coolant in the reactor vessel 1 flows from the overflow port 6 through the overflow pipe 4 into the storage tank 5 and is stored therein.

また、原子炉容器1内の冷却材2の液面が所定レベル以
下に低下すると、′電磁ポンプ6が起動して貯留タンク
5内の冷却材を汲上げ、汲上供給配♂ 、7□、□1□
1□1□0、。
Furthermore, when the liquid level of the coolant 2 in the reactor vessel 1 falls below a predetermined level, the electromagnetic pump 6 starts to pump up the coolant in the storage tank 5, and the pumping supply distribution ♂, 7□, □ 1□
1□1□0,.

一般に、冷却材として使用されるナトリクム等の液体金
属は比重と比熱が小さく、熱容歓も小さい。
In general, liquid metals such as sodium chloride used as coolants have low specific gravity and specific heat, and have low heat capacity.

また、冷却材の伝熱性能は非常に高いので、原子炉出力
が変化すると、冷却材温度は極めて短時間のうちに、こ
れに追従して変化し、従って、原子炉容器の壁面温度も
短時間で冷却材温度に追従して変化する。
In addition, the heat transfer performance of the coolant is very high, so when the reactor power changes, the coolant temperature follows and changes in an extremely short period of time, and the wall temperature of the reactor vessel also changes in a short period of time. Changes over time to follow the coolant temperature.

一方、貯留タンク5の内部には出力変化開始以後の温度
で原子炉容器1から溢流した比較的大篭の液体金属が貯
留されているので、継続的に溢流してくる出力変化開始
以後の冷却材温度の液体金属をもってしても、貯留タン
ク5の内部の液体金属全体の温度が急速に追従すること
はない。
On the other hand, a relatively large amount of liquid metal that overflowed from the reactor vessel 1 is stored inside the storage tank 5 at a temperature after the start of the power change, so that the temperature after the start of the power change continues to overflow. Even if the liquid metal is at the coolant temperature, the temperature of the entire liquid metal inside the storage tank 5 will not follow rapidly.

従って、電磁ポンプ6によって原子炉容器1に汲上供給
される液体金属は、原子炉の出力変化開始以前の状態に
近い温度を有している。
Therefore, the liquid metal pumped and supplied to the reactor vessel 1 by the electromagnetic pump 6 has a temperature close to the state before the start of the change in the output of the reactor.

〔背景技術の問題点〕[Problems with background technology]

このため、汲上供給配管7と原子炉容器1との接合部分
には、両名間の温度差に基づく大きな熱応力が発生する
可能性があり、構造健全性が低下するという不都合があ
る。
For this reason, large thermal stress may occur at the joint between the pumping supply pipe 7 and the reactor vessel 1 due to the temperature difference between the two, resulting in a disadvantage that the structural soundness deteriorates.

〔発明の目的〕[Purpose of the invention]

本発明は、従来技術におけるnQ述の如き問題点を解決
し、原子炉容器と汲上供給配管との接合部分における温
度差の発生を回避して構造健全性を向上させた原子炉冷
却材の溢流および汲上供給装置を提供することを目的と
するものである。
The present invention solves the problems as mentioned above in the prior art, avoids the occurrence of temperature difference at the junction between the reactor vessel and the pumping supply piping, and improves the structural integrity of the reactor coolant overflow. The purpose is to provide a flow and pumping supply device.

〔発明の概要〕[Summary of the invention]

本発明の原子炉冷却材の溢流および汲上供給装置は液体
金属冷却型の原子力発電プラントにおいて、原子炉容器
と貯留タンクとの間に設けた溢流配管と汲上供給配管が
同軸構造とされていることを主たる特徴とする。
The reactor coolant overflow and pumping supply system of the present invention is used in a liquid metal cooled nuclear power plant, in which an overflow pipe and a pumping supply pipe provided between a reactor vessel and a storage tank have a coaxial structure. The main characteristic is that

〔発明の実施例〕[Embodiments of the invention]

以下、第2図を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to FIG.

原子炉容器11内に収容された液体金属冷却材12の上
限レベルには溢流口16が開口している。
An overflow port 16 opens at the upper limit level of the liquid metal coolant 12 contained in the reactor vessel 11 .

この溢流口16と貯留タンク14の間は溢流配管15で
接続されている。
The overflow port 16 and the storage tank 14 are connected by an overflow pipe 15.

貯留タンク14内に貯留された冷却材16を原子炉容器
11内に供給する汲上供給配管17は溢流配管15を囲
繞して、これと同軸構造をなし°Cおり、その上端近傍
は原子炉容器11の壁面を嵐通し、溢流口16のやや下
方で冷却材12内に開口している。
A pumping supply pipe 17 that supplies the coolant 16 stored in the storage tank 14 into the reactor vessel 11 surrounds the overflow pipe 15 and has a coaxial structure with it, and the vicinity of its upper end is connected to the reactor vessel 11. It passes through the wall of the container 11 and opens into the coolant 12 slightly below the overflow port 16.

また、汲上供給配管17の下端近傍は貯留タンク14の
上蓋中央部を貫通し、溢流配管15の下端よりもやや上
方で、冷却祠16内に開口している。
Further, the vicinity of the lower end of the pumping supply pipe 17 passes through the center of the upper lid of the storage tank 14 and opens into the cooling shed 16 slightly above the lower end of the overflow pipe 15 .

汲上供給配管17の途中は大径の[@管状ダクト18で
置換されており、そこには冷却材汲上げ用の電磁ポンプ
19が設けられている。
The middle of the pumping supply pipe 17 is replaced with a large-diameter tubular duct 18, in which an electromagnetic pump 19 for pumping up the coolant is provided.

この電磁ポンプは溢流配管15と円管状ダクト18の間
に配置した内部磁心20と、円管状ダクト18の外側に
配置された外部磁心21およびコイル22を備えており
、コイル22に通電することによって、内外磁心20.
21間の冷却材に゛電磁誘導作用による上昇力を与える
This electromagnetic pump includes an internal magnetic core 20 disposed between the overflow pipe 15 and the circular tubular duct 18, and an external magnetic core 21 and a coil 22 disposed outside the circular tubular duct 18, and the coil 22 is energized. According to the inner and outer magnetic cores 20.
A rising force is applied to the coolant between 21 and 21 by electromagnetic induction.

上述のように構成した本発明の原子炉冷却材の溢流お訳
び汲上供給装置において、貯留タンク14内に貯留され
た冷却材16は電磁ポンプ19によって汲上げられ、汲
上供給配管17を通して原子炉容器11内に供給される
が、汲上供給配管17の中心に設けた溢流配管15には
溢流口16から溢流した原子炉容器11内の冷却材12
が流れるので、両院管中の冷却材の間で熱交換が行なわ
れる。
In the nuclear reactor coolant overflow translation and pumping supply device of the present invention configured as described above, the coolant 16 stored in the storage tank 14 is pumped up by the electromagnetic pump 19, and the coolant is pumped up through the pumping supply pipe 17 to the nuclear reactor coolant. The coolant 12 in the reactor vessel 11 is supplied into the reactor vessel 11, but the coolant 12 in the reactor vessel 11 overflows from the overflow port 16 into the overflow pipe 15 provided at the center of the pumping supply pipe 17.
flows, heat exchange takes place between the coolant in both chambers.

す7.lcわち、例えば原子炉の出力上昇によって原子
炉容器11内の冷却材12が昇温する戸、膨張した両温
の冷却材の一部は溢流口16から溢流配管15内に流れ
込む。
7. That is, when the temperature of the coolant 12 in the reactor vessel 11 increases due to an increase in the output of the reactor, a portion of the expanded coolant at both temperatures flows into the overflow pipe 15 from the overflow port 16.

一方、電磁ポンプ19が起動すると貯留タンク14内の
比較的低温の冷却材16が汲上げられ、汲上供給配管1
7を通して原子炉容器11内に供給されるが、この供給
配管17内を流れる冷却材は溢流配管15内を流れる高
温の冷却材との熱交イ1   換によって加熱されるの
で、汲上供給配管17の温度も上昇し、原子炉容器11
との貫通接合部の温度差は減少する。
On the other hand, when the electromagnetic pump 19 starts, the relatively low temperature coolant 16 in the storage tank 14 is pumped up and the pumped supply pipe 1
The coolant flowing in the supply pipe 17 is heated by heat exchange with the high temperature coolant flowing in the overflow pipe 15. The temperature of reactor vessel 11 also rose.
The temperature difference at the through-junction with is reduced.

従って、原子炉容器と汲上供給配管との接合部において
、原子炉の出力変化時等に生ずる熱応力は緩和され、そ
の構造安全性は増大する。
Therefore, the thermal stress that occurs at the joint between the reactor vessel and the pumping supply pipe when the output of the reactor changes is alleviated, and the structural safety thereof is increased.

また、溢流配管と汲上供給配管は同軸構造とされている
ので、両者を独立して配管する場合に比較して配管スペ
ースが減少し、配置設計上の余裕度が増大する。
Further, since the overflow pipe and the pumping supply pipe have a coaxial structure, the piping space is reduced compared to the case where both are piped independently, and the margin in terms of layout design is increased.

また、原子炉容器側およびタンク側に設けるノズル(図
示せず)の必要個数を減少させることもできる。
Further, the required number of nozzles (not shown) provided on the reactor vessel side and the tank side can also be reduced.

なお、以上の説明では溢流配管と汲上供給配管とをほぼ
全長に亘って同軸構造とした例につき述べたが、場合に
よっては電磁ポンプと貯留タンクの間は従来と同様に独
立の配管とすることもできる。
In addition, in the above explanation, we have described an example in which the overflow piping and the pumping supply piping are coaxially structured over almost the entire length, but in some cases, independent piping may be used between the electromagnetic pump and the storage tank as in the past. You can also do that.

また、冷却he上用ポンプは図示の電磁ポンプに限定さ
れないのは勿論である。
Furthermore, it goes without saying that the pump for cooling heel is not limited to the illustrated electromagnetic pump.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、原子炉容器と冷却材汲上
供給配管との接合部における熱応力を緩和することがで
き、また配管スペースを減少することができるので、原
子炉容器と配管接合部の構造健全性および配管の配置設
計上の余裕度を増大させることができる。
As described above, according to the present invention, thermal stress at the joint between the reactor vessel and the coolant pumping supply pipe can be alleviated, and the piping space can be reduced, so that the joint between the reactor vessel and the piping can be reduced. It is possible to increase the structural integrity of the section and the degree of leeway in designing the layout of piping.

【図面の簡単な説明】[Brief explanation of drawings]

¥J1図は従来の原子炉冷却材の溢流および汲上供給装
置を例示する概略図、第2図は本発明装置の実施例を示
す概略図である。 1・11・・・・・・・・・原子炉容器2.12.16
・・・冷却材 6.16・・・・・・・・・溢流口 4115・・・・・・・・・溢流配管 5.14・・・・・・・・・貯留タンク6t19・・・
・・・・・・電磁ポンプ7.17・・・・・・・・・汲
上供給配管18  ・・・・・・・・・・・・・・・円
鳩゛状ダクト20  ・・・・・・・・・・・・・・・
内部磁心21  ・・・・・・・・・・・・・・・外部
磁心22  ・・・・・・・・・・・・・・・コイル代
理人弁理士 則 近 憲 佑 (ほか1名) 第1図
¥J1 is a schematic diagram illustrating a conventional reactor coolant overflow and pumping supply device, and FIG. 2 is a schematic diagram illustrating an embodiment of the present invention device. 1.11・・・・・・Reactor vessel 2.12.16
...Coolant 6.16...Overflow port 4115...Overflow pipe 5.14...Storage tank 6t19...・
...... Electromagnetic pump 7.17 ...... Pumping supply piping 18 ......... Pigeon-shaped duct 20 ......・・・・・・・・・・・・
Internal magnetic core 21 ・・・・・・・・・・・・・・・External magnetic core 22 ・・・・・・・・・・・・・・・Coil agent Noriyuki Chika (and 1 other person) Figure 1

Claims (1)

【特許請求の範囲】 1、液体金属冷却型の原子力発電プラントにおいて、原
子炉容器と貯留タンクとの間に設けた溢流配管と汲上供
給配管が同軸構造とされていることを特徴とする原子炉
冷却材の溢流および汲上供給装置。 2、溢流配管を囲繞する汲上供給配管の一端が原子炉容
器内において溢流口よりやや下方に開口し、他端が貯留
タンク内において溢流配管の下端よりもやや上方に開口
していることを特徴とする特許請求の範囲第1項に記載
の原子炉冷却材の溢流および汲上供給装置。 6、汲上供給・配管の一部が大径の円管状タンクで置換
され、そこには汲上供給配管内の冷却材に上昇力を与え
る電磁ポンプが設けられていることを特徴とする特許請
求の範囲第1項または第2項に記載の原子炉冷却材の溢
流および汲上供給装置。 4、溢流配管と汲上供給配管が原子炉容器と電磁ポンプ
の間では同軸構造とされ、電磁ポンプと貯留タンクの間
では独立した構造とされていることを特徴とする特許請
求の範囲第1項ないし第3項のいずれか1項に記載の原
子炉冷却材の溢流および汲上供給装置。
[Claims] 1. A liquid metal cooled nuclear power plant, characterized in that an overflow pipe and a pumping supply pipe provided between a reactor vessel and a storage tank have a coaxial structure. Furnace coolant overflow and pumping system. 2. One end of the pumping supply pipe surrounding the overflow pipe opens slightly below the overflow port in the reactor vessel, and the other end opens slightly above the lower end of the overflow pipe in the storage tank. A nuclear reactor coolant overflow and pumping supply device according to claim 1. 6. A part of the pumping supply piping is replaced by a large-diameter circular tubular tank, and an electromagnetic pump is installed therein to give upward force to the coolant in the pumping supply piping. A reactor coolant overflow and pumping supply device according to scope 1 or 2. 4. Claim 1, characterized in that the overflow pipe and the pumping supply pipe have a coaxial structure between the reactor vessel and the electromagnetic pump, and an independent structure between the electromagnetic pump and the storage tank. The nuclear reactor coolant overflow and pumping supply device according to any one of Items 1 to 3.
JP57106757A 1982-06-23 1982-06-23 Overflow and pump-up feedwater device of reactor coolant Pending JPS58223788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57106757A JPS58223788A (en) 1982-06-23 1982-06-23 Overflow and pump-up feedwater device of reactor coolant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106757A JPS58223788A (en) 1982-06-23 1982-06-23 Overflow and pump-up feedwater device of reactor coolant

Publications (1)

Publication Number Publication Date
JPS58223788A true JPS58223788A (en) 1983-12-26

Family

ID=14441781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106757A Pending JPS58223788A (en) 1982-06-23 1982-06-23 Overflow and pump-up feedwater device of reactor coolant

Country Status (1)

Country Link
JP (1) JPS58223788A (en)

Similar Documents

Publication Publication Date Title
US7526057B2 (en) Decay heat removal system for liquid metal reactor
JPS62265597A (en) Auxiliary cooling system of radiating vessel
US3830695A (en) Nuclear reactor
JPS58223788A (en) Overflow and pump-up feedwater device of reactor coolant
US4028177A (en) Provision for cooling the top end of a suspended vessel, such as the pressure vessel of a nuclear reactor
US5289511A (en) Liquid-metal cooled nuclear reactor
JPS6352098A (en) Pressure tube type reactor
JPS61794A (en) Cooling device for liquid-metal cooling type reactor
JPS63193092A (en) Cooling device for liquid-metal cooling type reactor
JPS5940294A (en) Nozzle structure of reactor container
JPS63225196A (en) Nuclear power plant
JPS62142901A (en) Steam generator
JPS5855890A (en) Vessel of fast breeder
JPS6230996A (en) Cooling device for liquid-metal cooling type nuclear reactor
JPS61209388A (en) Nuclear reactor structure
JPS62218891A (en) Double tank type fast breeder reactor
JPS5855894A (en) Vessel of fast breeder
JPS58127199A (en) Emergency reactor cooling system
JPS62226089A (en) Liquid-metal cooling type fast breeder reactor
JPS6350792A (en) Fast breeder reactor
JPS6046483A (en) Protective device for container of nuclear reactor
JPS5899794A (en) Thermal shielding structure of reactor
JPS58169084A (en) Tank type fast breeder
JPS61130895A (en) Nuclear reactor
JPS63180888A (en) Heat exchanger for cooling liquid metal