JPS58223530A - Electrospark machining apparatus for wire cut - Google Patents

Electrospark machining apparatus for wire cut

Info

Publication number
JPS58223530A
JPS58223530A JP10704382A JP10704382A JPS58223530A JP S58223530 A JPS58223530 A JP S58223530A JP 10704382 A JP10704382 A JP 10704382A JP 10704382 A JP10704382 A JP 10704382A JP S58223530 A JPS58223530 A JP S58223530A
Authority
JP
Japan
Prior art keywords
plate thickness
workpiece
machining
vibration
wire electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10704382A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP10704382A priority Critical patent/JPS58223530A/en
Publication of JPS58223530A publication Critical patent/JPS58223530A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/04Apparatus for supplying current to working gap; Electric circuits specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To increase electrospark machining speed by giving high order forcible vibration to a wire electrode and changing the repetitive number of the electrospark machining depending on the thickness of a workpiece. CONSTITUTION:Pulse voltage is applied cross a workpiece 3 and a wire electrode 1 by a power supply 10 for electrospark machining. A high order forcible vibraton is given to the wire electrode 1 by a vibration device 4 to provide a plurality of bellies and knots. The change in the plate thickness of the workpiece 3 when it is cut is detected by a detector 12 and the frequency of applied pulse voltage of the power source 10 is controlled by this plate thickness detecting signal. As the plate thickness becomes thicker, the repetitive number of discharge is increased. Since the high order vibration is given to the wire electrode 1, the number of bellies in the plate thickness can be increased dependently on the plate thickness to improve working speed.

Description

【発明の詳細な説明】 本発明はガイド間を移動するワイA7電極と被加工体を
微小間隙で対向した間隙にパルス放電を行って加工する
ワイヤカット放電加工装置に関づる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wire-cut electric discharge machining apparatus that processes a wire A7 electrode that moves between guides and a workpiece by applying pulse discharge to a gap in which they face each other with a minute gap.

ワイヤ電極には線径が約0.05〜0.5 mmφ程度
の細線を用いる。この線をガイド間に張力を加えて移動
させ、被加工体を対向させた間隙に放電を起させて加エ
フるから、放電点にtli電の圧力が作用し、丁度絃を
ひ(ときのような振動を起す。このときのワイヤ電極の
振動数F (c /s )は、−上V旦  (1) L   r 但し、n;振動次数、L;ガイド間の長さく U )P
:張力(’?)、(1;重力加速度。
A thin wire with a diameter of about 0.05 to 0.5 mm is used for the wire electrode. This wire is moved with tension applied between the guides, causing an electrical discharge in the gap between the opposing workpieces and processing, so the pressure of the electric current acts on the discharge point, and the string is played just in time. The frequency of vibration of the wire electrode at this time, F (c/s), is −upper V (1) L r where n: vibration order, L: length between guides U ) P
: Tension ('?), (1; Gravitational acceleration.

r:°ワイヤ電極の単位長さ4重 41(ki/cm)
で表される。このワイヤ電極の振動はワイヤカットに不
都合のようであるが、放電点の移動効果。
r: ° Unit length of wire electrode 4 times 41 (ki/cm)
It is expressed as This vibration of the wire electrode seems to be inconvenient for wire cutting, but it is due to the effect of moving the discharge point.

アーク短絡の消弧、加工チップ、ガスの排除促進等、実
はワイヤカットにとって有効であり、この振動を積極的
に利用して加工速度を上げようとする考えがある。従来
このワイへ7振動を強制的に行う装置が既に提案されて
いる。
It is actually effective for wire cutting, such as extinguishing arc short circuits and promoting the removal of processed chips and gas, and there is an idea to actively utilize this vibration to increase processing speed. Conventionally, a device has already been proposed that forcibly applies seven vibrations to the wye.

一方ワイヤカットを行う場合、加工条件は始めから終り
まで常に一定とGlらない。被加工体の板厚は厚いもの
から薄いものまで色々ある、また一枚の板でも板厚が部
分的に変化するような板加工がある。板厚が薄いときよ
り厚いときの方が加工量が増加するので、前記振動によ
って加工チップの排除を行うにもかかわらず加工送り速
度が逆比例的に低下することは妨げない。
On the other hand, when wire cutting is performed, processing conditions are not always constant from beginning to end. There are various thicknesses of workpieces, from thick to thin, and there are plate processing processes in which the thickness of a single plate changes locally. Since the amount of machining increases when the plate thickness is thicker than when the plate thickness is thinner, the machining feed rate does not decrease inversely proportionally even though the machining chips are removed by the vibration.

本発明はかかる点に鑑みて、ワイヤ電極に高次数の強制
振動を行うようにすると共に、被加工体の板厚の関数と
して放電繰返数を変更制御する加工電源を設け、加工速
度の増加をはかったものである。
In view of these points, the present invention applies high-order forced vibration to the wire electrode, and also provides a machining power source that changes and controls the number of discharge repetitions as a function of the thickness of the workpiece, thereby increasing the machining speed. It is measured by

以下−実施例図により本発明を説明する。第1図におい
て、1はワイヤ電極、2はガイド、3は被加工体である
。長さはLのガイド2間のワイヤ電極1には所定の張力
Pが与えられ、ワイヤ電極の単位長さ重量「及び重力加
速度すが一定とすると、(1)式による振動において、
今図示しない振動装置によって強制振動させたとすると
、その振動数Fに比例した次数nの振動をする。便宜上
今次数n=3の振動を与えたとする。(イ)図味ワイヤ
電極1に対向する被加工体2が最も薄い板の場合、(ロ
)図は2倍程度に厚い場合、(ハ)図は更に厚板である
場合を示す。
The present invention will be explained below with reference to the drawings. In FIG. 1, 1 is a wire electrode, 2 is a guide, and 3 is a workpiece. A predetermined tension P is applied to the wire electrode 1 between the guides 2 having a length of L, and assuming that the unit length weight of the wire electrode and the gravitational acceleration are constant, in the vibration according to equation (1),
If it is forced to vibrate using a vibrating device (not shown), it will vibrate at an order n proportional to its frequency F. For convenience, it is assumed that vibration of order n=3 is given. (a) The workpiece 2 facing the wire electrode 1 is the thinnest plate, (b) the figure is about twice as thick, and (c) the plate is even thicker.

そこでこのような振動をするワイヤ電極1と被加工体2
間の放電はワイヤ1の振動の腹部分が被加工体2に最も
近づくので主としてこの振腹で放電が起る。勿論振動の
腹2節の位置はサイクル毎に変化する。(イ)図では1
つの振腹が被加工体2と対向するが、(ロ)図では2つ
、(ハ)図では3つの振腹が被加工体2に同時に対向す
るようになるシしたがってワイヤ電極1の振動1サイク
ルにおいて被加工体と対向する各振腹部分で放電が次々
に起るようパルスの°周波数を上げてやれば、即ち(イ
)図のものに対して(ロ)図では2倍に、(ハ)図では
3倍に制御すれば加工量も比例して増加することになる
。(イ)図は板厚が薄いので加工量が少ないが(ロ)図
では加工送りの単位長さ当りの加工量は板厚に比例して
約2倍になり、(ハ)図の被加工体では約3倍にもなる
が、前記のように放電する回数が(イ)図より(ロ)で
約2倍に、(ハ)で約3倍になれば、また加工電源をパ
ルス繰返数をそのような制御してやることによって加工
速度を高めることができる。したがって被加工体の板厚
が部分的に変化するような場合であっても加工送り速度
をほぼ一定して加工することができ高能率で高精度のワ
イヤカットを行うことができる。
Therefore, the wire electrode 1 and the workpiece 2 that vibrate like this
Since the antinode of the vibration of the wire 1 is closest to the workpiece 2, the discharge mainly occurs at this antinode. Of course, the position of the two antinodes of vibration changes every cycle. (b) In the diagram, 1
Two vibrational antinodes face the workpiece 2, but two vibrational antinodes in the figure (b) and three vibrational antinodes in the figure (c) simultaneously face the workpiece 2. If the frequency of the pulse is increased so that discharge occurs one after another at each vibrating part facing the workpiece during the cycle, that is, the frequency in Figure (B) is doubled compared to that in Figure (A), and ( c) In the figure, if the control is tripled, the amount of processing will increase proportionally. (B) In the figure, the amount of machining is small because the plate thickness is thin, but in the figure (B), the amount of machining per unit length of machining feed is approximately doubled in proportion to the plate thickness, and (C) the workpiece in figure In the body, the number of discharges is approximately three times, but if the number of discharges is approximately twice as high in (B) and approximately three times as high in (C) as shown above, the machining power source must be pulsed again. By controlling the number in this way, processing speed can be increased. Therefore, even if the thickness of the workpiece changes locally, the workpiece can be machined at a substantially constant feed rate, and wire cutting can be performed with high efficiency and precision.

次に第2図について説明する。1はワイヤ電極。Next, FIG. 2 will be explained. 1 is a wire electrode.

2はガイドで、ワイヤ電極1はこのガイド間を下方から
上方に矢印方向に移動する。移動装置は図示しないがキ
ャプスタンとピンチローラによる引張りとブレーキロー
ラとによって所定の張力とスピードをもって移動させる
。3は所定板厚の被加工体、4はワイA7電極1に振動
を与える装置で電磁力によって振動するムービングコイ
ルの振動をワイヤ1に伝えて振動を行わせる。5は加工
電源のパルス発生スイッチ、6が電圧源で、スイッチ5
のオン、オフスイッチングにより繰返パルスを供給する
。パルスはワイA7電極1と被加工体3問に直接供給し
てもよいが、放電のピーク電流I11を増大するために
コンデンサ7を設け、これの充放電により間隙に供給す
る。8はスイッチ5のオン、オフを制御するパルス発生
回路で、任意の発振器、クロックパルスをカウントして
パルスを発生する方式、その他が利用できる。9は板厚
に対応したパルス周波数のプリセット切換器で、加工し
ようとする被加工体3の板厚によってプリセットを行う
Reference numeral 2 denotes a guide, and the wire electrode 1 moves between the guides from below to above in the direction of the arrow. Although the moving device is not shown, it is moved with a predetermined tension and speed using a capstan, a pinch roller, and a brake roller. 3 is a workpiece having a predetermined thickness, and 4 is a device for applying vibration to the wire A7 electrode 1. The vibration of a moving coil vibrated by electromagnetic force is transmitted to the wire 1 to cause the wire 1 to vibrate. 5 is a pulse generation switch for the processing power supply, 6 is a voltage source, switch 5
The on/off switching of the oscillator provides repeated pulses. Although the pulse may be directly supplied to the wire A7 electrode 1 and the three workpieces, a capacitor 7 is provided to increase the peak current I11 of discharge, and the pulse is supplied to the gap by charging and discharging the capacitor 7. Reference numeral 8 denotes a pulse generation circuit for controlling the on/off state of the switch 5, and an arbitrary oscillator, a method of generating pulses by counting clock pulses, and others can be used. Reference numeral 9 denotes a preset switch for a pulse frequency corresponding to the plate thickness, which performs presetting according to the plate thickness of the workpiece 3 to be machined.

以上において、ワイヤ電極1には振動装置4によって通
常振動数1に〜100K l−1z程度の振動を与える
°。例えばワイヤ電極1、に0.2■φのCU線を用い
、P= 800g、 L=10cm、 r = 2,8
x104ks / cmとすれば(1)式より振動数F
 = IOK HZで次数n =12. F=33KH
zでn =40. F=50KH2rn =59となる
。そこで今F=33KHzの振動で次数n=40の高次
数の振動を行ったとすれば振動の腹は約2.5u間隔で
生じ、板厚t=10mmの被加工体を加工するときは4
つの腹と対向し、[=30mmのとき12の腹と、又t
=50關では20の腹と対向することになる。したがっ
てプリセット装置9による設定は例えば、t=10mm
でスイッチングパルスが30KHz 、 t =30u
で4sH−Hz 、 t =s。
In the above, the wire electrode 1 is vibrated by the vibration device 4 at a normal frequency of 1 to about 100 Kl-1z. For example, use a 0.2 φ CU wire for wire electrode 1, P = 800g, L = 10cm, r = 2,8
If x104ks/cm, the frequency F from equation (1)
= IOK HZ and order n = 12. F=33KH
n = 40 in z. F=50KH2rn=59. Therefore, if we perform a high-order vibration of order n = 40 with a vibration of F = 33 KHz, the antinodes of vibration will occur at intervals of approximately 2.5 u, and when machining a workpiece with a plate thickness of t = 10 mm,
When [=30mm, there are 12 antinodes, and t
At =50, you will be facing a 20 belly. Therefore, the setting by the preset device 9 is, for example, t=10mm.
The switching pulse is 30KHz, t = 30u
and 4sH-Hz, t = s.

關で50K Hzというように切換えプリセットすれば
よい。
All you have to do is to preset the frequency to 50KHz.

実験によれば、0 、2 miφCu1lで5KD−1
1材のワイヤカットをするようにするとき、加工液に比
抵抗5 X 104ΩCmの水を用い、ワイヤ電極に約
600gの張力を加え30K Hzの振動を与えた。板
厚t=10關の加工において30KHzのパルス電源で
加工し加工送り速度的2.3mm/1linが得られた
According to experiments, 5KD-1 at 0,2 miφCu1l
When cutting a single piece of wire, water with a specific resistance of 5 x 104 ΩCm was used as the machining fluid, a tension of about 600 g was applied to the wire electrode, and vibrations of 30 KHz were applied to the wire electrode. When machining a plate thickness of t=10, a machining feed rate of 2.3 mm/1 lin was obtained by machining with a 30 KHz pulse power source.

これは無振動の場合、約1.2ww/In1nの紛2倍
である。次にそのままt=30關の加工したとき加工送
り速度は約0.9u / l1inであり、これは無振
動のとき約0.6關/minに比較して早かったが、こ
のときパルス電源の周波数を45KH2に上げたとき最
大的1.2關/ minの加工送り速度が得られた。
In the case of no vibration, this is approximately twice as high as 1.2 ww/In1n. Next, when machining was carried out at t=30, the machining feed rate was approximately 0.9 u/l1in, which was faster than approximately 0.6 mm/min when there was no vibration, but at this time, the processing speed with the pulse power supply was When the frequency was increased to 45 KH2, a maximum machining feed rate of 1.2 f/min was obtained.

更にt=50uにおいてパルス周波数を50K )l 
zに上げたとき最大加工速度は約0.8u/1llin
となった。
Furthermore, at t=50u, the pulse frequency is increased to 50K)l
When increased to z, the maximum machining speed is approximately 0.8u/1llin
It became.

以上からワイヤ電極に高次数の振動を与え、加工電源の
パルス周波数を板厚に応じて制御することにより何れも
加工送り速度が約2倍程度に高められることがわかる。
From the above, it can be seen that by applying high-order vibration to the wire electrode and controlling the pulse frequency of the machining power source according to the plate thickness, the machining feed rate can be approximately doubled.

なお振動装置4は実施例のものに限らず利用でき、例え
ば加工電流の流れるワイヤ電極部分、或いは通電装置を
設けたワイヤ部分に磁界、変化磁界を作用してワイヤ電
極に直接振動を起させることができ、また振動源に電歪
、磁歪材を用いた振動装置、その他の機械振動発生装置
を用いることができる。振動数は加工条件、加工状態に
よって調整側°御し、最良の値に設定するが、通常1に
〜100K HZ程度の範囲で利用する。
Note that the vibration device 4 can be used not only in the embodiment, but can also be used, for example, by applying a magnetic field or changing magnetic field to the wire electrode portion through which a machining current flows or the wire portion provided with an energizing device to directly cause the wire electrode to vibrate. In addition, a vibration device using an electrostrictive or magnetostrictive material as a vibration source, or other mechanical vibration generating device can be used. The frequency is controlled and set to the best value depending on the machining conditions and conditions, but it is usually used in the range of 1 to 100 KHz.

第3図は板厚変化のある被加工体3をワイヤカットする
実施例である。10が加工電源、11が間隙の電圧を検
出する抵抗、12は抵抗11の検出電圧によって被加工
体3の加工部の板厚信号を判別検出する装置で、その板
厚信号を加工型′llA10に加えてパルス繰返数の自
動制御を行う。
FIG. 3 shows an example in which a workpiece 3 having a change in thickness is wire-cut. 10 is a processing power supply, 11 is a resistor that detects the voltage in the gap, and 12 is a device that discriminates and detects a plate thickness signal of the processed part of the workpiece 3 based on the detection voltage of the resistor 11. In addition, the pulse repetition rate is automatically controlled.

被加工体3には図示しないNC11JllIl装置によ
って所要の形状加工送りが与えられる。今図示状態にお
いてX軸方向に送りが与えられるとすれば、加工の進行
にしたがって被加工体の板厚は増加する。図示する被加
工体3は板厚が段付変化するものであるから加工進行中
板厚変化点と変化しない平面部分がある。そこで加工送
り速度をほぼ一定とすると板厚変化のない平面部分を加
工する間は抵抗11に検出される電圧はほぼ一定である
が、板が増加するから極間電圧は低下する。抵抗11の
検出電圧は装置12の判別によって板厚信号を発生する
。加工電源10はこの板厚信号を受けて信号に対応した
パルス繰返数にプリセットする。即ち板厚が増加するこ
とによって周波数を増加させるよう変更側an−yる。
A required shape processing feed is applied to the workpiece 3 by an NC11JllIl device (not shown). If feed is applied in the X-axis direction in the illustrated state, the thickness of the workpiece will increase as the machining progresses. Since the illustrated workpiece 3 has a plate thickness that changes stepwise, there is a flat portion that does not change at the plate thickness change point during processing. Therefore, if the machining feed rate is kept almost constant, the voltage detected by the resistor 11 is almost constant while machining a flat portion where the plate thickness does not change, but as the number of plates increases, the voltage between the machining electrodes decreases. The detection voltage of the resistor 11 is determined by the device 12 to generate a plate thickness signal. The processing power supply 10 receives this plate thickness signal and presets the pulse repetition rate corresponding to the signal. That is, the frequency is increased by increasing the thickness of the plate.

パルスの繰返数は通常10に〜500KHz程度の範囲
で切換設定する。勿論板厚が減少するときは繰返数も減
少するよう変更する。このように−板の被加工体の板厚
が加工部分によって変化する場合でも、板厚が増加する
と被加工体と対向する振動腹が増加するからぞれに応じ
てパルス周波数を増加させる制御を行うことによって加
工速度を高め、逆に板厚が減少するときはパルス周波数
を低下する制御を行い、したがってそれによって加工送
り速度をほぼ一定にして高能率。
The number of pulse repetitions is normally set to 10 within a range of about 500 KHz. Of course, when the plate thickness decreases, the number of repetitions is also changed to decrease. In this way, even if the thickness of the plate to be processed changes depending on the part to be machined, as the plate thickness increases, the vibration antinode facing the workpiece increases, so the pulse frequency should be controlled to increase accordingly. By doing this, the machining speed is increased, and conversely, when the plate thickness decreases, the pulse frequency is controlled to decrease, thereby keeping the machining feed rate almost constant and achieving high efficiency.

高精度の形状カットを完成させることができる。It is possible to complete high-precision shape cuts.

なお被加工体の板厚信号を検出するにはサーボ送り与え
るとき板厚の変化は送り速度の変化となるので、送り速
度の変化を検出しても板厚信号を検出することができる
。また加工電流、漏洩電流。
Note that in order to detect the plate thickness signal of the workpiece, when servo feeding is applied, a change in the plate thickness results in a change in the feed rate, so the plate thickness signal can be detected even if a change in the feed rate is detected. Also machining current and leakage current.

その他電圧、電流、送り速度等の組合せによっても検出
でき、また加工形状による加工経路の各位置によ゛って
板厚変化があるよう設計された場合はNGテープのプロ
グラミングに当って板厚変化の情報も予じめ入力してお
くことができるから、加工の進行によって容易に板厚信
号を検出し、放電繰返数の自動化制御を行うことができ
る。以上板厚信号の検出は加工条件、加工態様に応じて
最適とする手段を用いればよい。
It can also be detected by other combinations of voltage, current, feed rate, etc. Also, if the design is such that the thickness changes depending on the position of the machining path due to the machining shape, the change in thickness can be detected when programming the NG tape. Since the information can be input in advance, the plate thickness signal can be easily detected as the machining progresses, and the number of discharge repetitions can be automatically controlled. The plate thickness signal may be detected using an optimal means depending on the processing conditions and processing mode.

また加工電源はスイッチングパルスをそのまま間隙に供
給して放電を行う方式では供給パルスと放電繰返数とは
一致するが、第2図に示したスイッチングパルスによっ
て間隙近くに設けたコンデンサ7を充放電する方式では
コンデンサ放電による加工間隙における放電繰返数とコ
ンデンサへの充電用の供給パルスどは必ずしも一致しな
い。そこでこのようなコンデンサの充放電を用いるとき
は充電パルスの周波数を変えることなく電圧を高め供給
電流の制御をしてもよい。
In addition, if the machining power supply discharges a switching pulse by directly supplying it to the gap, the supplied pulse and the number of discharge repetitions will match, but the switching pulse shown in Fig. 2 will charge and discharge the capacitor 7 installed near the gap. In this method, the number of discharge repetitions in the machining gap due to capacitor discharge and the supply pulse for charging the capacitor do not necessarily match. Therefore, when using such capacitor charging and discharging, the voltage may be increased and the supplied current may be controlled without changing the frequency of the charging pulse.

即ち第3図に43いて、装置12から板厚が増加する信
号が入力した場合、加工型m10から供給覆るパルスの
周波数はそのままで電流を増加り゛るように制御する。
That is, when a signal indicating an increase in plate thickness is inputted from the device 12 at 43 in FIG. 3, the current is controlled to increase while the frequency of the overlapping pulse supplied from the processing die m10 remains unchanged.

すると間隙近くに設けられたコンデンサ(図示せず)は
供給パルス毎に複数回の充放電を行って間隙における放
電繰返数を高めるから、この制御においても板厚が増大
して被加工体が対向するワイヤ電極の振腹数の増加に対
応して放電の繰返数を高め振動振腹を有効に加工に利用
することができ、同様の加工効果を期待できる。
Then, the capacitor (not shown) installed near the gap is charged and discharged multiple times for each supply pulse to increase the number of discharge cycles in the gap, so even with this control, the plate thickness increases and the workpiece becomes thinner. In response to an increase in the number of vibrations of the opposing wire electrodes, the number of repetitions of electric discharge can be increased and vibration vibrations can be effectively utilized for machining, and similar machining effects can be expected.

なお加工電源の供給パルスの電流の制御はパルスを発生
するオン、オフスイッチング素子の並列接続数を切換え
たり、回路抵抗の制御、又は電圧源の電圧制御等によっ
て行う。或いはまたこれとともに充fi電コンデンザ容
蛋の切換を行うことができる。
Note that the current of the supply pulse of the processing power source is controlled by switching the number of parallel connection of on/off switching elements that generate pulses, controlling the circuit resistance, or controlling the voltage of the voltage source. Alternatively, the charging capacitor capacity can be changed at the same time.

以上のように本発明はワイA7電極に高次数の振動を行
わせて振動振腹の複数が被加工体と対向づるようにし、
したがって被加工体の板厚が薄いときより厚い場合の方
が対向する振腹数が増加する。
As described above, the present invention causes the Wie A7 electrode to vibrate at a high order so that a plurality of vibration vibration amplitudes face the workpiece,
Therefore, when the thickness of the workpiece is thicker than when it is thinner, the number of opposing vibrational bands increases.

そこでこの強制振動を行わせるとともに被加工体の板厚
の関数として放電繰返数を変更制卸する。
Therefore, this forced vibration is performed and the number of discharge repetitions is changed and controlled as a function of the plate thickness of the workpiece.

加工電源から供給するパルスの周波数とか供給パルスの
電流制御によって放電繰返し数を制御し、板厚が増加す
るとき被加工体と対向する増加する振腹の各部で有効に
放電が行えるように制御する。
The number of discharge repetitions is controlled by controlling the frequency of the pulses supplied from the machining power supply and the current control of the supplied pulses, so that when the plate thickness increases, the discharge can be effectively performed at each part of the increasing vibration center facing the workpiece. .

したがって板厚が増加し加工量が増加しても加工速度を
高めることができ、送り速度を低下させることなく高速
加工を可能ならしめることができる。
Therefore, even if the plate thickness increases and the amount of processing increases, the processing speed can be increased, and high-speed processing can be performed without reducing the feed rate.

また板厚変化の被加工体の加工においても板厚の変化信
号によって加工電源を制御[Iツることによって全体を
ほぼ定速度を持って加工でき、加工能率を上げると共に
加工精度を向上させることができる。
In addition, when machining workpieces with varying plate thicknesses, the machining power supply is controlled based on the plate thickness change signal.By controlling the machining power supply, the entire body can be machined at a nearly constant speed, increasing machining efficiency and machining accuracy. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する図、第2図は本発明の
一実施例構成図、第3図は他の実施例図である。 1・・・・・・・・・ワイヤ電極 2・・・・・・・・・ガイド 3・・・・・・・・・被加工体 4・・・・・・・・・振動装置 5・・・・・・・・・スイッチ 6・・・・・・・・・電圧源 7・・・・・・・・・コンデンサ 8・・・・・・・・・パルス発生回路 9・・・・・・・・・プリセット切換器10・・・・・
・・・・加工電源 11・・・・・・・・・電圧検出抵抗 12・・・・・・・・・板厚信号検出装置才Ij7
FIG. 1 is a diagram illustrating the present invention in detail, FIG. 2 is a configuration diagram of one embodiment of the invention, and FIG. 3 is a diagram of another embodiment. 1...Wire electrode 2...Guide 3...Workpiece 4...Vibration device 5. ......Switch 6...Voltage source 7...Capacitor 8...Pulse generating circuit 9... ...Preset switch 10...
..... Processing power supply 11 ..... Voltage detection resistor 12 ..... Plate thickness signal detection device Ij7

Claims (2)

【特許請求の範囲】[Claims] (1)ワイヤカット放電加工装置において、ガイド間を
移動するワイヤ電極に高次数の強制振動を与える撮動装
置を設けると共に被加工体の板厚の関数として放電繰返
数を変更制御する加工電源を設けたことを特徴とするワ
イA7カツト放電加工装置。
(1) A wire-cut electric discharge machining device is equipped with an imaging device that applies high-order forced vibration to the wire electrode moving between guides, and a machining power source that changes and controls the number of discharge repetitions as a function of the thickness of the workpiece. Wire A7 cut electric discharge machining equipment characterized by being provided with.
(2)ワイA7カツト放電加工装置において、ガイド間
を移動するワイヤ電極に高次数の強制振動を与える振動
装置を設けると共に、被加工体の板厚の関数として放電
繰返数を変更制御する加工電源を設()、該加工電源に
被加工体の加工部分の板厚比例信号を検出して供給する
装置を設りたことを特徴とするワイA7カツト放電加工
装置。
(2) Wire A7 cut electric discharge machining equipment is equipped with a vibrating device that applies high-order forced vibration to the wire electrode moving between guides, and processing that changes and controls the discharge repetition rate as a function of the plate thickness of the workpiece. A width A7 cut electric discharge machining apparatus, characterized in that a power source is provided, and the machining power source is provided with a device for detecting and supplying a plate thickness proportional signal of a machined portion of a workpiece.
JP10704382A 1982-06-21 1982-06-21 Electrospark machining apparatus for wire cut Pending JPS58223530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10704382A JPS58223530A (en) 1982-06-21 1982-06-21 Electrospark machining apparatus for wire cut

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10704382A JPS58223530A (en) 1982-06-21 1982-06-21 Electrospark machining apparatus for wire cut

Publications (1)

Publication Number Publication Date
JPS58223530A true JPS58223530A (en) 1983-12-26

Family

ID=14449067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10704382A Pending JPS58223530A (en) 1982-06-21 1982-06-21 Electrospark machining apparatus for wire cut

Country Status (1)

Country Link
JP (1) JPS58223530A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137796A (en) * 1976-05-14 1977-11-17 Inoue Japax Res Inc Electric wire cutter
JPS5366092A (en) * 1976-11-26 1978-06-13 Inoue Japax Res Inc Wire cut discharge working apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137796A (en) * 1976-05-14 1977-11-17 Inoue Japax Res Inc Electric wire cutter
JPS5366092A (en) * 1976-11-26 1978-06-13 Inoue Japax Res Inc Wire cut discharge working apparatus

Similar Documents

Publication Publication Date Title
US4205213A (en) Method of and apparatus for electrical discharge machining with a vibrating wire electrode
US4365133A (en) Method of and apparatus for electroerosively machining a 3D cavity in a workpiece
US4436976A (en) Electroerosion machining method and apparatus with automatic vibrations-sensing electrode wear compensation
JPS61203222A (en) Method and device for measuring consumption rate of tool electrode for electric discharge machining
US4383159A (en) Method of and apparatus for electrical machining with a vibrating wire electrode
US4366360A (en) Method of and apparatus for determining relative position of a tool member to a workpiece in a machine tool
JPS58223530A (en) Electrospark machining apparatus for wire cut
JPS59332B2 (en) Wire-cut electrical discharge machining equipment
GB2053064A (en) Electrical discharge machining method and apparatus
JPH0265926A (en) Electric discharge working machine corresponding controller
JPS5950457B2 (en) Hoden Kakousouchi
JPS61197125A (en) Wire cut electric discharge machine
JP2801280B2 (en) Wire cut EDM power supply
JPS58223531A (en) Electrospark machining apparatus for wire cut
JPS63260721A (en) Electric discharge machining device
JPS6059098B2 (en) Power supply device for electrical discharge machining
JP3113305B2 (en) Electric discharge machine
JPH1043951A (en) Wire electric discharge machining device
JPS6320660B2 (en)
JPS62297018A (en) Electric discharge machine
JP2587956B2 (en) Control device for wire electric discharge machine
JPH0230810B2 (en)
JPS59192422A (en) Electric discharge machine
JPS6144534A (en) Wire-cut electric discharge apparatus
JPS6044090B2 (en) Electric discharge machining equipment