JPS58222908A - Exhaust gas particle purifier of internal-combustion engine - Google Patents

Exhaust gas particle purifier of internal-combustion engine

Info

Publication number
JPS58222908A
JPS58222908A JP57106390A JP10639082A JPS58222908A JP S58222908 A JPS58222908 A JP S58222908A JP 57106390 A JP57106390 A JP 57106390A JP 10639082 A JP10639082 A JP 10639082A JP S58222908 A JPS58222908 A JP S58222908A
Authority
JP
Japan
Prior art keywords
exhaust gas
valve
filter
opening
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57106390A
Other languages
Japanese (ja)
Other versions
JPH0147603B2 (en
Inventor
Akikazu Kojima
昭和 小島
Shigeru Kamiya
茂 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP57106390A priority Critical patent/JPS58222908A/en
Priority to US06/475,625 priority patent/US4558565A/en
Publication of JPS58222908A publication Critical patent/JPS58222908A/en
Publication of JPH0147603B2 publication Critical patent/JPH0147603B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • F01N3/032Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start during filter regeneration only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2390/00Arrangements for controlling or regulating exhaust apparatus
    • F01N2390/04Arrangements for controlling or regulating exhaust apparatus using electropneumatic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/04By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device during regeneration period, e.g. of particle filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To enable a filter of being refreshed under a wide range condition of an engine by regulating the opening of an opening-and-closing valve according to the amount of the flow of engine exhaust gas at the refreshing time of the filter so as to control the quantity of gas which passes through the filter member. CONSTITUTION:When a filter is refreshed, electric current is fed from a terminal 3' and a heater is then heated to ignite and burn particle. An opening-and-closing valve 5 is disposed in the way of a bypass flow passage 4. When particle is going to be trapped, the opening-and closing valve 5 takes a fully closed position as shown by A in the drawing so that the entire amount of exhaust gas passes through the filter 2 and is trapped. When the filter is going to be refreshed, the opening-and-closing valve 5 takes a fully opened position C so that exhaust gas mostly passes through a bypass pipe 4. If the amount of exhaust gas is little, the opening and-closing valve 5 is set to take a half-closed position as shown by C to increase pressure loss in the bypass flow passage in order to maintain a differential pressure applied on the filter member, therefore assuring the quantity of gas which passes through the filter member.

Description

【発明の詳細な説明】 本発明は自動車等の内燃機関から排出される排気ガス中
の微粒子を捕集し、これを電気的加熱手段にて燃料せし
めて排気ガスの浄化を行なう排気ガス微粒子浄化装置に
関するものである。
Detailed Description of the Invention The present invention is an exhaust gas particulate purification system that collects particulates in exhaust gas emitted from internal combustion engines of automobiles, etc., and uses the collected particulates as fuel using electric heating means to purify the exhaust gas. It is related to the device.

内燃機関特許請求の範囲にディーゼル機関から排出され
る排気ガス中に含まれるカーボン粒子等の微粒子を捕集
するために、セラミックのハニカム構造体やセラミック
の発泡体等のフィルタ部材を内蔵した微粒子捕集装置が
提案されている。これ等の装置ではフィルタ部材に微粒
子が堆積するにつれてフィルタ部材の通気抵抗が増加し
、機関の出力低下につながるとともに、堆積微粒子が脱
落しフィルタ機能を低下させる。このため、フィルタ部
材に堆積した微粒子を周期的に除去しフィルタ部材の機
能を微粒子捕集前の状態に再生する必要がある。   
   ′ この再生手段としてフィルタ部材に加熱手段を(3) 付設し、捕集微粒子を加熱して燃焼せしめる手段が提案
されている。しかしながら通常の走行条件では排気ガス
温度はカーボン微粒子の発火点よりも低いために熱源が
排気ガスにより冷されて微粒子の着火がさまたげられた
り、またいったんは着火しても排気ガス流によって吹き
消されたりする。
In order to collect fine particles such as carbon particles contained in exhaust gas emitted from a diesel engine, the internal combustion engine patent claims include a particulate trap incorporating a filter member such as a ceramic honeycomb structure or a ceramic foam. A collection device has been proposed. In these devices, as particulates accumulate on the filter member, the ventilation resistance of the filter member increases, leading to a decrease in the output of the engine, and the accumulated particulates fall off, reducing the filter function. Therefore, it is necessary to periodically remove the particulates accumulated on the filter member and restore the function of the filter member to the state before collecting the particulates.
'As this regeneration means, a method has been proposed in which a heating means (3) is attached to the filter member to heat and burn the collected particulates. However, under normal driving conditions, the exhaust gas temperature is lower than the ignition point of carbon particles, so the heat source is cooled by the exhaust gas, preventing the particles from igniting, and even if they are ignited, they are blown out by the exhaust gas flow. or

従って確実に再生可能な運転条件は極めて限定されてし
まう。
Therefore, the operating conditions under which it can be reliably regenerated are extremely limited.

微粒子の着火性をよくするとともに燃焼途中で吹き消さ
れないようにする手段としては、内燃機関に接続する排
気ガス通路を2つに分け、それぞれの通路にフィルタ部
材を設けるとともに、フィルタ部材の排気ガス上流側あ
るいは下流側に流路切替パルプを設け、選択的に一方の
通路へ排気ガスを導き、パルプ操作中に排気ガスが流れ
ない通路に設けたフィルタ部材を加熱再生する方法が提
案されている。しかしながら、この手段では一方の通路
が閉されたときは他方の通路のフィルタ部材ro圧力損
失(以下・圧損25゛う)は2倍以上      1、
“。
As a means to improve the ignitability of particulates and to prevent them from being blown out during combustion, the exhaust gas passage connected to the internal combustion engine is divided into two, a filter member is provided in each passage, and the exhaust gas of the filter member is A method has been proposed in which a flow path switching pulp is provided on the upstream or downstream side, the exhaust gas is selectively guided to one path, and the filter member installed in the path through which the exhaust gas does not flow during pulp operation is heated and regenerated. . However, with this method, when one passage is closed, the pressure loss (hereinafter referred to as pressure loss 25゛) of the filter member in the other passage is more than double.
“.

となり、また、排ガスの流速もほぼ2倍になる。In addition, the flow rate of the exhaust gas is also approximately doubled.

(4) 圧損増加は運転フィーリングを悪くし、かつ、機関の出
力にも悪影響を及ぼす。また、流速の増加により、フィ
ルタ部材に捕集された微粒子がパルプ切替時の運転条件
によっては、吹き飛ばされ、フィルタ機能が低下するこ
ともある。
(4) Increased pressure loss worsens the driving feeling and also has a negative effect on the engine output. Furthermore, due to the increase in flow velocity, particulates collected on the filter member may be blown away depending on the operating conditions at the time of pulp switching, resulting in a decrease in filter function.

また我々の試験結果によれば、加熱手段により、フィル
タに堆積した微粒子に着火を行ない燃焼除去する場合に
は、燃焼のための最適なフィルタ部材通過排気ガス流量
が存在することがわかっている。排気ガス流量が比較的
多い場合には、ガス流により燃焼式域が冷却され燃焼が
停止する。また逆にガス流量が極端に少ない場合には、
燃焼に必要な酸素が提供され得ないため、同様に燃焼は
停止する。しかしながら、前記方法においては、再生時
フィルタを通過するガス流量を低減することは可能であ
るが、フィルタ通過ガス流量は、流路切替パルプの漏れ
特性(これは設計上任意に調整可能であるが)と機関排
気ガス流量とで定まる。
Furthermore, according to our test results, it has been found that when the heating means ignites and burns off the particulates deposited on the filter, there is an optimum flow rate of exhaust gas passing through the filter member for combustion. When the exhaust gas flow rate is relatively large, the combustion region is cooled by the gas flow and combustion is stopped. Conversely, if the gas flow rate is extremely low,
Combustion also ceases because the oxygen necessary for combustion cannot be provided. However, in the above method, although it is possible to reduce the gas flow rate passing through the filter during regeneration, the gas flow rate passing through the filter depends on the leakage characteristics of the flow path switching pulp (although this can be adjusted arbitrarily in the design). ) and the engine exhaust gas flow rate.

一方、機関排気ガス流量は、ディーゼル機関の場合、は
ぼ機関回転数に比例するが、機関回転数(5) は、車両運転状況により大幅に変動する。このため前記
方法においては、再生時、フィルタ通過ガス流量を低減
することは可能であるが、広範な機関運転領域で我々が
試験結果より把握している最適な排気ガス流量を流すこ
とは不可能である。
On the other hand, in the case of a diesel engine, the engine exhaust gas flow rate is proportional to the engine speed, but the engine speed (5) varies significantly depending on the vehicle driving conditions. Therefore, in the above method, it is possible to reduce the flow rate of gas passing through the filter during regeneration, but it is impossible to flow the optimal exhaust gas flow rate, which we know from test results, over a wide range of engine operating ranges. It is.

以上の点に鑑み、本発明は、広範な運転条件下でフィル
タ部材の再生を可能とすることを目的とし、基本的に内
燃機関の排気ガス通路に設置し排気ガス中の微粒子を付
着捕集するフィルタ部材と、該フィルタ部材の排気ガス
上流側面またはその近傍に設置し通電することにより発
熱して捕集微粒子を着火燃焼せしめる電気的加熱手段と
、排気ガス通路のフィルタ部材上流側および下流側を連
通し、全開時には排気ガスの大部分をフィルタ部材を経
ずに流通せしめ得る低い通気抵抗のバイパス通路と、該
バイパス流路に設置しこれを開閉することによりフィル
タ部材への排気ガス通過量を制御する開閉パルプとを備
え、前記開閉バルブの開度を機関運転状況に応じて開度
tj@整することにより、運転状況にかかわらず再生時
燃焼に適量な排(6) 気ガス量をフィルタ部材に通過させることにより、前記
目的を達成することを特徴とするものである。
In view of the above points, the present invention aims to enable the regeneration of filter members under a wide range of operating conditions, and is basically installed in the exhaust gas passage of an internal combustion engine to attach and collect particulates in the exhaust gas. an electric heating means installed on or near the upstream side of the exhaust gas of the filter member and generating heat when energized to ignite and burn the collected particulates; and upstream and downstream sides of the filter member in the exhaust gas passage. A bypass passage with low ventilation resistance that allows most of the exhaust gas to flow through without passing through the filter member when fully opened, and a bypass passage that is installed in the bypass passage and opens and closes it to reduce the amount of exhaust gas passing through the filter member. By adjusting the opening degree of the opening/closing valve according to the engine operating conditions, an appropriate amount of exhaust gas can be generated for combustion during regeneration regardless of the operating conditions. The above object is achieved by passing it through a filter member.

本発明は、前記の作動を可能とする大別して2つの方法
に関するものであるが、まず第1の方式に関して、以下
に具体的実施例を図に従って説明する。
The present invention relates to two methods that enable the above-mentioned operation. First, a specific example of the first method will be described below with reference to the drawings.

第1図は本発明になる微粒子浄化装置の基本的構成を示
す。1は内部に微粒子捕集フィルタ2を内蔵するフィル
タ容器、3はフィルタ部材2の上流側端面に密着設置し
た電気ヒーターであり、フィルタ再生時には端子3′よ
り給電が行なわれヒーターが赤熱し微粒子に着火燃焼を
行なわしめる。
FIG. 1 shows the basic configuration of a particulate purification device according to the present invention. Reference numeral 1 designates a filter container with a particulate collection filter 2 built therein, and 3 designates an electric heater installed closely on the upstream end face of the filter member 2. During filter regeneration, power is supplied from terminal 3', and the heater becomes red hot and collects particulates. Perform ignition combustion.

4は本発明の構成要素をなすバイパス流路で途中に開閉
弁5が設置されている。微粒子捕集時、開閉弁5は図中
Aで示す全開位置を取り、排気ガスの全量がフィルタ2
を通過し捕集がなされる。フィルタ再生時、当該バルブ
は、通常図中Cで全開位置を取り、排気ガスの大部分は
バイパス管4を通過する。フィルタ材2には、バイパス
管4の圧力損失に相当する微小な圧力差が加わり、この
圧(7) 力と、フィルタ部材の通気抵抗とで定まる微少流量がフ
ィルタ材と通過して流れる。ここで、排気ガス流量が比
較的大なる時にフィルタ部材通過ガス量が適当量となる
様バイパス管径を定めると、運転条件が変化し、排気ガ
ス量が減少した場合には、バイパス管4の圧力損失は減
少し、フィルタ材に加わる圧力差も減少し、フィルタ材
通過ガス量も適当量以下に減少してしまう。逆に、排気
ガス量が比較的少なる場合にフィルタ材通過ガス量が適
当量となる様、バイパス管径を縮小すると、排気ガス量
が増大した場合には逆にフィルタ材通過ガス量は過大と
なる。本発明は、第1の実施例に示すように以下の不具
合を防止するために、排気ガス量が大なる時にフィルタ
材通過ガス量が適量となる様にバイパス管径を設定し、
再生時には、開閉弁5を全開にする。すなわち図中ここ
で示す位置、とともに、排気ガス量が少となった場合に
は、開閉弁5を図中Bで示す半開状態となすことにより
、バイパス流路の圧力損失を高め、フィルタ材に加わる
圧力差を維持し、フィルタ材通過ガ(8) ス量を確保することが出来ることを第1の特徴とする。
Reference numeral 4 denotes a bypass flow path which is a component of the present invention, and an on-off valve 5 is installed in the middle. When collecting particulates, the on-off valve 5 assumes the fully open position shown by A in the figure, and the entire amount of exhaust gas flows through the filter 2.
It passes through and is collected. During filter regeneration, the valve normally assumes the fully open position at C in the figure, and most of the exhaust gas passes through the bypass pipe 4. A minute pressure difference corresponding to the pressure loss of the bypass pipe 4 is applied to the filter material 2, and a minute flow rate determined by this pressure (7) and the ventilation resistance of the filter member flows through the filter material. Here, if the bypass pipe diameter is determined so that the amount of gas passing through the filter member is appropriate when the exhaust gas flow rate is relatively large, if the operating conditions change and the exhaust gas amount decreases, the bypass pipe 4 The pressure loss decreases, the pressure difference applied to the filter material also decreases, and the amount of gas passing through the filter material also decreases below an appropriate amount. Conversely, if the bypass pipe diameter is reduced so that the amount of gas passing through the filter material is appropriate when the amount of exhaust gas is relatively small, the amount of gas passing through the filter material will be excessive when the amount of exhaust gas increases. becomes. As shown in the first embodiment, in order to prevent the following problems, the present invention sets the diameter of the bypass pipe so that the amount of gas passing through the filter material becomes appropriate when the amount of exhaust gas increases,
During regeneration, the on-off valve 5 is fully opened. In other words, at the position shown here in the figure, when the amount of exhaust gas decreases, the on-off valve 5 is placed in the half-open state indicated by B in the figure, thereby increasing the pressure loss in the bypass flow path and reducing the filter material. The first feature is that the applied pressure difference can be maintained and the amount of gas (8) passing through the filter material can be secured.

次に第2図に従ってこの効果を説明する。第2図は横軸
に機関排気ガス流量、縦軸にフィルタ部材通過ガス流量
を表わしたものである。斜線域は再生に適当なフィルタ
部材通過排気ガス流量の範囲を表わしている。曲線Cは
開閉バルブ位置C1すなわち全開時の排気ガス流量対フ
ィルタ部材通過ガス量の対応を示す。これより明らかな
ごとく、低流量側で再生に必要なフィルタ通過ガス量が
確保され得なくなる。図中すで示す曲線は、本発明に従
って開閉バルブを半開位置、すなわち図1のBで示す位
置を取った場合のフィルタ部材通過ガス量で、排気ガス
流量の少ない側でのフィルタ部材通過ガス量の減少を防
止出来ることを示している。
Next, this effect will be explained according to FIG. In FIG. 2, the horizontal axis represents the flow rate of engine exhaust gas, and the vertical axis represents the flow rate of gas passing through the filter member. The shaded area represents the range of exhaust gas flow rate passing through the filter member suitable for regeneration. Curve C shows the correspondence between the exhaust gas flow rate and the amount of gas passing through the filter member when the opening/closing valve position C1 is fully opened. As is clear from this, the amount of gas passing through the filter necessary for regeneration cannot be secured on the low flow rate side. The curve already shown in the figure is the amount of gas passing through the filter member when the opening/closing valve is in the half-open position according to the present invention, that is, the position shown by B in FIG. This shows that it is possible to prevent a decrease in

以上のごとく、機関排気ガス流量に応じてバイパス流路
のバルブ開度を調整することにより、広範な排気ガス流
量下でのフィルタ再生方向が可能となる。
As described above, by adjusting the valve opening degree of the bypass passage according to the engine exhaust gas flow rate, it is possible to regenerate the filter under a wide range of exhaust gas flow rates.

(9) 次にバルブ半開位置を可能とするバルブアクチェエータ
の実施例について説明する。
(9) Next, an embodiment of a valve actuator that allows the valve to be in a half-open position will be described.

第3図は、3位置作動のバキュームアクチュエータの実
施例で、1aは第1のバキュームハウジング、2aは第
2のバキュームハウジングで内部にはそれぞれベロフラ
ム6a、6a’及びスプリング10,11が内蔵されて
いる。7a′はベロフラム6aで駆動されるロッドで、
ベロフラム6a′で駆動されるロッドtaaとの間にa
で示す範囲の移動が可能で、例えば電磁弁Vlへの通電
で、3よりバキュームハウジング1aにバソテリーボン
ブ■・Pの負圧を与えることにより、ロッド7aはaだ
け移動し、ロッドに連結されたアーム14により、バル
ブプレート8は図中Bで示す半開位置を取る。さらにバ
ルブ開度を1中Cで示す全開位置にするには、例えば電
磁弁■λへの通電で4ヨリバキユームバウシング2に負
圧を与えることにより、図中すで示す範囲のストローク
を有するロッド13aがロッド7aを介してバルブプレ
ートをCで示す全開位置まで開弁させることが可能(1
0) である。バルブ半開時の開度はストロークaを調整する
ことにより任意に可能である。
FIG. 3 shows an embodiment of a vacuum actuator with three-position operation, in which 1a is a first vacuum housing, 2a is a second vacuum housing, and bellophrams 6a, 6a' and springs 10, 11 are built inside, respectively. There is. 7a' is a rod driven by the bellow ram 6a,
between the rod taa driven by the bellow frame 6a'
For example, by energizing the solenoid valve Vl and applying negative pressure from the vacuum housing 1a to the vacuum housing 1a, the rod 7a moves by an amount a, and the arm connected to the rod 14, the valve plate 8 assumes the half-open position indicated by B in the figure. Furthermore, in order to bring the valve opening degree to the fully open position shown by C in 1, for example, by energizing the solenoid valve ■λ and applying negative pressure to the 4-way vacuum bousing 2, the stroke in the range already shown in the figure can be adjusted. The rod 13a that has the valve plate can be opened to the fully open position shown by C via the rod 7a (1
0). The degree of opening when the valve is half open can be adjusted arbitrarily by adjusting the stroke a.

第4図は、同様の作動を可能にするバルブアクチュエー
タの別の実施例を示す。1bは第1のバキュームハウジ
ング、2bは第2のバキュームハウジングで、各々に負
圧を与えることによりa。
FIG. 4 shows another embodiment of a valve actuator that allows similar operation. 1b is a first vacuum housing, 2b is a second vacuum housing, and by applying negative pressure to each, a.

bで示す範囲のストロークが可能である。Strokes within the range indicated by b are possible.

以上は、3位置作動が可能な1つのアクチュエータを用
いた場合の例であるが、第5図に2個のアクチュエータ
を用いて同様の作動を可能とする例を示す。
The above is an example in which one actuator capable of three-position operation is used, but FIG. 5 shows an example in which two actuators are used to enable similar operation.

第5図において、16Gはバルブ半開を可能とする小ス
トロークのアクチュエータ、15cは全開を可能とする
大ストロークのアクチェエータで、バルブ、シャフトに
固定されたアーム14at−介してバルブ弁8cを回転
させる。バルブ半開作動はシャフト3 c lを軸に自
由に回転するアーム1、lbの突起部14−0部、がア
ーム 14−aを押ずことによりなされる。
In FIG. 5, 16G is a small-stroke actuator that allows the valve to be half-opened, and 15c is a large-stroke actuator that allows the valve to be fully opened, which rotates the valve 8c via an arm 14at fixed to the valve and shaft. The half-opening operation of the valve is performed by pushing the arm 14-a by the protruding portion 14-0 of the arm 1, lb, which rotates freely around the shaft 3cl.

以上、開閉バルブ駆動機構の説明を行なってきたが、次
に実際のバルブ駆動制御方法について述べる。
The opening/closing valve drive mechanism has been explained above, and next, an actual valve drive control method will be described.

本発明の第1の方式は機関の排気ガス流量の大小に応じ
て、開閉バルブの開度を調整する点にその特徴が有る。
The first method of the present invention is characterized in that the degree of opening of the opening/closing valve is adjusted depending on the magnitude of the exhaust gas flow rate of the engine.

機関の排気ガス流量を直接計量することは困難であるが
、ディーゼル機関においては、機関回転数と排気ガス流
量には良い対応関係が成立することに着目して、機関回
転数の大小により、開閉バルブ開度を調整することによ
り、実用上十分な排気ガス流量の制御が可能であること
がわかった。機関回転数の検知方法としては、例えばフ
ライホイール外周に設けられたギヤーに接近してマグネ
ットピックアップ等を取り付け、ピックアップに発生す
るパルス数をカウントする等、従来公知の方法で十分可
能である。また、設定回転数に対する機関回転数の大小
判別機構等も従来技術で行なうことが出来る。以上は排
気ガス流量の大小を検知する方法として、排気ガス流量
と相関を有する機関回転数を利用する場合を説明した 
     )、りが、さらに機関回転数と相関を有する
別の信号を用いても良いことは言うまでもない。
Although it is difficult to directly measure the exhaust gas flow rate of an engine, we focused on the fact that there is a good correspondence between engine speed and exhaust gas flow rate in diesel engines. It was found that by adjusting the valve opening degree, it was possible to control the exhaust gas flow rate sufficiently for practical purposes. As a method for detecting the engine rotation speed, a conventionally known method such as attaching a magnetic pickup or the like close to a gear provided on the outer periphery of the flywheel and counting the number of pulses generated in the pickup is sufficient. Further, a mechanism for determining the magnitude of the engine rotation speed relative to the set rotation speed can be implemented using conventional technology. The above describes the case where the engine speed, which has a correlation with the exhaust gas flow rate, is used as a method for detecting the magnitude of the exhaust gas flow rate.
), ri, it goes without saying that another signal having a correlation with the engine speed may also be used.

例えばディーゼル機関の燃料噴射ポンプのある種の型式
のものにおいては、噴射ポンプ内燃料圧力がほぼ機関回
転数に応じて変化するものが有る。
For example, in some types of fuel injection pumps for diesel engines, the fuel pressure within the injection pump changes approximately depending on the engine speed.

この種のポンプを使用している機関においては、噴射ポ
ンプ内燃料圧力を検知することにより、機関回転数、ひ
いては排気ガス原料の大小を検知することが出来る。こ
の方法の場合には、適当な圧力で作動する圧力スイツチ
を燃料噴射ポンプに装着するという方法で目的とする信
号を得ることが出来る。
In an engine using this type of pump, by detecting the fuel pressure within the injection pump, it is possible to detect the engine speed and, by extension, the size of the exhaust gas raw material. In this method, the desired signal can be obtained by attaching a pressure switch that operates at an appropriate pressure to the fuel injection pump.

また排気ガス原料とほぼ等しい機関吸入空気原料を検知
することにより、開閉バルブを制御することも可能であ
る。この場合には機関吸入管にベンチュリーを設け、ベ
ンチュリー負圧の大小により吸入空気量、すなわち排気
ガス流量の大小を検知することが出来る。
It is also possible to control the opening/closing valve by detecting the engine intake air material which is approximately equal to the exhaust gas material. In this case, a venturi is provided in the engine suction pipe, and the intake air amount, that is, the exhaust gas flow rate can be detected based on the magnitude of the venturi negative pressure.

以上述べて来たごとく、本発明は、排気ガス流量の大小
により、バイパス管部に装着した開閉バルブの開度を調
整することにより、フィルタ再生(1″3) 時のフィルタ材通過ガス量を再生に適した量に制御する
ことを特徴とする。
As described above, the present invention reduces the amount of gas passing through the filter material during filter regeneration (1"3) by adjusting the opening degree of the on-off valve attached to the bypass pipe section depending on the magnitude of the exhaust gas flow rate. It is characterized by controlling the amount to be suitable for reproduction.

以上は、何等かの手段で排気ガス流量の大小を検知し、
この信号に基付き、開閉バルブの開度を調整することに
より、フィルタ材通過ガス量を制御する方法に関して述
べて来たが、開閉バルブ自体に流量制御特性を持たせる
ことにより、上記目的を可能とする本発明の第2の方法
について説明する。
In the above, the magnitude of the exhaust gas flow rate is detected by some means,
We have described a method for controlling the amount of gas passing through the filter material by adjusting the opening degree of the on-off valve based on this signal, but the above purpose can be achieved by providing the on-off valve itself with flow rate control characteristics. A second method of the present invention will be described.

フィルタ部材の圧力損失、すなわちフィルタ前後差圧は
、フィルタ通過ガス量にほぼ比例して変化する。従って
逆にフィルタ前後差圧を一定となる様にバイパス流量を
制御することによりフィルタ通過ガス量を一定に制御す
ることが出来る。本発明の第2は以上の作動を簡単なバ
ルブ機構で可能とすることを特徴とするものである。
The pressure loss of the filter member, that is, the differential pressure across the filter changes approximately in proportion to the amount of gas passing through the filter. Therefore, by controlling the bypass flow rate so that the differential pressure across the filter remains constant, the amount of gas passing through the filter can be controlled to be constant. A second aspect of the present invention is that the above-mentioned operations can be performed using a simple valve mechanism.

第6図は、本発明の第2の方式の実施例の構成図で、4
dは内部にフィルタ部材5d電気ヒーターブロツク6を
内蔵したフィルタ容器である。1は排気ガス流入管部、
2は同流出管部で、3dは(14) バイパス流路を示す。3aはバイパス管の上流分枝部、
3bはバイパス管の流量制御バルブへの流入部を示す。
FIG. 6 is a block diagram of an embodiment of the second method of the present invention, with four
d is a filter container having a filter member 5d and an electric heater block 6 built therein. 1 is an exhaust gas inflow pipe section,
2 is the outflow pipe section, and 3d (14) shows the bypass flow path. 3a is the upstream branch of the bypass pipe;
3b shows the inflow part of the bypass pipe to the flow rate control valve.

なお7は複数に分割されたヒーター、8は各ヒーターへ
給電を行なうためのターミナルを示す。9dは本発明に
なる流量制御パルプで、バイパス流路を開閉するポペッ
ト弁10を内蔵している。図中に実線で示した10は弁
閉鎖位置、図中に2点鎖線で示した10′は開弁位置を
各々示す。9aはフィルタ部材通過ガスの制御バルブへ
の流入部、9bはバイパスガスの流入部を示す。
Note that 7 indicates a heater divided into a plurality of parts, and 8 indicates a terminal for supplying power to each heater. 9d is a flow control pulp according to the present invention, which has a built-in poppet valve 10 for opening and closing a bypass flow path. 10 indicated by a solid line in the figure indicates the valve closed position, and 10' indicated by a two-dot chain line indicates the valve open position. Reference numeral 9a indicates an inflow portion for gas passing through the filter member into the control valve, and reference numeral 9b indicates an inflow portion for bypass gas.

本発明の第2の方式の基本は、フィルタの前f&差圧、
すなわち図中PL+P)で示した圧力の圧力差を一定に
制御することによりフィルタ通過ガス量を一定値に制御
することにある。ここで、バイパス管3の径を十分大き
く取り、バイパス管の通気抵抗を十分少なくすることに
より図中P1′及びPz′で示したポペット弁10の前
後圧力は、それぞれP :t l  P >にほぼ等し
くなる。従って、ポペット弁の前後圧力差P1’ −P
よ′を排気ガス流量にかかわらず一定にすれば目的は達
せられる。
The basis of the second method of the present invention is the f & differential pressure in front of the filter,
That is, the purpose is to control the amount of gas passing through the filter to a constant value by controlling the pressure difference shown by PL+P in the figure to be constant. Here, by making the diameter of the bypass pipe 3 sufficiently large and sufficiently reducing the ventilation resistance of the bypass pipe, the front and rear pressures of the poppet valve 10, indicated by P1' and Pz' in the figure, can be adjusted to P :t l P >, respectively. almost equal. Therefore, the pressure difference between the front and rear of the poppet valve P1' - P
The objective can be achieved by keeping y′ constant regardless of the exhaust gas flow rate.

次にこれを可能にする弁構造の実施例を以下図に従って
説明する。
Next, an embodiment of a valve structure that makes this possible will be described below with reference to the drawings.

第7図は本発明の第2の方式に関する第1の実施例を示
す。lOeは弁板でアーム12にビン10e′により取
り付けられ、アーム12はシャフト13eに固定されて
いる。シャフト13eには、アーム14eが固定装着さ
れるとともにシャフト13eを中心軸として自由に回転
可能なアーム15が装着される。16は図示しないアク
チュエータのロッドで、バイパス流路を閉鎖する場合に
は、該ロッドがアーム15を押し、アーム15はアーム
14eの突起部14e′を押すことにより弁板10eを
弁材9−cに圧着して流路を閉鎖する。
FIG. 7 shows a first embodiment of the second method of the present invention. lOe is a valve plate attached to the arm 12 by a pin 10e', and the arm 12 is fixed to the shaft 13e. An arm 14e is fixedly attached to the shaft 13e, and an arm 15 is attached which is freely rotatable about the shaft 13e. Reference numeral 16 denotes a rod of an actuator (not shown). When closing the bypass flow path, the rod pushes the arm 15, and the arm 15 pushes the protrusion 14e' of the arm 14e to move the valve plate 10e to the valve material 9-c. Crimp to close the flow path.

フィルタ再往時、すなわち大部分の排気ガスをバイパス
し、フィルタ部材通過ガ不を一定量に制御する場合には
、アクチュエータロッド16が引かれることによりアー
ム15はアーム14より離れる。176はアーム146
を介して弁板IQeを一定圧力で弁座9−cに押付ける
ためのスプリングである。ここで、フィルタ材前後差圧
は前述のごとく図中Pユ′、PΣ′で示す弁板の前後の
圧力の差ずなわちP工′−P≧′にほぼ等しいが、スプ
リング17eの強さを適当に調整することによりP% 
 P2’を排気ガス流量にほぼ関係なく一定値に取るこ
とが出来る。すなわち、排気ガス流量が大なる時に弁開
度は自動的に大きく、排気ガス流量が小なる時に弁開度
は小さくなるが、弁筒後差圧pi’−pχ′はスプリン
グ17eの強さで定まりほぼ一定となるため、フィルタ
の前後差圧P1−P、が一定となり、フィルタ通過ガス
量も一定となる。以上のごとく本発明の第2の方式は、
バイパス流量調整弁の弁筒後差圧がフィルタ材前後差圧
にほぼ等しくなる点に着目し、排気ガス流量の大小、す
なわち、バイパス流量の大小に関係なく弁筒後差圧が一
定となる流量調整弁を用いることにより、フィルタ前後
差圧を一定とし、フィルタ通過ガス量を制御することを
特徴とする。そして、弁筒後差圧を一定となしうる弁と
して、開弁時、弁板をスプリング力により弁座に(17
) 押しつける構成のポペット弁を用いることを特徴とする
When repassing the filter, that is, when most of the exhaust gas is bypassed and the amount of gas passing through the filter member is controlled to a constant amount, the arm 15 is separated from the arm 14 by pulling the actuator rod 16. 176 is arm 146
This is a spring for pressing the valve plate IQe against the valve seat 9-c with a constant pressure. Here, as mentioned above, the differential pressure across the filter material is approximately equal to the difference in pressure between the front and rear of the valve plate, indicated by Pyu' and PΣ' in the figure, that is, P'-P≧', but the strength of the spring 17e By appropriately adjusting P%
P2' can be kept at a constant value almost regardless of the exhaust gas flow rate. In other words, when the exhaust gas flow rate increases, the valve opening automatically increases, and when the exhaust gas flow rate decreases, the valve opening decreases; however, the differential pressure pi'-pχ' after the valve cylinder depends on the strength of the spring 17e. Since the pressure is determined and remains almost constant, the differential pressure P1-P across the filter becomes constant, and the amount of gas passing through the filter also becomes constant. As described above, the second method of the present invention is
Focusing on the point that the differential pressure after the valve cylinder of the bypass flow rate adjustment valve is almost equal to the differential pressure across the filter material, we determined the flow rate at which the differential pressure after the valve cylinder remains constant regardless of the magnitude of the exhaust gas flow rate, that is, regardless of the magnitude of the bypass flow rate. By using a regulating valve, the differential pressure across the filter is kept constant and the amount of gas passing through the filter is controlled. As a valve that can maintain a constant differential pressure after the valve cylinder, when the valve is opened, the valve plate is pressed against the valve seat by spring force (17
) It is characterized by using a poppet valve with a pressing configuration.

次に別の実施例について説明する。第8図は前述した制
御パルプの他にバイパス時、フィルタ通過ガス量を制限
するバタフライ弁18fを設けた場合の例である。この
弁は以下の目的で設けられる。本発明の方法は、フィル
タ前後差圧を一定に制御することによりフィルタ通過ガ
ス量を一定値に制御するものであり、ポペット弁10を
スプリング17により、一定力で弁座9−cに押付ける
ことによりこれを達成する。一方、”フィルタ部材は種
々の通気抵抗のものが用いられる可能性が有り、一般に
微粒子の捕集効率が低いほど通気抵抗は少ない。この様
に低通気抵抗のフィルタ部材を用いる場合には、当然、
一定とすべきフィルタ前後差圧も小さなものとなる。こ
れはスプリング17の力を弱めることにより可能である
が、シャフト13の回転抵抗が相対的に大きくなり、設
定誤差として表われてくる。弁板18fはこれを防止す
るためでバイパス時18fを閉じ、見かけ上フィ(18
) ルタ部材の通気抵抗を増大することにより、スプリング
17の力を弱めることなく、流量制御を円滑に行なわせ
ることを可能とする。弁板18fには、場合によっては
18f′で示す小孔を設け、該バルブの通気抵抗調整す
ることも行なわれる。
Next, another embodiment will be described. FIG. 8 shows an example in which a butterfly valve 18f for limiting the amount of gas passing through the filter during bypass is provided in addition to the above-mentioned control pulp. This valve is provided for the following purposes. The method of the present invention is to control the amount of gas passing through the filter to a constant value by controlling the differential pressure across the filter to a constant value, and the poppet valve 10 is pressed against the valve seat 9-c with a constant force by the spring 17. This is achieved by: On the other hand, filter members with various ventilation resistances may be used, and in general, the lower the particle collection efficiency, the lower the ventilation resistance.When using filter members with low ventilation resistance in this way, it is natural that ,
The differential pressure across the filter, which should be kept constant, also becomes small. Although this is possible by weakening the force of the spring 17, the rotational resistance of the shaft 13 becomes relatively large, which appears as a setting error. The purpose of the valve plate 18f is to prevent this, and it closes the valve plate 18f when bypassing, making the valve plate 18f appear to be closed.
) By increasing the ventilation resistance of the router member, it is possible to smoothly control the flow rate without weakening the force of the spring 17. In some cases, the valve plate 18f is provided with a small hole 18f' to adjust the ventilation resistance of the valve.

図はフィルタ再生時、すなわちバイパス時の各作動位置
を表わす。11はポペット型流量調整弁駆動用のアクチ
ュエータでバイパス時に供給孔11′に負圧が供給され
、アーム15を引きバルブ弁10を開放位置にする。ま
た20fは弁板18fを駆動するためのアクチュエータ
で、バイパス時に供給孔20′に負圧が供給され弁板1
8fを閉鎖位置とする。
The figure shows each operating position during filter regeneration, ie, bypass. Reference numeral 11 is an actuator for driving a poppet type flow rate regulating valve, and when the valve is bypassed, negative pressure is supplied to the supply hole 11', and the arm 15 is pulled to set the valve 10 to the open position. Further, 20f is an actuator for driving the valve plate 18f, and when bypassing, negative pressure is supplied to the supply hole 20', and the valve plate 18f is supplied with negative pressure.
8f is the closed position.

第9図は、同実施例での非再生時の各作動位置を表わし
ており各供給孔20’、11′には負圧は供給されず、
弁板18fは開位置を取るとともに、ポペット弁弁板1
oはアクチュエータ11のロッド16の押付力により弁
材9−cに押付けられ、バイパス流路を閉鎖する。
FIG. 9 shows each operating position during non-regeneration in the same embodiment, and negative pressure is not supplied to each supply hole 20', 11'.
The valve plate 18f takes the open position, and the poppet valve plate 1
o is pressed against the valve member 9-c by the pressing force of the rod 16 of the actuator 11, thereby closing the bypass passage.

第10図は、第9図に示す実施例の変形例を示す。第9
図においては、ポペット弁1oを一定カで弁座9−cに
押付ける方法としてアーム14とバルブハウジング9間
に設置したスプリング17による例を示したが、本実施
例は、このスプリングをアクチュエータ内に内蔵した場
合を示す。本実施例のアクチュエータはダイヤフラムの
両面に供給孔21′あるいは21″を通して負圧を与え
ることか出来る。バイパス時には、両方とも負圧に与え
られず、スプリング21aによりロッド16、アーム1
5を介して弁板1oが弁座9−cに弱く押付られる。非
バイパス時には、21’に負圧を供給することにより、
弁板10は強く、弁座に押付られバイパス流路を閉鎖す
る。また機関最高出力時のごとく、極力排気系の通気抵
抗を減少させる必要の有る場合には21”に負圧を与え
ることにより弁板10を強制的に全開位置10”に位置
させることが出来る。
FIG. 10 shows a modification of the embodiment shown in FIG. 9th
In the figure, an example is shown in which a spring 17 is installed between the arm 14 and the valve housing 9 as a method of pressing the poppet valve 1o against the valve seat 9-c with a constant force, but in this embodiment, this spring is installed inside the actuator. The case where it is built in is shown. The actuator of this embodiment can apply negative pressure to both sides of the diaphragm through the supply holes 21' or 21''. During bypass, negative pressure is not applied to either side, and the spring 21a causes the rod 16, arm 1
5, the valve plate 1o is weakly pressed against the valve seat 9-c. When not bypassed, by supplying negative pressure to 21',
The valve plate 10 is strongly pressed against the valve seat and closes the bypass flow path. Further, when it is necessary to reduce the ventilation resistance of the exhaust system as much as possible, such as when the engine is at maximum output, the valve plate 10 can be forced to the fully open position 10'' by applying negative pressure to the valve 21''.

次に、本発明の流量調整機構を実用に供する場6°: 
(’tFj! L 7 、M !“′″6 m!Ill
”fJmHIJn:R、、、□構の実施例について説明
する。
Next, 6 degrees when the flow rate adjustment mechanism of the present invention is put to practical use:
('tFj! L 7, M!"'"6 m!Ill
An example of the structure "fJmHIJn:R, , □" will be described.

第7図乃至第9図に示す流量制御弁10(10e)はバ
イパス時には、弁板10に加わる排気ガス圧力と、スプ
リング17(17e)の張力がバランスし、半開状態で
作動するが、排気ガス圧力には大きな脈動成分が含まれ
るため、弁板10はこれにより振動を起し流量調整機能
がそこなわれる場合もある。
During bypass, the flow rate control valve 10 (10e) shown in FIGS. 7 to 9 operates in a half-open state because the exhaust gas pressure applied to the valve plate 10 and the tension of the spring 17 (17e) are balanced, but the exhaust gas Since the pressure includes a large pulsation component, the valve plate 10 may vibrate and the flow rate adjustment function may be impaired.

第11図はこの振動を防止する機構の実施例を示す。図
において14h′はアーム14に付加したダンパーウェ
イトを示す。弁軸13に固定されたアーム14に14.
h’で示すウェイトを付加することにより、排気脈圧に
より生ずる弁板の振動を有効に防止することが出来る。
FIG. 11 shows an embodiment of a mechanism for preventing this vibration. In the figure, 14h' indicates a damper weight added to the arm 14. 14 on the arm 14 fixed to the valve stem 13.
By adding the weight indicated by h', vibration of the valve plate caused by exhaust pulse pressure can be effectively prevented.

振動防止方法としては、これに限らず、流体の流動抵抗
を利用したダンパーを付加することも考えられるが、構
成が複雑化するという欠点を有する。また第11図に示
す実施例においては、弁軸に固定されたアームに直接ア
クチュエータが連結されているため、ロッド16ダイヤ
フラム等の質量がダンパーウェイトとして作用し弁板1
oの振(21) 動は緩和される。
The vibration prevention method is not limited to this, and it is also possible to add a damper that utilizes fluid flow resistance, but this has the drawback of complicating the configuration. Further, in the embodiment shown in FIG. 11, since the actuator is directly connected to the arm fixed to the valve shaft, the mass of the rod 16 diaphragm, etc. acts as a damper weight, and the valve plate 1
Oscillation of o (21) The motion is relaxed.

以上詳細に説明したように、本発明はフィルター再生時
に排気ガスの大部分をバイパスし、フィルタ材通過ガス
量を減少させるとともに、機関排気ガス流量に応じて段
階的に、もしくは自動的連続的にバイパス流量を制御し
、フィルタ材通過ガス量を制御することにより、広範な
機関運転条件下でフィルタ再生が可能となるという優れ
た利点を有するものである。
As explained in detail above, the present invention bypasses most of the exhaust gas during filter regeneration, reduces the amount of gas passing through the filter material, and automatically and continuously By controlling the bypass flow rate and controlling the amount of gas passing through the filter material, it has the excellent advantage that filter regeneration is possible under a wide range of engine operating conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は本発明の第1の方式に関するもので
、第1図は基本構成を示す構成図、第2図は効果を示す
グラフであり、第3図はアクチュエータの第1*施例断
面図、第4図はアクチュエータの第2実施例、第5図は
アクチュエータの第3実施例を各々示している。 また、第6図乃至第11図は本発明の第2の方式に関す
るもので、第6図は基本構成を示す構成図であり、廊7
図は流量制御弁の第1実施例、第8図は流量制御弁の第
2実施例、第9図は第8図(22) に示す流量制御弁の非再生時の位置関係を表わす断面図
、第10図は流量制御弁の第3実施例の断面図、第11
図は流量制御弁の第4実施例の断面図を各々示している
。 1・・・フィルタ収納容器、2・・・フィルタ材、3・
・・電気ヒーター、4・・・バイパス流路、5・・・バ
イパス流路開閉弁、la、2a・・・バキュームハウジ
ング、6a、6a’・・・ベロフラム、7a・・・ロソ
l’、13a・・・ロッド、lb、2b・・・バキュー
ムハウジング、7b・・・ロッド、16a・・・小スト
ロークアクチュエータ、15c・・・大ストロークアク
チュエータ、8C・・・バルブ板、4d・・・フィルタ
収納容器、5d・・・フィルタ材、3d・・・バイパス
流路、9d・・・流量制御弁、9−c・・・弁座、lO
e・・・弁板、13e・・・シャフト、14e・・・ア
ーム、17e・・・スプリング、18f・・・弁板、2
0f・・・アクチュエータ、18f ’・・・小孔、1
4h’・・・ダンパーウェイト。 代理人弁理士 岡 部   隆 (23) 第1図 第2図 第3図 第6図 第7図 第8図 −h 第9図
1 to 5 relate to the first method of the present invention, in which FIG. 1 is a block diagram showing the basic configuration, FIG. 2 is a graph showing the effect, and FIG. 3 is a first * method of the actuator. Embodiment sectional views, FIG. 4 shows a second embodiment of the actuator, and FIG. 5 shows a third embodiment of the actuator. Further, FIGS. 6 to 11 relate to the second method of the present invention, and FIG. 6 is a configuration diagram showing the basic configuration, and FIG.
The figure shows a first embodiment of the flow control valve, FIG. 8 shows a second embodiment of the flow control valve, and FIG. 9 is a cross-sectional view showing the positional relationship of the flow control valve shown in FIG. 8 (22) during non-regeneration. , FIG. 10 is a sectional view of the third embodiment of the flow control valve, and FIG.
The figures each show a sectional view of a fourth embodiment of the flow control valve. 1... Filter storage container, 2... Filter material, 3...
...Electric heater, 4...Bypass flow path, 5...Bypass flow path opening/closing valve, la, 2a...Vacuum housing, 6a, 6a'...Verofram, 7a...Roso l', 13a ...Rod, lb, 2b...Vacuum housing, 7b...Rod, 16a...Small stroke actuator, 15c...Large stroke actuator, 8C...Valve plate, 4d...Filter storage container , 5d...filter material, 3d...bypass flow path, 9d...flow control valve, 9-c...valve seat, lO
e... Valve plate, 13e... Shaft, 14e... Arm, 17e... Spring, 18f... Valve plate, 2
0f...Actuator, 18f'...Small hole, 1
4h'...damper weight. Representative Patent Attorney Takashi Okabe (23) Figure 1 Figure 2 Figure 3 Figure 6 Figure 7 Figure 8-h Figure 9

Claims (1)

【特許請求の範囲】 (11内燃機関の排気ガス通路に設置し排気ガス中の微
粒子を捕集するフィルタ部材と、該フィルタ部材の排気
ガス上流側端面またはその近傍に設置したフィルタ部材
に捕集された微粒子を加熱燃焼せしめる電気的加熱手段
と、上記排気ガスの大部分を流通せしめ得るバイパス通
路と、該バイパス通路に設はバイパス通路を開閉する開
閉バルブを具備した内燃機関の排気ガス微粒子浄化装置
において、フィルタ再生時に機関排気ガス流量の大小に
応動して、前記開閉バルブの開度を調整し、フィルタ部
材通過ガス量を制御することを特徴とする内燃機関の排
気ガス微粒子浄化装置。 (2)機関排気ガス流量の大小を判別する手段として、
機関回転数を検知し、機関回転数の大小に応動して、開
閉バルブの開度を調整することを特徴とする特許請求の
範囲第1項記載の内燃機関の排(1) 気ガス微粒子浄化装置。 (3)開閉バルブの開度調整を複数位置作動が可能記載
の内燃機関の排気ガス微粒子浄化装置。 (4)フィルタ再生時にフィルタ通過ガス量を制御する
手段として、フィルタ前後差圧を一定となす機関の排気
ガス微粒子浄化装置。 (5)フィルタ再生時にフィルタ前後部圧を一定となす
様にバイパス側排気ガス流量を調整するバイパス流路設
置の開閉バルブを上流側に弁座、下側に弁板が位置する
ポペット弁とし、フィルタ再生時には、スプリングによ
り一定力で弁板を弁座に押付けることにより作動するバ
ルブを用いること(6)フィルタ部材側通路途中に開閉
弁を設け、フィルタ再生時には該開閉弁を閉じることを
特徴と(2) 燃機関の排気ガス微粒子浄化装置。
[Scope of Claims] (11) A filter member installed in the exhaust gas passage of an internal combustion engine to collect particulates in the exhaust gas; and a filter member installed at or near the upstream end face of the filter member to collect fine particles in the exhaust gas. Exhaust gas particulate purification for an internal combustion engine, comprising an electric heating means for heating and burning the collected particulates, a bypass passage through which most of the exhaust gas can flow, and an opening/closing valve installed in the bypass passage for opening and closing the bypass passage. An exhaust gas particulate purification device for an internal combustion engine, characterized in that the device adjusts the opening degree of the opening/closing valve in response to the magnitude of the engine exhaust gas flow rate during filter regeneration to control the amount of gas passing through the filter member. ( 2) As a means of determining the magnitude of engine exhaust gas flow rate,
Exhaust gas from an internal combustion engine according to claim 1, characterized in that the engine speed is detected and the opening degree of the opening/closing valve is adjusted in response to the magnitude of the engine speed. Device. (3) An exhaust gas particulate purification device for an internal combustion engine as described in which the opening degree of the opening/closing valve can be adjusted in multiple positions. (4) An exhaust gas particulate purification device for an engine that keeps the differential pressure across the filter constant as a means for controlling the amount of gas passing through the filter during filter regeneration. (5) The on-off valve installed in the bypass flow path, which adjusts the flow rate of exhaust gas on the bypass side so as to keep the front and rear pressure of the filter constant during filter regeneration, is a poppet valve with a valve seat located on the upstream side and a valve plate located on the lower side; During filter regeneration, a valve is used that is operated by pressing the valve plate against the valve seat with a constant force by a spring. (6) An on-off valve is provided in the middle of the filter member side passage, and the on-off valve is closed during filter regeneration. and (2) a combustion engine exhaust gas particulate purification device.
JP57106390A 1982-03-16 1982-06-21 Exhaust gas particle purifier of internal-combustion engine Granted JPS58222908A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57106390A JPS58222908A (en) 1982-06-21 1982-06-21 Exhaust gas particle purifier of internal-combustion engine
US06/475,625 US4558565A (en) 1982-03-16 1983-03-15 Exhaust gas cleaning device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106390A JPS58222908A (en) 1982-06-21 1982-06-21 Exhaust gas particle purifier of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58222908A true JPS58222908A (en) 1983-12-24
JPH0147603B2 JPH0147603B2 (en) 1989-10-16

Family

ID=14432362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106390A Granted JPS58222908A (en) 1982-03-16 1982-06-21 Exhaust gas particle purifier of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58222908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924908U (en) * 1982-08-06 1984-02-16 トヨタ自動車株式会社 Diesel engine exhaust particulate purification device
JPS59194019A (en) * 1983-04-18 1984-11-02 Toyota Motor Corp Purifier for exhaust particulate of diesel engine
JPS61175522U (en) * 1985-04-22 1986-11-01

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924908U (en) * 1982-08-06 1984-02-16 トヨタ自動車株式会社 Diesel engine exhaust particulate purification device
JPS6325293Y2 (en) * 1982-08-06 1988-07-11
JPS59194019A (en) * 1983-04-18 1984-11-02 Toyota Motor Corp Purifier for exhaust particulate of diesel engine
JPH0530963B2 (en) * 1983-04-18 1993-05-11 Toyota Motor Co Ltd
JPS61175522U (en) * 1985-04-22 1986-11-01
JPH0422020Y2 (en) * 1985-04-22 1992-05-20

Also Published As

Publication number Publication date
JPH0147603B2 (en) 1989-10-16

Similar Documents

Publication Publication Date Title
US4558565A (en) Exhaust gas cleaning device for internal combustion engine
US7913810B2 (en) High-performance muffler assembly with multiple modes of operation
US5067319A (en) System for purifying the exhaust gases of diesel engines
JPH0532563B2 (en)
JPS58222908A (en) Exhaust gas particle purifier of internal-combustion engine
JPH0431613A (en) Exhaust treatment system for internal combustion engine
JPH0431614A (en) Exhaust gas treatment system
JPS59105915A (en) Exhaust gas purifying method of diesel engine equipped with turbosupercharger
JP2616074B2 (en) Engine exhaust purification device
JPH0319376B2 (en)
JPS6079114A (en) Device for processing microparticles in exhaust gas of internal-combustion engine
JPH0359251B2 (en)
DE3619397A1 (en) Method for the regeneration of a soot filter and diesel engine with soot burn-off filter
JPS59150921A (en) Trap regenerating device in exhaust gas purifying device for diesel engine
JPS5982515A (en) Exhaust gas purifier of diesel engine
JPH034735Y2 (en)
CN109026405A (en) Intaker controller for vehicle
JPS6325293Y2 (en)
JPS6114616Y2 (en)
JPS5915619A (en) Processing device of exhaust fine particle in internal-combustion engine
JPH066186Y2 (en) Exhaust gas purification device for diesel engine
JPS6339382Y2 (en)
JPH0338414Y2 (en)
JPH08170521A (en) Particulate trap device
JP3028714B2 (en) Diesel engine exhaust purification system