JPS58222311A - Abnormality diagnostic device - Google Patents

Abnormality diagnostic device

Info

Publication number
JPS58222311A
JPS58222311A JP57104977A JP10497782A JPS58222311A JP S58222311 A JPS58222311 A JP S58222311A JP 57104977 A JP57104977 A JP 57104977A JP 10497782 A JP10497782 A JP 10497782A JP S58222311 A JPS58222311 A JP S58222311A
Authority
JP
Japan
Prior art keywords
value
alarm rate
threshold
abnormality
fire alarm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57104977A
Other languages
Japanese (ja)
Inventor
Ryoichi Murata
良一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57104977A priority Critical patent/JPS58222311A/en
Publication of JPS58222311A publication Critical patent/JPS58222311A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • G05B23/0272Presentation of monitored results, e.g. selection of status reports to be displayed; Filtering information to the user

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

PURPOSE:To attain abnormality diagnosis with high accuracy and reliability, by studying the past result of abnormality diagnosis and setting a threshold value where rate of mis-information and rate of missing information are equal as an optimizing value. CONSTITUTION:When an objective plant 1 is normal, a detecting value (y) of a detector 2 is not so much different from a reference value (x), an output ¦x-y¦ of an absolute value generator 5 is smaller than a threshold value epsilon, and a comparator 6 outputs an off-signal representing the normality. If the objective plant 1 is failed, the detected value (y) differs largely from the reference value (x), becomes larger than the threshold epsilon. and the comparator 6 outputs an on-signal representing the abnormality for displaying the abnormality.

Description

【発明の詳細な説明】 本発明は火力プラントや原子力1ラント醇において、圧
力、温度尋々の1ラント変数の正、密状態における基準
値と実1ラントよりの検出値と會比較することによって
実ン′ラントカ異常状態になったこと、あるいは異常状
態に向がいつつあることを診断する型式の異常診断装置
に関するものである。
[Detailed Description of the Invention] The present invention is carried out in a thermal power plant or a nuclear power plant by comparing standard values in positive and dense states of pressure and temperature variables with detected values from an actual one runt. The present invention relates to a type of abnormality diagnosing device for diagnosing whether a vehicle has entered an abnormal state or is heading toward an abnormal state.

異常診断の判定指標QJとすると、Jとしては種々のも
のが考えられるが、−例として正常状態1表わすモデル
によって求めた基準値をX(す、実プラントより検出し
た検出値ky(りで表わすと J  =l  x(リー y(リ Inすなわち時亥口
における計算値と検出値の差の絶対値を判定指標とする
のである。
Assuming the judgment index QJ for abnormality diagnosis, various values can be considered for J. For example, the reference value obtained by a model representing normal state 1 is expressed as In other words, the absolute value of the difference between the calculated value and the detected value at the time is used as the determination index.

判定論理は、このJが予め与えられたしきい値引より大
きくなれば、「異常」と判定する論理である。    
 、 さて、この型式の異常診断装置では、判定指標が例であ
れ、「異常」と判定するためのしきい値1′に与えねば
ならないが、正常状態においても、 j) 動的おくれによる基準値からのずれ、i)a々の
ノイズによる検出値のバラツキに基因するずれ、 而 正常基準値をモデルを用いて作る場合には不可避な
モデルの誤差に基因するずれ、などが重畳するので、こ
のよりなずれの重畳に対しても、 (尋 誤報1防ぐために上記ずれに基因する判定誤りを
しない、 (Fl)  火報を防ぐ友めに異常か生じたことによる
基準値と検出値の差は見逃さない ようなしきい値g=1設定する必要がある。
The judgment logic is such that if this J becomes larger than a predetermined threshold, it is judged as "abnormal".
, Now, in this type of abnormality diagnosis device, no matter what the judgment index is, it must be given to the threshold value 1' for determining "abnormality", but even in normal conditions, j) the reference value due to dynamic lag. (i) deviations due to variations in detected values due to noise in a); and deviations due to unavoidable model errors when creating normal reference values using a model. (Fl) The difference between the reference value and the detected value due to an abnormality occurring in the prevention of fire alarms is It is necessary to set a threshold value g=1 so that it will not be overlooked.

従来は正常状態における基準値と検出値の誤差を見体め
るために多数の試験を行なわなけれはならず、多数の試
験後でないと適切なしきい値全設定できず、あるいは多
数の試験ができないため適切なしきい値ti定できない
という状況であった。
Conventionally, it was necessary to conduct many tests to see the error between the reference value and the detected value under normal conditions, and it was not possible to set all appropriate thresholds until after many tests, or it was not possible to perform a large number of tests. Therefore, it was not possible to determine an appropriate threshold value ti.

本発明はこのような事情に鑑みて提案されたもので、信
頼性の大きい異常診断装置r提供する仁とt目的とし、
プラント変数の正常状態における挙動を表わすモデル罠
よる計7L電と実プラントより計測された計測イーとの
差音設定しきい値と比較してその大小関係によp1ラン
トの異常を診断するものにおいて、累積記憶された過去
の種々のルきい値に対応する誤報率分布および火報率分
布から誤報率および火報率がはy等しくなるしきい値を
求めこれ全設定しきい値として出力するしきい値設定器
と、誤報、火報、連軸の3人力鉛全有し、上記しきい値
設定器に累積記憶された過去の誤報率分布および又は火
報率分布會更新する更新回路とt具え次ことtq#職と
する。
The present invention was proposed in view of the above circumstances, and has the objective of providing a highly reliable abnormality diagnosis device.
A method for diagnosing abnormalities in p1 runt by comparing the difference between a total of 7L electric current based on a model trap representing the behavior of plant variables in a normal state and measurement E measured from an actual plant with a set threshold value, and based on the magnitude relationship. Then, from the false alarm rate distribution and the fire alarm rate distribution corresponding to various past threshold values stored cumulatively, a threshold value at which the false alarm rate and the fire alarm rate are equal to y is determined, and this is output as the all set threshold value. A threshold setting device, and an updating circuit for updating the past false alarm rate distribution and/or fire alarm rate distribution cumulatively stored in the threshold setting device, which includes all three manual leads for false alarm, fire alarm, and linked axis. The next step will be tq # position.

本発明の一実施例上図面について説明すると、第1図は
その回路構成會示すブロック線図、第2図は第1図のし
きい値設定器の作用を示す線図である。
One embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing its circuit configuration, and FIG. 2 is a diagram showing the operation of the threshold setting device of FIG. 1.

上図において、異常診断対象プラント1のプラント変数
音検出器2によって検出しく検出値tyとする)、一方
正常状態における該1ラント変数の基準値xf基準信号
発生器3によって発生させ、減算器4によってこれら2
値の差すなわちX−Y’lr演算し、さらに絶対値発生
器5によってその絶対値1x−ylkとり、この出力信
号を比較器6の第1の入力端に入力し、比較器6の第2
の入力端にはしきい値設定器7の出力信号εを入力し、
比較器6の出力を表示装置8に入力する。
In the above diagram, the detected value ty is the value detected by the plant variable sound detector 2 of the plant 1 to be diagnosed for abnormality), while the reference value xf of the one runt variable in the normal state is generated by the reference signal generator 3, and the subtracter 4 By these 2
The difference in value, that is,
The output signal ε of the threshold setting device 7 is inputted to the input terminal of
The output of the comparator 6 is input to the display device 8.

しきい値設定器7には、監視スイッチ9の出力全入力し
、監視スイッチ9は誤報、火報および連軸にそれぞれ対
応する3つの入カポタン金有しており、それぞれいずれ
かの入カポタンが押されることによって誤報11.火報
12および連軸13を出力し、いずれのボタンも押され
ないときはO1出力する。丁なわち、監視スイッチ9は
本異常診断装置が適切に作動したか誤報、火報を生゛じ
たかt学習させるための入力端である。
The threshold setting device 7 receives all the outputs of the monitoring switch 9, and the monitoring switch 9 has three input capacitors corresponding to false alarm, fire alarm, and linked shaft, respectively. False alarm caused by being pressed 11. The fire alarm 12 and link shaft 13 are output, and when neither button is pressed, O1 is output. In other words, the monitoring switch 9 is an input terminal for learning whether the present abnormality diagnosis device has operated properly or has generated a false alarm or fire alarm.

このような装置において、対象1ラント1に異常が生ず
ると、検出器2によって検出した検出値yはその正常状
態を表わす基準値Xより大きくずれ、仁のずれの差の程
度上表わす絶対値発生器5の出力は異常判定しきい値設
定器7の出力6よp大きくなり、比較器6の出力は1異
常1に表わすONN信号比出力、表示装置8によって1
異常1であることを表示する。
In such a device, when an abnormality occurs in the target 1 runt 1, the detection value y detected by the detector 2 deviates by a large amount from the reference value The output of the comparator 5 is p larger than the output 6 of the abnormality judgment threshold setting device 7, and the output of the comparator 6 is an ONN signal ratio output representing 1 abnormality 1, and the display device 8 indicates that the output is 1.
Displays that there is an abnormality 1.

一方、対象1ラント1が正常な状態であると、検出器2
による検出値yは正常状態全表わす信号発生器3の出力
すなわち基準@Xと大差なく、絶対値発生器5の出力1
x−ylはしきい仙6より小さく、比較器6の出力は1
正常”を表わすOFF信号を出力し、表示装置8によっ
て1正常”であることt表示する。
On the other hand, if target 1 runt 1 is in a normal state, detector 2
The detected value y is not much different from the output of the signal generator 3 that represents the normal state, that is, the reference @X, and the output 1 of the absolute value generator 5 is
x-yl is smaller than threshold 6, and the output of comparator 6 is 1
An OFF signal indicating "normal" is output, and the display device 8 displays "1 normal".

次にしきい値設定器7の演算内容全説明すると、しきい
値設定器7の出力εは連続値上とるのではなく、離散値
ε1.8!・・・εnのn個の仙のいずれかtとる。い
ま、ε=t l (1=xl @ 2・・・、n)tと
って本異常診断6装ft−使用したときのvA報回数t
−k j 、火報回数2 / l 、監視ボタンの押さ
れた回数kmle誤報率tαi、欠伸率tβ鑞とする。
Next, to explain the calculation details of the threshold setter 7, the output ε of the threshold setter 7 is not a continuous value, but a discrete value ε1.8! ...Choose t from n of εn. Now, ε = t l (1 = xl @ 2..., n) t and the number of vA notifications when using this abnormality diagnosis 6 equipment ft - t
−k j , the number of fire alarms 2/l, the number of presses of the monitoring button kmle, the false alarm rate tαi, and the skipping rate tβsu.

このとき α1−kl/m1   β1−ノ1/mi    (1
)なる関係がある。
At this time α1-kl/m1 β1-no1/mi (1
) There is a relationship.

さて、しきいイー設定器7の演j!は、1) 監視スイ
ッチ9より入力を受ける毎に異常診断結果全学習する演
算 2) 学習し几結果より最適なしきい値%r寞出する演
算 02つであり、内容は 1) 学習演算 監視スイッチ9よりの人力が0ならば何もしない。
Now, the performance of Threshold E setting device 7! The following are 1) A calculation that learns all the abnormality diagnosis results every time an input is received from the monitoring switch 9. 2) A calculation that calculates the optimal threshold %r from the learned result.The contents are 1) Learning calculation monitoring switch If the man power from 9 is 0, do nothing.

監視スイッチ9よりの入力がv4報11ならは、ki、
mi@1つ増加させ、Allはそのままとして(1)式
によすαi、β1を計算する。
If the input from the monitoring switch 9 is v4 report 11, ki,
αi and β1 are calculated using equation (1) with mi@increased by 1 and All left unchanged.

監視ス1ツチ9よりの入力が欠相12孟らば、ノI 、
 m i 11−1つ増加させ、klはその11として
(1)式によpar、β1を計算する。
If the input from the monitoring switch 9 is open phase 12,
m i is increased by 11-1, kl is set to 11, and par and β1 are calculated using equation (1).

監視スイッチ9よr)r6人力が適@13!らば、ml
だけ11−1つ増加させ、k 1.11にその!鷹とし
て(1)式によりαi、βit計算する。
Monitoring switch 9 r) r6 Human power is suitable @13! Raba, ml
Increase by 11-1 and k 1.11 that! As a hawk, αi and βit are calculated using equation (1).

2)最適イl!l算出演算 この演算内容はi−1,2・・・nについてIα量−β
11が最小になるIを見つける・・・・・・(2) ことで、たとえばフォートラン風に省くと、 IMIN−1 Dφ1i=s2*n IP(4α i −β 11.GT、l  α 量−1
−β i−11)GφTφ I IMIN−蚤 CφNTINLIEf の演算結果(DIM・、INか(2)’に満たすlであ
る。
2) Optimal! l calculation operation This calculation content is Iα amount - β for i-1, 2...n
Find the I that minimizes 11 (2) For example, if you omit it in Fortran style, IMIN-1 Dφ1i=s2*n IP(4α i −β 11.GT, l α quantity −1
-β i-11) The calculation result of GφTφ I IMIN-Flea CφNTINLIEf (DIM・, IN is l that satisfies (2)′.

1 以上の演算の作用を述べると、前提として、しきい値C
が大きい、すなわち検出値yと基準値Xのずれが相幽大
きくならないと、異常と判定しない場合には、誤報率は
小さいが、火報率は大きい。
1 To describe the operation of the above operations, the premise is that the threshold value C
is large, that is, unless the deviation between the detected value y and the reference value X becomes significantly large, it is not determined that there is an abnormality, the false alarm rate is small, but the fire alarm rate is high.

一方、しきい(mlが小さいと、Xとyにわずかなずれ
でもあると異常と判定するので、火報率は小さいが、誤
報率は大きい。すなわち、誤報率α1、火報率β量とし
きい仙6iの関係は第2図に示すよりになっている。
On the other hand, if the threshold (ml) is small, even a slight deviation between The relationship of Kisen 6i is as shown in Figure 2.

これ會しきい値設定の観点から見ると、誤報率會小さく
するにはしきい蝕會太きくシ、火報率1小さ・くするに
はしきい値會小さくすれば良いので、前述の演算はこれ
t行なう吃のであり、誤報が生じたとき、αMは増加し
、βIは減少する。したがって第2図のα1曲線に上に
上が91β1曲線は下に下がるためこれらの交点は右に
移動し、Mk大きくする。
From the perspective of setting the threshold value, to reduce the false alarm rate, the threshold value should be set thicker, and to reduce the fire alarm rate by 1, the threshold value should be made smaller. This is what happens when a false alarm occurs, αM increases and βI decreases. Therefore, since the α1 curve in FIG. 2 is upward and the β1 curve is downward, the intersection point of these moves to the right and Mk increases.

火報が生じたとき、α五は減少し、β1は増加する。し
たがって同図のcci曲#μ下に下が9%11曲線は上
に上がるためその欠点は左に移動し、εを小さくする。
When a fire alarm occurs, α5 decreases and β1 increases. Therefore, since the cci song #μ in the same figure has a bottom of 9% and a 11 curve rises to the top, the defect moves to the left and ε becomes smaller.

連相であった場合には、αl、βlともに減少し、同図
のαi、β1曲線はいずれも下に下がり、eにtlとん
ど変わらす1適切さの自信”を深め、次に誤′報、火報
が生じたときにも、8は動きにくくなる。すなわち過去
にその8iが連相であった経験を学習する。
In the case of a continuous phase, both αl and βl decrease, and the αi and β1 curves in the same figure both fall downward, and tl changes to e. 8 also becomes difficult to move when an alarm or fire alarm occurs.In other words, the 8i learns from the past experience of being in a continuous phase.

仁のような装置によれば、従来、適正値の設定が難しく
かつ多数の子備試験金要した異常判定のしきい値の設定
問題に、過去の異常診断結果全学習し、誤報率と火報率
の妥協点として両者が等しくなるしきい値を最適値とし
て設定する機能?付加することによって、最適しきい値
が自動的に設定でき、診断対象の経時変化等の変−化に
も対処できるという従来法の欠点を除去。
A device like Jin learns all past abnormality diagnosis results and solves the problem of setting thresholds for abnormality judgment, which has traditionally been difficult to set appropriate values and required many preparation tests, to calculate false alarm rates and fire alarms. Is there a function to set the optimal value as a compromise between the two rates? By adding this, it is possible to automatically set the optimal threshold value and eliminate the drawbacks of conventional methods, such as being able to deal with changes such as changes over time in the diagnostic target.

改良する効果を生ずる。It produces an improving effect.

なお上記実施例では異常診断の判定指標として、1x−
ylkとったが、特にこれに限る意味はなく%  IX
−F+”や時間的な真の変化曲線とyの変化曲線の時間
的ずれ、あるいに両面線間の距離などx、yのずれ7表
わ子骨ならばどんなものでも良い。
In the above embodiment, 1x-
I took ylk, but there is no particular meaning to it.% IX
-F+'', the temporal deviation between the true temporal change curve and the y change curve, or the distance between double-sided lines, etc. Any bone may be used as long as it represents the deviation in x and y.

要するに本発明によれば、プラントxiの正常状態にお
ける挙動を表わすモテルによる計算値と実1ラントより
計測された計測値との差音設定しきい値と比較してその
大小関係(によりプラント兼異常を診断するものにおい
て、累積記憶された過去の種々のしきい値に対応する誤
報率分布および火報率分布から誤報率および火報率がは
y等しくなるしきい値?求めこれ全設定しきい仙として
出力するしきい値設定器と、誤報 報、火報、週報の3人力Qw有し、上記しきい値設定器
に累積記憶された過去の誤報率分布および又は火報率分
布を更新する更新回路と?具えたことにより、高精度か
つ高信頼性の異常診断装置金得るから本発明は産業上極
めて有無なものである。
In short, according to the present invention, the value calculated by the model representing the behavior of the plant xi in the normal state and the measured value measured from the actual 1 runt are compared with the difference sound setting threshold, and the magnitude relationship (depending on whether the plant When diagnosing a problem, find the threshold value at which the false alarm rate and the fire alarm rate are equal to y from the false alarm rate distribution and the fire alarm rate distribution corresponding to various accumulated past threshold values. It has a threshold setting device that outputs as a standard, and a three-manpower Qw for false alarms, fire alarms, and weekly reports, and updates the past false alarm rate distribution and/or fire alarm rate distribution cumulatively stored in the threshold setting device. The present invention is extremely useful in industry because it provides a highly accurate and highly reliable abnormality diagnosis device by providing an update circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック線図、第2図
は第1図のしきい値設定器の作用を示す線図である。 1・・・対象プラント、2・・・検出器、3・・・基準
値信号発生器、4・・・減算器、5・・・絶対値発生器
、6・・・比較器、7・・・しきいイー設定器、8・・
・表示装置、9・・・監視スイッチ、11・・・誤報、
12・・・火報、13・・・連軸。 出願人復代理人 飛吐鈴江武彦 1(:1゜ 第1図 第2図
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 is a diagram showing the operation of the threshold setting device of FIG. 1. DESCRIPTION OF SYMBOLS 1...Target plant, 2...Detector, 3...Reference value signal generator, 4...Subtractor, 5...Absolute value generator, 6...Comparator, 7...・Threshold E setting device, 8...
・Display device, 9... Monitoring switch, 11... False alarm,
12...fire alarm, 13...coupled axis. Applicant Sub-Agent Takehiko Hito Suzue 1 (:1゜Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1ラント夏数の正常状態における挙動會表わすモデルに
よる計算値と実プラントよ、!Dtl−i11された計
測値との差を設定しきい値と比較してその大小関係によ
りプラントの異常を診断するものにおいて、累積記憶さ
れた過去の種々のしきい値に対応する誤報率分布および
火報率分布がら誤報率および火報率がは輩等しくなるし
きい値を求めこれ會設定しきい値として出力するしきい
値設定器と、誤軸、火報、週報の3入力釦を有しイ上記
しきい値設定器に累積記憶された過去の誤報率分布およ
び又は火報率分布會更新する更新回路とを具えたことt
″%留とする異常診断装置。
Calculated values from a model representing the behavior of one runt summer number under normal conditions and an actual plant! Dtl-i11 The difference between the measured value and the set threshold value is compared with the set threshold value to diagnose abnormalities in the plant based on the magnitude relationship, and the false alarm rate distribution and It has a threshold setting device that calculates the threshold value at which the false alarm rate and the fire alarm rate are equal to each other from the fire alarm rate distribution and outputs this as the meeting-set threshold, and three input buttons for false axis, fire alarm, and weekly report. and an update circuit for updating the past false alarm rate distribution and/or fire alarm rate distribution cumulatively stored in the threshold setting device.
``Abnormality diagnostic device that detects % retention.
JP57104977A 1982-06-18 1982-06-18 Abnormality diagnostic device Pending JPS58222311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57104977A JPS58222311A (en) 1982-06-18 1982-06-18 Abnormality diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57104977A JPS58222311A (en) 1982-06-18 1982-06-18 Abnormality diagnostic device

Publications (1)

Publication Number Publication Date
JPS58222311A true JPS58222311A (en) 1983-12-24

Family

ID=14395148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57104977A Pending JPS58222311A (en) 1982-06-18 1982-06-18 Abnormality diagnostic device

Country Status (1)

Country Link
JP (1) JPS58222311A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020194597A1 (en) * 2019-03-27 2020-10-01

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020194597A1 (en) * 2019-03-27 2020-10-01
WO2020194597A1 (en) * 2019-03-27 2020-10-01 日産自動車株式会社 Abnormality detection apparatus, and abnormality detection method

Similar Documents

Publication Publication Date Title
JP3698444B2 (en) Method and apparatus for detecting and identifying defect sensors in a process
JP4071449B2 (en) Sensor abnormality detection method and sensor abnormality detection device
CN1103946C (en) Process for analysing a measurement and measurement analyser for implementing it
JP2006148070A (en) Correcting method of sensor data and interlock evaluating method of interlock system
WO2023190234A1 (en) Blast furnace abnormality determination device, blast furnace abnormality determination method, blast furnace operation method, blast furnace operation system, blast furnace abnormality determination server device, program for blast furnace abnormality determination server device, and display terminal device
JP2000509178A (en) Automatic control loop monitoring and diagnostics
JPS58222311A (en) Abnormality diagnostic device
CN112528227A (en) Sensor abnormal data identification method based on mathematical statistics
JPH10301619A (en) Diagnostic device for fuel battery power generation plant
KR101549543B1 (en) A power state diagnosis method using kalman estimation process and measuring the relative probability by the metric defined by functional mapping
JP6825753B1 (en) Blast furnace abnormality determination device, blast furnace abnormality determination method, and blast furnace operation method
KR102351538B1 (en) System and method for predicting failure of automated facilities using and algorithm that learns and diagnoses patterns
JPH0664664B2 (en) Failure prediction device
JP2715589B2 (en) Sensor switching device
JPH06264704A (en) Vibration diagnostic device for rotational machine
WO1995022089A1 (en) Method and apparatus for diagnosing fault
JPS642203B2 (en)
RU2794126C1 (en) Device for determining blast furnace failure, method for detecting blast furnace fault and method for operating blast furnace
JP2540727B2 (en) Plant parameter abnormal amount search method and apparatus
JPS63153422A (en) Detecting device for fault of sensor
JPH07281736A (en) Facility diagnostic device
JPH07294309A (en) Water level measuring system
JP7378689B1 (en) Processing equipment and processing system
JP7396361B2 (en) Abnormality determination device and abnormality determination method
JPH0469916A (en) Diagnostic controlling method of semiconductor manufacturing equipment