JPS58221497A - Pressure substitute apparatus for high temperature - Google Patents

Pressure substitute apparatus for high temperature

Info

Publication number
JPS58221497A
JPS58221497A JP10343182A JP10343182A JPS58221497A JP S58221497 A JPS58221497 A JP S58221497A JP 10343182 A JP10343182 A JP 10343182A JP 10343182 A JP10343182 A JP 10343182A JP S58221497 A JPS58221497 A JP S58221497A
Authority
JP
Japan
Prior art keywords
pressure
temperature
low
transmission medium
seal membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10343182A
Other languages
Japanese (ja)
Inventor
勝 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10343182A priority Critical patent/JPS58221497A/en
Publication of JPS58221497A publication Critical patent/JPS58221497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高温流体の圧力、液位、差圧、流量等のプロセ
ス変量を前記流体の圧力を検出して計測する際、該高温
流体の圧力を低温流体に伝達する隔膜式圧力置換器に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention transmits the pressure of the high-temperature fluid to the low-temperature fluid when detecting and measuring process variables such as the pressure, liquid level, differential pressure, and flow rate of the high-temperature fluid. Regarding a diaphragm pressure displacement device.

一般に流体の圧力を検出するセンサにおいては、該セン
サの構造等のために、該センサlこ接触する流体の温度
が100℃以下であることが必要である。このため、従
来100℃以上の流体の圧力を検出する際は、該高温流
体と圧力伝達媒体とを隔離しかつ前記高温流体の圧力を
前記圧力伝達媒体に伝達するシール膜を内蔵した圧力置
換部と、前記圧力伝達媒体と、前記圧力伝達媒体を収納
した圧力伝達管部とを備えた隔膜式圧力置換器を前記高
温流体とセンサとの間に設けて前記高温流体の圧力を前
記圧力伝達媒体を介して前記センサに導くと共に、前記
圧力伝達管部等における大気中への放熱作用を利用して
前記センナの圧力導入口附近における前記圧力伝達媒体
の温度を100℃以下にすることが通常行われている。
Generally, in a sensor that detects the pressure of a fluid, the temperature of the fluid that comes into contact with the sensor needs to be 100° C. or less due to the structure of the sensor. For this reason, conventionally, when detecting the pressure of a fluid of 100° C. or higher, a pressure displacement unit that isolates the high-temperature fluid from a pressure transmission medium and incorporates a seal membrane that transmits the pressure of the high-temperature fluid to the pressure transmission medium is used. and a diaphragm pressure replacer comprising the pressure transmission medium and a pressure transmission pipe section containing the pressure transmission medium is provided between the high temperature fluid and the sensor, and the pressure of the high temperature fluid is changed to the pressure transmission medium. The temperature of the pressure transmission medium near the pressure introduction port of the senna is usually controlled to be 100°C or less by guiding the pressure transmission medium to the sensor through the pressure transmission pipe section or the like and utilizing the heat radiation effect to the atmosphere in the pressure transmission pipe section. It is being said.

前記隔膜式圧力置換器は、プロセスの条件やセンサの耐
熱性等を考慮して2個以上を直列にした多重圧力置換器
として構成されることもある。以下従来技術を図につい
て詳しく説明するが、高温流体の圧力、液位、差圧、流
量等のいずれの計測においても隔膜式圧力置換器の使用
方法は同様であるから、ここでは液位を計測する例につ
いて説明する。
The diaphragm pressure displacement device may be configured as a multiple pressure displacement device in which two or more pressure displacement devices are connected in series in consideration of process conditions, heat resistance of the sensor, and the like. The conventional technology will be explained in detail below with reference to figures, but since the method of using a diaphragm pressure displacement device is the same for measuring high-temperature fluid pressure, liquid level, differential pressure, flow rate, etc., here we will only measure liquid level. An example will be explained below.

第1図は従来原子カプラントの高温プロセスにおいて行
われている隔膜式多重圧力置換器を使用した液位計測装
置の設置例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of the installation of a liquid level measuring device using a diaphragm type multiple pressure displacement device, which is conventionally used in a high-temperature process of an atomic coupler.

第1図において400は高温の被測定液体401の収納
されたタンク、402は被測定液体401の蒸気であっ
て、液位Hは前記液体401の流入量および流出量を調
節する弁403,404の操作によって変化する。40
5は7ランジ406を備えて蒸気402の圧力(低圧側
圧力)をタンク400外へ取出す低圧側圧力取出部、4
05’はフランジ40’6’を備えて液柱Hの底部の圧
力(高圧側圧力)をタンク400外へ取出す高圧側圧力
取出部、10は圧力伝達管部14の両端に7ランジ12
と16とを備え内部にシール膜と第11圧力伝達媒体と
を有する低圧側第1圧力置換器、2oは圧力伝達管部2
4の両端に7ランジ22と26とを備え内部にシール膜
と第2圧力伝達媒体とを有する低圧側第2圧力置換器、
3oは圧力伝達管部34の一端に7ランジ32を備え内
部に第3圧力伝達媒体を有する低圧側第3圧力置換器、
10’。
In FIG. 1, 400 is a tank containing a high-temperature liquid to be measured 401, 402 is the vapor of the liquid to be measured 401, and the liquid level H is the valve 403, 404 that adjusts the inflow and outflow of the liquid 401. Changes depending on the operation. 40
5 is a low-pressure side pressure take-out part that is equipped with a 7-lunge 406 and takes out the pressure of the steam 402 (low-pressure side pressure) to the outside of the tank 400;
05' is a high-pressure side pressure extraction part that is equipped with a flange 40'6' and extracts the pressure at the bottom of the liquid column H (high-pressure side pressure) to the outside of the tank 400;
and 16, a low pressure side first pressure replacer having a seal membrane and an eleventh pressure transmission medium inside; 2o is a pressure transmission pipe section 2;
a low-pressure side second pressure displacer having seven flanges 22 and 26 at both ends of the 4 and having a sealing membrane and a second pressure transmission medium therein;
3o is a low-pressure side third pressure replacer which has seven flange 32 at one end of pressure transmission pipe part 34 and has a third pressure transmission medium inside;
10'.

20’、30’はそれぞれ10,20.30と同様の構
成を有する高圧側の第1圧力置換器、第2圧力置換器。
20' and 30' are a first pressure replacer and a second pressure replacer on the high pressure side having the same configuration as 10 and 20.30, respectively.

第3圧力置換器である。前記低圧側圧力取出口405、
低圧側第1圧力置換器10.低圧側第2圧力置換器20
.低圧側第3圧力置換器3oは順次フランジ結合によっ
て接続され、圧力伝達管部34の7ランジ32とは反対
側の端は液位検出センサ50の低圧側圧力導入口51に
接続されており、また、前記高圧側取出口405’、高
圧側第1圧力置換器10′、高圧側第2圧力置換器20
′、高圧側第3圧力置換器30′は預次7ランジ結合に
よって接続され、圧力置換器30′の圧力伝達管部34
′のフランジ32′とは反対側の端は液位検出センサ5
0の高圧側圧力導入口51′に接続されている。この結
果、低圧側圧力取出部4o5.低圧側圧力置換器10.
20および30で構成される低圧側導圧経路においては
・、高温蒸気402の圧力が順次前記各圧力置換器内に
収納された圧力伝達媒体に伝達されて該媒体の圧力に置
換されると同時に、前記各圧力伝達媒体の温度は大気へ
の放熱のために前記低圧側導圧経路に沿って逐次低下す
るので、結局、高温蒸気402の圧力は液位検出センサ
50に崗適当な温度(100°C以下)の流体すなわち
第3圧力伝達媒体の圧力としてセンサ50の低圧側圧力
導入口51に導かれ、また、高圧側圧力取出部405’
、高圧側圧力置換器lO′。
This is the third pressure displacement device. the low pressure side pressure outlet 405;
Low pressure side first pressure replacer 10. Low pressure side second pressure replacer 20
.. The third pressure displacement device 3o on the low pressure side is sequentially connected by flange connection, and the end of the pressure transmission pipe section 34 on the opposite side from the 7 flange 32 is connected to the low pressure side pressure introduction port 51 of the liquid level detection sensor 50, In addition, the high pressure side outlet 405', the high pressure side first pressure replacer 10', and the high pressure side second pressure replacer 20
', the high-pressure side third pressure replacer 30' is connected to the pressure transmitting pipe section 34 of the pressure replacer 30' by a convex 7-lunge connection.
'The end opposite to the flange 32' is the liquid level detection sensor 5.
0 is connected to the high pressure side pressure inlet 51'. As a result, the low pressure side pressure outlet 4o5. Low pressure side pressure displacement device 10.
In the low-pressure side impulse path composed of 20 and 30, the pressure of high-temperature steam 402 is sequentially transmitted to the pressure transmission medium housed in each pressure replacer and replaced by the pressure of the medium. , the temperature of each pressure transmission medium gradually decreases along the low-pressure side impulse path due to heat radiation to the atmosphere, so that the pressure of the high-temperature steam 402 reaches the liquid level detection sensor 50 at an appropriate temperature (100 °C or less), that is, the pressure of the third pressure transmission medium, is introduced to the low-pressure side pressure inlet 51 of the sensor 50, and is also introduced to the high-pressure side pressure extraction part 405'.
, high pressure side pressure displacement lO'.

20′および30′で構成される高圧側導圧経路におい
ては、前記低圧側導圧経路におけると同様にして高温液
体の液柱Hの圧力が100°0以下の温度の第3圧力伝
達媒体の圧力としてセンサ50の高圧側圧力導入口51
’に導かれることになり、従来このようにして前記圧力
導入口50 、50’に導かれた圧力により液位Hがセ
ンサ50によって計測されている。
In the high-pressure side impulse path composed of 20' and 30', the pressure of the high-temperature liquid column H is lower than 100°0 in the same manner as in the low-pressure side impulse path. High pressure side pressure inlet 51 of sensor 50 as pressure
Conventionally, the liquid level H is measured by the sensor 50 based on the pressure introduced to the pressure introduction ports 50 and 50' in this manner.

次に圧力置換器における導圧の模様を説明するが、この
導圧の模様は前記の低圧側導圧経路および高圧側導圧経
路のいずれにおいても同様であり、また、前記各導圧経
路の中の前記第1ないし第3圧力置換器のいずれにおい
ても同様であるので、以下には後に述べる本発明による
高温用圧力置換器と密接に関連する第2圧力置換器の導
圧の模様を低圧側導圧経路について説明する。
Next, the pattern of the impulse in the pressure replacer will be explained, but the pattern of the impulse is the same in both the low-pressure side impulse path and the high-pressure side impulse path, and also that Since the same applies to any of the first to third pressure replacers in the present invention, the conduction pressure pattern of the second pressure replacer, which is closely related to the high-temperature pressure replacer according to the present invention to be described later, will be described below as a low-pressure The side impulse path will be explained.

第2図は第1図における低圧側第2圧力置換器20およ
びその両端近傍の縦断面図である。図においては、第1
図と同一の機能を有する部分には同一の符号が付しであ
る。第2図において、23は第1圧力置換器10内に封
入された第1圧力伝達媒体18と第2圧力置換器20内
に封入された第2圧力伝達媒体28とを密閉的に仕切る
高温側シール膜、22は7ランジ、21は前記7ランジ
22と前記高温側シール膜23とからなる高温側圧力置
換部、21aは前記フランジ22の凹部と前記高温側シ
ール膜23とによって形成される前記高温側圧力置換部
21の低温側圧力・置換部25′側の内部空所、27は
前記圧力伝達媒体28と第3圧力置換器30内に封入さ
れた第3圧力伝達媒体38とを密閉的に仕切る低温側シ
ール膜、26はフランジ、25は前記7ランジ26と前
記低温側シール膜27とからなる低温側圧力置換部、2
5 ’aは前記7ランジ26の凹部と前記低温側シール
膜27とによって形成される前記低温側圧力置換部25
の前記高温側圧力置換部21側の内部空所、24は前記
内部空所21aと25aとを連通せしめた圧力伝達管部
、28は前記内部空所21aと25aと圧力伝達管部2
4の内部24aとによって形成されるひとつの連通した
空所に封入された第2圧力伝達媒体であって、高温側圧
力置換部21と低温側圧力置換部25と圧力伝達管部2
4と第2圧力伝達媒体28とで低温側第2圧力置換器2
0が構成されている。
FIG. 2 is a vertical cross-sectional view of the second pressure displacement device 20 on the low pressure side in FIG. 1 and the vicinity of both ends thereof. In the figure, the first
Parts having the same functions as those in the figures are given the same reference numerals. In FIG. 2, reference numeral 23 indicates a high temperature side that airtightly partitions the first pressure transmission medium 18 sealed in the first pressure replacer 10 and the second pressure transmission medium 28 sealed in the second pressure replacer 20. 22 is a sealing membrane, 22 is a high-temperature-side pressure displacement part formed by the seven flanges 22 and the high-temperature-side sealing membrane 23, and 21a is the high-temperature-side pressure displacement part formed by the recess of the flange 22 and the high-temperature side sealing membrane 23. An internal space 27 on the side of the low temperature side pressure/displacement section 25' of the high temperature side pressure displacement section 21 sealingly connects the pressure transmission medium 28 and the third pressure transmission medium 38 enclosed in the third pressure displacement device 30. 26 is a flange; 25 is a low-temperature side pressure displacement section consisting of the seven flanges 26 and the low-temperature side seal membrane 27;
5'a is the low temperature side pressure displacement part 25 formed by the recess of the 7 flange 26 and the low temperature side sealing film 27;
24 is a pressure transmission pipe section that communicates the internal spaces 21a and 25a with each other, and 28 is an internal space between the internal spaces 21a and 25a and the pressure transmission pipe section 2.
The second pressure transmission medium is sealed in one communicating cavity formed by the interior 24a of the high temperature side pressure displacement section 21, the low temperature side pressure displacement section 25, and the pressure transmission pipe section 2.
4 and the second pressure transmission medium 28 to form a low temperature side second pressure replacer 2
0 is configured.

したがって、第1圧力伝達媒体18の圧力は高温側シー
ル膜23を介して第2圧力伝達媒体28の圧力に置換さ
れ、さらに、該媒体28の圧力は低温側シール膜27を
介して第3圧力伝達媒体38に伝達されるが、第1圧力
伝達媒体18が高温であるときは前記各圧力伝達媒体の
熱は圧力伝達経路に沿って大気へ放熱されるので、第1
圧力伝達媒体18と第2圧力伝達媒体28との双方の高
温側シール膜23に接する附近の温度をそれぞれT1お
よびT2とし、第2圧力伝達媒体28と第3圧力伝達媒
体38との双方の低温側シール膜27に接する附近の温
度をそれぞれT3およびT4とするとT1≧T2>T3
≧T4となって、結局、高温流体18の圧力が低温流体
38の圧力に伝達。
Therefore, the pressure of the first pressure transmission medium 18 is replaced by the pressure of the second pressure transmission medium 28 via the high temperature side seal membrane 23, and the pressure of the medium 28 is replaced by the third pressure through the low temperature side seal membrane 27. However, when the first pressure transmission medium 18 is at a high temperature, the heat of each pressure transmission medium is radiated to the atmosphere along the pressure transmission path.
The temperatures near the pressure transmission medium 18 and the second pressure transmission medium 28 in contact with the high temperature side seal membrane 23 are respectively T1 and T2, and the low temperature of both the second pressure transmission medium 28 and the third pressure transmission medium 38 is assumed to be T1 and T2, respectively. If the temperatures near the side seal film 27 are T3 and T4, respectively, T1≧T2>T3.
≧T4, and eventually the pressure of the high temperature fluid 18 is transferred to the pressure of the low temperature fluid 38.

置換されることになる。It will be replaced.

従来、原子カプラントの高温プロセス(こお(7)では
以上に説明したようにして圧力の計測が行イつれており
、前記第2圧力伝達媒体20には温度等を考慮してたと
えばNaK(Na :、22重量%、Kエフ8重量%)
やHgが使用されているが、前記NaKの使用について
は、NaKの水との反応が激しG)ためにこれの圧力置
換器への封入作業が面倒であるとか、圧力置換器の破損
によってNaKが外部(こ漏出すると危険であるなどの
問題があり、また前記Hgの使用については周知の公害
問題の発生する恐れがあるなどの問題があった。
Conventionally, pressure has been measured in the high-temperature process of an atomic coupler (7) as described above, and the second pressure transmission medium 20 is made of NaK (NaK), for example, in consideration of temperature etc. :, 22% by weight, KF 8% by weight)
However, with regard to the use of NaK, there are concerns that the reaction between NaK and water is intense, making it troublesome to seal it into the pressure replacer, and that it may cause damage to the pressure replacer. There is a problem that NaK is dangerous if it leaks outside, and the use of Hg has problems such as the well-known problem of pollution.

る高温流体の圧力を低温流体に伝達する隔膜式圧力置換
器において、前記圧力置換器に封入された圧力伝達媒体
が水と反応することなく、また、圧力置換器外へ漏出し
ても公害問題等を発生する恐れのない、製作が容易でか
つ取扱い上安全な高温用圧力置換器を得ることを目的と
するものであって、この目的は前記高温用圧力置換器の
圧力伝達媒体をGaIn合金とし、該圧力置換器の高温
側圧力置換部と圧力伝達管部の高温となる部分との双方
の前記圧力伝達媒体“に接する部分をG a I n合
金に対して耐食性のある材料で構成するか、または、前
記圧力伝達媒体に接する面にGaIn合金に対して耐食
性のある材料の蒸着膜を形成させるなどの、以下に説明
するような手段によって達成される。
In a diaphragm-type pressure replacer that transmits the pressure of a high-temperature fluid to a low-temperature fluid, the pressure transmission medium sealed in the pressure replacer does not react with water, and even if it leaks out of the pressure replacer, there is no pollution problem. The purpose of the present invention is to obtain a high-temperature pressure replacer that is easy to manufacture and safe to handle, without the risk of causing problems such as The high-temperature side pressure displacement section of the pressure displacement device and the high-temperature section of the pressure transmission pipe section, both of which are in contact with the pressure transmission medium, are made of a material that is corrosion resistant to GaIn alloy. Alternatively, this can be achieved by means as described below, such as forming a vapor deposited film of a material that is corrosion resistant to GaIn alloy on the surface in contact with the pressure transmission medium.

次に本発明の実施例を図面にもとづいて詳細に説明する
が、本発明による高温用圧力置換器の1吏用方法はプロ
セスの圧力、液位、差圧、流量等のいずれの計測におい
ても、また、第1図における如き差圧式液位測定方式の
場合の低圧側導出経路および高圧側導出経路のいずれに
おいても同様であるので、以下には主として第1図にお
ける如き差圧式測定方式の中の低圧側導圧経路1こつい
て説明する。
Next, embodiments of the present invention will be described in detail based on the drawings, but the method for using the high temperature pressure replacer according to the present invention can be applied to any measurement of process pressure, liquid level, differential pressure, flow rate, etc. In addition, the same applies to both the low-pressure side lead-out route and the high-pressure side lead-out route in the case of the differential pressure type liquid level measurement method as shown in Fig. 1, so below we will mainly explain the differences in the differential pressure type liquid level measurement method as shown in Fig. 1. The low voltage side impulse path 1 will be explained below.

第3図は本発明の一実施例を示す高温用圧力置換器およ
びその両端近傍の縦断面図、第4図は本発明の別の実施
例を示す高温用圧力置換器の高温側圧力置換部とその近
傍の縦断面図、第5図(a)は本発明のさらに別の実施
例を示す高温用圧力置換器の高温側圧力置換部とその近
傍の縦断面図、第5図(b)は第5図(a)における要
部Sの拡大縦断面図であって、各図面において第2図と
同一の機能を有する部分には第2図と同一の符号が付さ
れている。
FIG. 3 is a longitudinal cross-sectional view of a high-temperature pressure replacer and the vicinity of both ends thereof showing one embodiment of the present invention, and FIG. 4 is a high-temperature side pressure displacement section of a high-temperature pressure replacer showing another embodiment of the present invention. FIG. 5(a) is a longitudinal sectional view of the high temperature side pressure displacement part of a high temperature pressure displacement unit and its vicinity showing still another embodiment of the present invention, FIG. 5(b) 5(a) is an enlarged vertical sectional view of the main part S in FIG. 5(a), and in each drawing, parts having the same functions as in FIG. 2 are given the same reference numerals as in FIG. 2.

第3図において、7ランジ22は外部7ランジ221と
該7ランジ221の凹部21bJこ嵌入されかつ周辺に
おいて該7ランジ2211こ対して溶接W1の行なわれ
た内部7ランジ222とで構成され、また、高温側シー
ル膜23は周辺において前記内部フランジ222に対し
て溶接W2の行われた内面シール膜232と周辺におい
て前記外部7ランジ221をこ対して溶接W3の行なわ
れた外面シール膜231との重ね合わせ構造となってい
て、前記内面シール膜232と前記内部フランジ222
とによって囲繞された空所21aと前記高温側シール膜
23と前記フランジ22とで高温側圧力置換部21が構
成されている。圧力伝達管部24は外部圧力伝達管24
1とこれに嵌入された内部圧力伝達管242とから成っ
ており、前記内部圧力伝達管242はフランジ26を貫
通させられて後、その端の周辺がフランジ26に溶接(
W4)されている。低温側シール膜27は周辺において
フランジ26に溶接(W5)されており、前記シール膜
27と前記フランジ26とによって囲繞された空所25
aと前記シール膜27と前記7ランジ26とで低温側圧
力置換部25が構成されている。
In FIG. 3, the 7 flange 22 is composed of an external 7 flange 221 and an internal 7 flange 222 that is fitted into the recess 21bJ of the 7 flange 221 and welded W1 to the 7 flange 2211 at the periphery. The high-temperature side sealing film 23 has an inner sealing film 232 welded W2 to the inner flange 222 at the periphery, and an outer sealing film 231 welded W3 to the outer 7 flange 221 at the periphery. It has an overlapping structure, and the inner seal membrane 232 and the inner flange 222
The high temperature side pressure displacement section 21 is constituted by the cavity 21a surrounded by the above, the high temperature side sealing film 23, and the flange 22. The pressure transmission pipe section 24 is an external pressure transmission pipe 24
1 and an internal pressure transmission pipe 242 fitted therein, and after the internal pressure transmission pipe 242 is passed through the flange 26, the periphery of its end is welded to the flange 26 (
W4) Yes. The low temperature side seal membrane 27 is welded (W5) to the flange 26 at the periphery, and the space 25 surrounded by the seal membrane 27 and the flange 26 is
a, the seal membrane 27, and the seven flanges 26 constitute a low-temperature side pressure displacement section 25.

第3図においては、外部7ランジ221と外部圧力伝達
管241とフランジ26とで構成される部分および内部
7ランジ222と内部圧力伝達管ン242とで構成され
る部分はそれぞれが1個の材料から形成された構造とな
っているが、部品221゜241.26,222および
242が別々に製作されて後、溶接等の手段によって第
3図のような構造に形成されてもよいし、あるいは前記
二つの部分がまとめられて一体のものとして1個の材料
から形成されてもよい。
In FIG. 3, the portion consisting of the outer 7 flange 221, the outer pressure transmitting tube 241, and the flange 26, and the portion consisting of the inner 7 flange 222 and the inner pressure transmitting tube 242 are each made of one piece of material. However, the parts 221, 241, 26, 222, and 242 may be manufactured separately and then formed into the structure shown in FIG. 3 by means such as welding, or The two parts may be combined and formed from one piece of material.

28は、この場合、前記空所21Bおよび25aと内部
圧力伝達管242内の空所24aとで形成されるひとつ
の連通した内部空所に封入された圧力伝達媒体としての
GaIn合金(Gaニア5.5重量%、In二24.5
重量%、融点:15.7℃)である。
In this case, 28 is a GaIn alloy (GaNia 5 .5% by weight, In224.5
% by weight, melting point: 15.7°C).

外面シール膜231.外部7ランジ221.外部圧力伝
達管241,7ランジ26および低温側シール膜27は
いずれも5U8316等の通常使用されている材料で構
成されているが、前記GaIn合金に接する部分すなわ
ち内面シール膜232.内部フランジ222および内部
圧力伝達管・242はいずれも前記GaIn合金に対し
゛C耐食性のある材料、たとえば、クンタルまたはタン
グステンで構成されている。
Outer seal membrane 231. External 7 langes 221. The external pressure transmission pipes 241, 7, the 7 langes 26, and the low-temperature side seal membrane 27 are all made of commonly used materials such as 5U8316, but the portions in contact with the GaIn alloy, that is, the inner seal membrane 232. Both the internal flange 222 and the internal pressure transmitting tube 242 are constructed of a material that is resistant to corrosion relative to the GaIn alloy, such as Kuntal or tungsten.

第3図においては圧力置換器が以上に説明したように構
成されているので本圧力置換器を用いて高温流体の圧力
の伝達、置換を行なう際、高温側圧力置換部21および
圧力伝達管部24が高温となっても前記GaIn合金に
接する部分が該合金によって腐蝕されることはないし、
また前記GaIn合金は低温においては前記5U831
6等を腐蝕しないので、圧力伝達管部24等からの大気
への放熱によって低温となる低温側圧力置換部25にお
いて前記G a I n合金に接する7ランジ26およ
び低温側シール膜27が該合金によって腐蝕されること
もない。溶接Wl、W2.W3はこの番号の順序で実施
されるが、特にW3は電子ビーム溶接であるので外面シ
ール膜231と内面シール膜232との間は真空状態と
なっており、このため重ね合わせ構造のシール膜23の
圧力伝達特性には問題が生じない。また前記GaIn合
金は水と反応しないので該合金の圧力置換器への封入作
業が容易であり、圧力置換器の破損によって該合金が漏
出しても安全であって、さらに該合金はHgなどのよう
に公害問題を発生する恐れもない。
In FIG. 3, since the pressure replacer is constructed as described above, when transmitting and replacing the pressure of high-temperature fluid using this pressure replacer, the high-temperature side pressure replacement part 21 and the pressure transmission pipe part Even if 24 reaches a high temperature, the portion in contact with the GaIn alloy will not be corroded by the alloy,
In addition, the GaIn alloy has the above 5U831 at low temperature.
6 etc., the 7 flange 26 and the low temperature side sealing film 27 in contact with the Ga In alloy in the low temperature side pressure displacement section 25, which becomes low temperature due to heat radiation from the pressure transmission pipe section 24 etc. to the atmosphere, are made of the alloy. It will not be corroded by Welding Wl, W2. W3 is performed in the order of this number, but in particular, since W3 is electron beam welding, there is a vacuum state between the outer seal film 231 and the inner seal film 232. There are no problems with the pressure transmission characteristics of Furthermore, since the GaIn alloy does not react with water, it is easy to seal the alloy in a pressure displacement device, and even if the alloy leaks due to damage to the pressure displacement device, it is safe. There is no risk of causing pollution problems.

第4図においては、外面シール膜231および内面シー
ル膜232は、当初第3図のように7ラツトな状態で溶
接W2.W3が行なわれて後、該膜231および232
が一括してあらかじめ波形に形成されたシール膜着座面
222aに押しつけられることによって該着座面222
aと同一の波形(;600が形成されたものであって、
この波形600のためにシール膜23の圧力伝達特性が
第3図の場合より向上する。
In FIG. 4, the outer seal membrane 231 and the inner seal membrane 232 are initially welded W2 in a flat state as shown in FIG. After W3 is performed, the films 231 and 232
The seating surface 222 is pressed all at once against the seal membrane seating surface 222a which has been formed into a corrugated shape in advance.
The same waveform as a (;600 is formed,
Because of this waveform 600, the pressure transmission characteristics of the seal membrane 23 are improved compared to the case shown in FIG.

第5図において、22は7ランジ221と該7ランジ2
21が内側に嵌入され該7ランジ221の周囲において
溶接W、10の行なわれたリング223とから構成され
た7う/ジであって、該7ランジ22と周辺において前
記リング223に対して溶接W9の行なわれた一枚構成
のシール膜23とによって高温側圧力置換部21が構成
されている。フラ/ジ221.’)7グ223およびシ
ール膜23の構成材料はいずれも通常使用されている材
料、たとえば、5U8316等である。フランジ221
にGaIn合金に対して耐食性のある材料、たとえば、
タンタルまたはタングステンで構成された内部圧力伝達
管242が貫通させられ、該伝達管242がその端の周
囲において前記7ランジ221と溶接(W8)されて後
、フランジ221の側面221bの表面とシール膜着座
面221aの表面と、には双方に連続してGaIn合金
に対して耐食性のある材料、たとえば、タンタルまたは
タングステンの蒸着膜224が真空蒸着またはスパッタ
等により形成され、リング223の内側面223bの表
面とシール膜23のシール膜着座面221a側の面23
玄の表面とには溶接W9が行なわれて後双方に連続して
GaIn合金に対して耐食性のある材料、たとえば、タ
ンタルまたはタングステンの蒸着膜233が真空蒸着ま
たはスパッタ等により形成されている。溶接WIOは前
記蒸着膜224および233がそれぞれ形成されて後・
、7ランジ221をリング223に嵌入して行われる。
In FIG. 5, 22 is the 7 lunge 221 and the 7 lunge 2.
21 is fitted inside and welded W around the 7 flange 221, and a ring 223 is welded to the ring 223 around the 7 flange 22. The high-temperature side pressure displacement section 21 is constituted by the single-sheet sealing film 23 subjected to W9. Fula/J221. ') The constituent materials of the 7-gage 223 and the seal membrane 23 are commonly used materials, such as 5U8316. Flange 221
Materials that are corrosion resistant to GaIn alloys, e.g.
An internal pressure transmission pipe 242 made of tantalum or tungsten is penetrated, and after the transmission pipe 242 is welded (W8) to the seventh flange 221 around its end, the surface of the side surface 221b of the flange 221 and the sealing membrane are welded. A vapor deposited film 224 of a material that is corrosion resistant to GaIn alloy, such as tantalum or tungsten, is continuously formed on the surface of the seating surface 221a by vacuum evaporation or sputtering. Surface 23 of the seal membrane seating surface 221a side of the surface and seal membrane 23
After welding W9 is performed on the exposed surface, a vapor deposited film 233 of a material that is corrosion resistant to GaIn alloy, such as tantalum or tungsten, is continuously formed on both sides by vacuum evaporation or sputtering. Welding WIO is performed after the vapor deposited films 224 and 233 are formed, respectively.
, 7 by fitting the flange 221 into the ring 223.

第6図は直接測定流体の圧力を置換するようにした、本
発明による高温用圧力置換器の第3図とは別の実施例を
示す縦断面図、第7図は低温側圧力置換部がセンサに内
蔵された構成となっている本発明による高温用圧力置換
器のさらに別の実施例を示す縦断面図であって、各図面
において第1図および第2図と同一の機能を有する部分
には第1図および第2図と同一の符号が付されている。
FIG. 6 is a longitudinal sectional view showing a different embodiment from FIG. 3 of the high temperature pressure replacer according to the present invention, which replaces the pressure of the directly measured fluid, and FIG. 7 shows a low temperature side pressure replacer. FIG. 3 is a longitudinal cross-sectional view showing still another embodiment of the high-temperature pressure replacer according to the present invention, which is built into a sensor, and in each drawing, parts having the same functions as in FIGS. 1 and 2; are given the same reference numerals as in FIGS. 1 and 2.

第6図は、本発明による圧力置換器20の高温側圧力置
換部21が第1図における第1圧力置換器10を省略し
て直接プロセスの低圧側圧力取出口405に接続された
構成となっており、ブロモlこよりコストダウンが可能
である。
FIG. 6 shows a configuration in which the high temperature side pressure displacement part 21 of the pressure displacement device 20 according to the present invention is directly connected to the low pressure side pressure outlet 405 of the process, omitting the first pressure displacement device 10 in FIG. Therefore, it is possible to reduce the cost compared to bromo.

第7図においては高温側圧力置換部21が直接プロセス
の低圧側圧力取出口405に接続されている構成は第6
図と同様であるが、圧力伝達管部24は図に示していな
い手段によって差圧式のセンサ50の圧力導入口51に
接続されている。28は圧力伝達媒体としてのGaIn
合金、56はセンサ50に内封された封入液、27はG
aIn合金28と封入液56とを密閉的に仕切りGaI
n合金28の圧力を封入液56に伝達するシール膜、5
7はセンサ50のケース58の内部においてシール膜2
7の固設された受圧室であって、GaIn合金28の空
所に封入されている。第7図においては、図示していな
いが、プロセスの高圧側圧力も前記低圧側導圧経路にお
けると同様にして差圧式のセンサ50の封入液56′に
導ア)れる。この結果、センサ50はGaIn合金28
からシール膜27を介して伝達された封入液56の圧力
と、GaIn合金2gからシール膜27′を介して伝達
された封入液56′の圧力との差の圧力を測定ダイヤフ
ラム52によって検出する。
In FIG. 7, the configuration in which the high temperature side pressure displacement section 21 is directly connected to the low pressure side pressure outlet 405 of the process is the sixth
Although it is similar to the figure, the pressure transmission pipe section 24 is connected to the pressure inlet 51 of the differential pressure type sensor 50 by means not shown in the figure. 28 is GaIn as a pressure transmission medium
alloy, 56 is a liquid sealed in the sensor 50, 27 is G
The aIn alloy 28 and the filled liquid 56 are airtightly partitioned by GaI.
a sealing membrane that transmits the pressure of the n-alloy 28 to the filled liquid 56;
7 is a sealing film 2 inside the case 58 of the sensor 50.
The pressure receiving chamber 7 is fixedly installed and is sealed in the cavity of the GaIn alloy 28. Although not shown in FIG. 7, the pressure on the high pressure side of the process is also led to the sealed liquid 56' of the differential pressure type sensor 50 in the same manner as in the low pressure side pressure path. As a result, the sensor 50 is made of GaIn alloy 28
The measuring diaphragm 52 detects the pressure difference between the pressure of the sealed liquid 56 transmitted from the GaIn alloy 2g through the sealing membrane 27 and the pressure of the sealed liquid 56' transmitted from the GaIn alloy 2g through the sealing membrane 27'.

したがって本発明による高温用圧力置換器を第7図のよ
うな構成に適用すれば、計測系統が第6図の場合よりさ
らに簡単になり当然一層のコストダウンが可能となる。
Therefore, if the high-temperature pressure replacer according to the present invention is applied to the configuration shown in FIG. 7, the measurement system will be simpler than that shown in FIG. 6, and it will naturally be possible to further reduce costs.

本発明による高温用圧力置換器においては、以上に説明
したように、圧力伝達媒体を水と反応することがなくま
た大気中においても安定なGaln合金とし、該合金に
接してかつ高温となる面を該合金に対して耐食性のある
材料で構成し、場合によっては重ね合わせ構造のシール
膜に波形を付したので、本発明による圧力置換器には、
高温側圧力置換部と圧力伝達管部の高温となる部分との
双方の温度が約20 ’C以上の広い温度範囲にイった
って% Galn合金lこ接する面が該合金?こよって
腐蝕されることなく高温流体の圧力を正確に置換、伝達
する作用があり、また、本発明によれば高温用圧力置換
器の製作ならびに取扱いが容易かつ安全であるという効
果がある。
As explained above, in the high temperature pressure replacer according to the present invention, the pressure transmission medium is a Galn alloy that does not react with water and is stable even in the atmosphere, and the surface that is in contact with the alloy and becomes high temperature is used as the pressure transmission medium. The pressure displacer according to the present invention is made of a material that is corrosion resistant to the alloy, and in some cases has a corrugated sealing membrane with a stacked structure.
Even if the temperature of both the high-temperature side pressure displacement part and the high-temperature part of the pressure transmission pipe part is within a wide temperature range of about 20'C or more, will the surface in contact with the Galn alloy be the same? Therefore, there is an effect of accurately replacing and transmitting the pressure of the high temperature fluid without corrosion, and the present invention also has the effect that the high temperature pressure replacer is easy and safe to manufacture and handle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の隔膜式多重圧力置換器を使用した液位計
測装置の設置例を示す構成図、第2図は第1図における
低圧側第2圧力置換器およびその両端近傍の縦断面図、
第3図は本発明の一実施例を示す高温用圧力置換器およ
びその両端近傍の縦断面図、第4図は本発明の別の実施
例を示す高温用圧力置換器の高温側圧力置換部とその近
傍の縦断面図、第5図(ajは本発明のさらに別の実施
例を示す高温用圧力置換器の高温側圧力置換部とその近
傍の縦断面図、第5図(b)は第5図(a)における要
部Sの拡大縦断面図、第6図は第3図とは別の実施例を
示す縦断面図、第7図は低温側圧力置換部がセンサに内
蔵された構成となっている本発明による圧力置換器の実
施例を示す縦断面図である。 図1こおいて、 10.10’・・・第1圧力置換器、12.12’・・
・フランジ、14.14’・・・第1圧力伝達管部、1
6.16’・・・7ランジ、18・・・第1圧力伝達媒
体、20.20’・・・第2圧力置換器、21.21’
・・・高温側圧力置換部、22.22’・・・7ランジ
、23・・・高温側クール膜、24.24’・・・第2
圧力伝達管部、25.25’・・・低温側圧力置換部、
26.26’・・・フランジ、27’、27’・・・低
温側シール膜、28.28’・・・第2圧カ伝達媒体、
30.30’・第3圧力置換器、32.32’・・・フ
ランジ、34.34’・・第3圧力伝達管部、38・・
・第3圧カ伝達媒体、50・・・液位検出センナ、51
.51’・・・圧力導入口、52・測定ダイヤフラム、
53・・・フローティングダイヤフラム、54・ハウジ
ング、55、・・絶縁体、56.56’・・封入液、5
7.57’・・・受圧室、58・・・ケース、221・
・・外部7ランジ、222・・・内部7ランジ、223
・・・リング、224・・・蒸着膜、231・・・外面
シール膜、232・・内面シール膜、233・・皮膜、
241・・・外部圧力伝達管、242・・・内部圧力伝
達管、400・・・タンク、401・・・被測定液体、
402・・・蒸気、403.404・・・調節弁、40
5,405’・・・圧力取出部、406,406’・・
・7ランジ、T1ないしT4・・・温度、WlないしW
IO・・溶接部。 +1(3) 才2図 t3(¥1 才5関 (o)(b)
Figure 1 is a configuration diagram showing an installation example of a liquid level measuring device using a conventional diaphragm type multiple pressure displacement device, and Figure 2 is a vertical cross-sectional view of the second pressure displacement device on the low pressure side in Figure 1 and the vicinity of both ends thereof. ,
FIG. 3 is a longitudinal cross-sectional view of a high-temperature pressure replacer and the vicinity of both ends thereof showing one embodiment of the present invention, and FIG. 4 is a high-temperature side pressure displacement section of a high-temperature pressure replacer showing another embodiment of the present invention. FIG. 5(b) is a longitudinal sectional view of the high temperature side pressure displacement part and its vicinity of a high temperature pressure displacement unit showing still another embodiment of the present invention. FIG. 5(a) is an enlarged vertical cross-sectional view of the main part S, FIG. 6 is a vertical cross-sectional view showing a different embodiment from FIG. 3, and FIG. 7 is a low-temperature side pressure displacement part built into the sensor. It is a vertical cross-sectional view showing an embodiment of the pressure displacement device according to the present invention, which has the following configurations: 10.10'... first pressure displacement device, 12.12'...
・Flange, 14.14'...first pressure transmission pipe section, 1
6.16'...7 langes, 18...first pressure transmission medium, 20.20'...second pressure displacement device, 21.21'
...High temperature side pressure displacement part, 22.22'...7 lunge, 23...High temperature side cool membrane, 24.24'...Second
Pressure transmission pipe section, 25.25'...low temperature side pressure displacement section,
26.26'...flange, 27', 27'...low temperature side seal membrane, 28.28'...second pressure transmission medium,
30.30'・Third pressure replacer, 32.32'...Flange, 34.34'...Third pressure transmission pipe section, 38...
- Third pressure transmission medium, 50...Liquid level detection sensor, 51
.. 51'...Pressure inlet, 52.Measuring diaphragm,
53...Floating diaphragm, 54.Housing, 55...Insulator, 56.56'...Filled liquid, 5
7.57'...pressure receiving chamber, 58...case, 221.
...External 7 lunges, 222...Internal 7 lunges, 223
...Ring, 224...Vapour-deposited film, 231...Outer sealing film, 232...Inner sealing film, 233...Coating film,
241... External pressure transmission pipe, 242... Internal pressure transmission pipe, 400... Tank, 401... Liquid to be measured,
402...Steam, 403.404...Control valve, 40
5,405'...Pressure extraction part, 406,406'...
・7 ranges, T1 to T4...Temperature, Wl to W
IO...Welding part. +1 (3) Sai2 Figure t3 (¥1 Sai5 Seki (o) (b)

Claims (1)

【特許請求の範囲】 11)高温流体と圧力伝達媒体とを密閉的に仕切る高温
側シール膜を介して前記高温流体の圧力を前記圧力伝達
媒体に伝達する高温側圧力置換部と、前記圧力伝達媒体
と低温流体とを密閉的に仕切る低温側シール膜を介して
前記圧力伝達媒体の圧力を前記低温流体に伝達する低温
側圧力置換部と、前記高温側圧力置換部の前記低温側圧
力置換部側の内部空所と前記低温側圧力置換部の前記高
温側圧力置換部側の内部空所とを連通せしめた圧力伝達
管部とを備え、前記高温側圧力置換部の前記低温側圧力
置換部側の内部空所、前記低温側圧力置換部の前記高温
側圧力置換部側の内部空所および前記圧力伝達管部の内
部空所によって形成されるひとつの連通した空所に封入
された前記圧力伝達媒体をGaI n合金としたことを
特徴とする高温用圧力置換器。 ゛  2、特許請求の範囲第1項記載の圧力置換器にお
いて、高温側圧力置換部と圧力伝達管部の高温部分との
双方の圧力伝達媒体に接する面はGaIn合金に対して
耐食性のある材料を有することを特徴とする高温用圧力
置換器。 3)特許請求の範囲第1項記載の圧力置換器において、
高温側シール膜は、該シール膜の圧力伝達媒体に接する
側にGaln合金に対して耐食性のある材料の内面シー
ル膜が重ね合わされたことを特徴とする高温用圧力置換
器。 4)特許請求の範囲第3項記載の圧力置換器において、
重ね合わせ構造のシール膜を構成する外面シール膜およ
び内面シール膜は、波形加工を施されたシール膜着座面
と同一の波形に形成されたものであることを特徴とする
高温用圧力置換器。 5)特許請求の範囲第2項または第3項に記載め圧力置
換器において、GaIn合金に対して耐食性のある材料
としてタンタルまたはタングステンを用いたことを特徴
とする高温用圧力置換器。
[Scope of Claims] 11) A high-temperature side pressure displacement section that transmits the pressure of the high-temperature fluid to the pressure transmission medium via a high-temperature side seal membrane that airtightly partitions the high-temperature fluid and the pressure transmission medium, and the pressure transmission a low-temperature-side pressure displacement section that transmits the pressure of the pressure transmission medium to the low-temperature fluid via a low-temperature-side seal membrane that airtightly partitions the medium and the low-temperature fluid; and a low-temperature-side pressure displacement section of the high-temperature side pressure displacement section. a pressure transmission pipe section that communicates an internal space on the side with an internal space on the high temperature side pressure displacement section of the low temperature side pressure displacement section, the low temperature side pressure displacement section of the high temperature side pressure displacement section; The pressure sealed in one communicating cavity formed by the internal cavity on the side of the pressure displacement part, the internal cavity on the side of the high temperature side pressure displacement part of the low temperature side pressure displacement part, and the internal cavity of the pressure transmission pipe part. A pressure displacement device for high temperature use, characterized in that the transmission medium is a GaIn alloy. 2. In the pressure displacement device according to claim 1, the surfaces in contact with the pressure transmission medium of both the high temperature side pressure displacement part and the high temperature part of the pressure transmission pipe part are made of a material that is corrosion resistant to GaIn alloy. A high-temperature pressure displacement device characterized by having the following. 3) In the pressure replacer according to claim 1,
A high-temperature pressure displacement device characterized in that the high-temperature side seal membrane has an inner seal membrane made of a material that is corrosion resistant to Galn alloy superimposed on the side of the seal membrane that contacts the pressure transmission medium. 4) In the pressure replacer according to claim 3,
1. A high-temperature pressure displacement device characterized in that an outer seal membrane and an inner seal membrane constituting a seal membrane having a stacked structure are formed in the same waveform as a seal membrane seating surface which is subjected to a waveform processing. 5) A high-temperature pressure replacer as set forth in claim 2 or 3, characterized in that tantalum or tungsten is used as a corrosion-resistant material for the GaIn alloy.
JP10343182A 1982-06-16 1982-06-16 Pressure substitute apparatus for high temperature Pending JPS58221497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10343182A JPS58221497A (en) 1982-06-16 1982-06-16 Pressure substitute apparatus for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10343182A JPS58221497A (en) 1982-06-16 1982-06-16 Pressure substitute apparatus for high temperature

Publications (1)

Publication Number Publication Date
JPS58221497A true JPS58221497A (en) 1983-12-23

Family

ID=14353845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10343182A Pending JPS58221497A (en) 1982-06-16 1982-06-16 Pressure substitute apparatus for high temperature

Country Status (1)

Country Link
JP (1) JPS58221497A (en)

Similar Documents

Publication Publication Date Title
US4090554A (en) Heat exchanger
US3986399A (en) Filled-in-fluid and diaphragm type intermediate device for transmitting pressure
US4046010A (en) Pressure transducer with welded tantalum diaphragm
US4722228A (en) Remote seal-type pressure signal generator
US3465727A (en) Steam generator and method of making the same
CN105865701B (en) A kind of high temperature villiaumite pressure gauge
US4182407A (en) Tube sheet comprising two interspaced sheet members and heat exchanger comprising at least one such tube sheet
JPS58221497A (en) Pressure substitute apparatus for high temperature
US4612976A (en) Steam generator for a nuclear reactor cooled with liquid metal
JPS5968636A (en) Pressure substituter for high temperature
KR102554308B1 (en) Cryogenic explosion-proof pressure sensor capable of measuring hydrogen pressure or gas pressure
CN106500802A (en) Measurement apparatus
JPH04248430A (en) Remote seal type differential pressure/pressure transmitter
JPS5999231A (en) Pressure replacing device for high temperature
JPS5983096A (en) Radioactive material transporting cask and its leakage test
JP4291049B2 (en) Differential pressure / pressure transmitter
JPH0240958B2 (en)
JPS6383692A (en) Heat pipe type reactor
JPH09189634A (en) Differential pressure and pressure transmitter
JP3089580B2 (en) Remote seal type differential pressure transmitter
KR100590830B1 (en) Apparatus for measuring differential pressure of fluid at high temperature
SU862001A2 (en) Pressure difference relay
JPH05196530A (en) Differential pressure/pressure transmitter and method for enclosing sealing liquid
JPS5923372B2 (en) Liquid seal diaphragm pressure displacement device
SU661274A1 (en) Heat meter