JPS58221382A - Method and device for retrieving heat of exhaust gas - Google Patents

Method and device for retrieving heat of exhaust gas

Info

Publication number
JPS58221382A
JPS58221382A JP10401782A JP10401782A JPS58221382A JP S58221382 A JPS58221382 A JP S58221382A JP 10401782 A JP10401782 A JP 10401782A JP 10401782 A JP10401782 A JP 10401782A JP S58221382 A JPS58221382 A JP S58221382A
Authority
JP
Japan
Prior art keywords
duct
exhaust gas
space
fluid
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10401782A
Other languages
Japanese (ja)
Inventor
Toshio Furukawa
俊夫 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Kikkoman Shoyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp, Kikkoman Shoyu KK filed Critical Kikkoman Corp
Priority to JP10401782A priority Critical patent/JPS58221382A/en
Publication of JPS58221382A publication Critical patent/JPS58221382A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent a duct from being corroded by corrosive substances, contained in the waste gas and dewing on the wall surface of the duct, by a method wherein fluid, forming a multi-layered flow by the waste gas and a multitude of fluid layers, is heated in a multitude of stages. CONSTITUTION:Bulkheads 4, 5 are provided at the front and rear parts of the axial direction of the duct 1 and the exhaust gas ducts 6 are bridged between the bulkheads 4, 5 while a space is provided at the inside of the bulkhead 4 and a partitioning plate 15 is provided to form the space S3. The duct 17 is communicated with the space S3 in such a manner that it is surrounding around the exhaust gas duct 6 while the air duct 19 is constituted by the space S1, which is the space in the duct 1 excluding the spaces of the exhaust duct 6 and the duct 17, the space S2, formed by the duct 17 and the exhaust duct 6, and the space S3. Air passes through a fluid inlet port 20, the spaces S1, S2, S3 and a fluid outlet port 21 sequentially while the heat is transmitted from the exhaust gas to the air in the spaces S2, S1 sequentially.

Description

【発明の詳細な説明】 本発明は排気ガスの熱回収方法及び装置に係シ、排気ガ
ス及び互いに連通ずる複数の被加熱流体層で多層流を形
成し、複数段にわたって流8体を加熱することによシ排
気ガス中に含まれているイオウ酸化物等の腐蝕性物質が
ダクト壁面に結露して装置腐蝕の誘発を防止する方法及
び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas heat recovery method and apparatus, in which a multilayer flow is formed by the exhaust gas and a plurality of fluid layers to be heated that communicate with each other, and the flow is heated in multiple stages. In particular, it relates to a method and apparatus for preventing corrosive substances such as sulfur oxides contained in exhaust gas from condensing on duct walls and causing equipment corrosion.

る。従来この熱エネルギーの一部を回収し、これを他の
有用な目的のために活用しようとする試みが成されてい
るが、この熱エネルギーの回収は一般には熱交換器にて
排気ガスの持つ熱を水あるいは空気等の流体に直接付与
することで成されていた。
Ru. Conventionally, attempts have been made to recover some of this thermal energy and use it for other useful purposes, but generally this thermal energy is recovered by using a heat exchanger to recover a portion of this thermal energy. This was done by applying heat directly to a fluid such as water or air.

しかし々がらボイラ、脱臭炉及び焼却炉等から排出され
る排気ガス中には微量ながらイオウ酸化物あるいは塩化
水素等の腐蝕性物質が含まれておシ、この排気ガスを熱
交換器にて直接例えば冬期における外気と熱交換せしめ
た場合外気は低温であるために熱交換器において排気オ
スが流過する排気ガス管の壁面温度が低下し、排気ガス
は該壁面に接触して局部的に露点以下に過冷却せしめら
れ排気ガス中の前記イオウ酸化物等が管壁表面に結露し
これが装置腐蝕の原因となっていた。
However, the exhaust gas discharged from boilers, deodorizing furnaces, incinerators, etc. contains corrosive substances such as sulfur oxides and hydrogen chloride, albeit in small amounts, and this exhaust gas is directly transferred to the heat exchanger. For example, when heat is exchanged with outside air in the winter, the outside air is at a low temperature, so the wall temperature of the exhaust gas pipe through which the exhaust male flows through the heat exchanger decreases, and the exhaust gas comes into contact with the wall and locally reaches a dew point. The sulfur oxides and the like in the exhaust gas were then supercooled and condensed on the tube wall surface, causing corrosion of the equipment.

又被加熱流体が冷水等の液体の場合液体の境膜係数が大
きく排気ガス管の壁面は冷却されやはシ前記と同様な理
“由によシ核部にイオウ酸化物等が結露する。本発明者
は、この種排気ガスの熱エネルギー回収における前記現
状に鑑み鋭意研究の結果、排気ガス及び複数の被加熱流
体層で多層流を形成しかつそれらの流体層を連通させて
排気ガスと直接熱交換している流体層と他の流体層とを
順次熱交換させれば前述したような欠点を解消すること
ができるという知見を得て本願を完成させた。
Further, when the fluid to be heated is a liquid such as cold water, the film coefficient of the liquid is large and the wall surface of the exhaust gas pipe is cooled, and sulfur oxides and the like condense on the core portion for the same reason as described above. As a result of intensive research in view of the above-mentioned current state of heat energy recovery from exhaust gas, the inventor of the present invention has discovered that exhaust gas and multiple heated fluid layers form a multi-layer flow, and these fluid layers are communicated with exhaust gas. The present application was completed based on the knowledge that the above-mentioned drawbacks can be overcome by sequentially exchanging heat between a fluid layer that is directly exchanging heat with another fluid layer.

すなわち本願は、排気ガス及び互いに連通ずる少くとも
二層の被加熱流体層で多層流を形成し排気ガスから熱を
回収すべく構成したことを特徴とする排気ガス熱回収方
法である。
That is, the present application is an exhaust gas heat recovery method characterized in that the exhaust gas and at least two heated fluid layers communicating with each other form a multilayer flow to recover heat from the exhaust gas.

以下に本発明の実施例をまず第1図〜第7図において被
加熱流体が気体、特に空気の場合について添伺図面に基
づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings, with reference to FIGS. 1 to 7, in which the fluid to be heated is gas, particularly air.

まず第1〜3図において、/は矩形ダクトであシ該ダク
ト/の軸方向前(第1図におい゛て左側)後(第1図に
おいて右側)端には接続配管月相フランシス、3が設け
られている。又前記ダクト/の軸方向前後部には矩形隔
板≠、!が軸直角にかつ相平行して設置されておシ、こ
れら隔板≠、j間には上下方向に3段、幅方向に3列計
9本の排気ガスが流過する排気ガスダクト乙が互いに等
ピッチでかつ着脱自在に架設されている。各ダクト乙は
円管状で、これの前端には固定フランジ7が設けられ、
一方これの他端には第2図に示す如くネジざが刻設され
ている。かくして各排気ガスダク)Jの隔板≠、夕への
固定は次の如く成される。
First of all, in Figures 1 to 3, / is a rectangular duct, and at the axial front (left side in Figure 1) and rear (right side in Figure 1) end of the duct / is a connecting piping lunar Francis, 3. It is provided. Also, there are rectangular partition plates at the front and rear of the duct in the axial direction! are installed perpendicular to the axis and parallel to each other, and between these partition plates ≠, there is a total of nine exhaust gas ducts in which exhaust gas flows through three stages in the vertical direction and three rows in the width direction. They are constructed at equal pitches and removable. Each duct B has a circular tube shape, and a fixed flange 7 is provided at the front end of the duct B.
On the other hand, a screw thread is engraved on the other end as shown in FIG. Thus, each exhaust gas duct) J is fixed to the partition plate as follows.

すなわち排気ガスダクト乙を隔板≠、夕に相対向する如
く形成されだ円孔9,70間に第1図に示す如く挿通し
、排気ダクト乙の後端部に形成したネジとに可動フラン
ジ//を第2図に示す如く螺着する。7.2はバネで、
固定フランジ7を隔板tに押圧して核部のシールを保持
する役を成す。該シール部にシール材を設ければよシ確
実な気密性を保持することができる。
That is, the exhaust gas duct B is inserted between the oval holes 9 and 70 formed so as to face each other on the partition plate B, as shown in FIG. 1, and the movable flange/ / is screwed on as shown in Figure 2. 7.2 is a spring,
It serves to press the fixed flange 7 against the partition plate t to maintain a seal at the core. By providing a sealing material in the seal portion, more reliable airtightness can be maintained.

次に可動フランジ//の内端面と隔板jの外端面間にビ
ス/3で固定されテフロン、石綿等で円筒状に形成され
た耐熱伸縮継手/≠にて該バネ12を覆い、隔板よと排
気ガスダク)4の接触部の気密性を保持する。本機構に
より排気ダクト乙の熱膨張に対処できる。
Next, the spring 12 is covered with a heat-resistant expansion joint /≠ which is fixed with screws /3 between the inner end face of the movable flange // and the outer end face of the partition plate j and formed into a cylindrical shape from Teflon, asbestos, etc., and the partition plate Maintain the airtightness of the contact area of exhaust gas duct) 4. This mechanism can deal with thermal expansion of the exhaust duct B.

前記隔板≠の内側には、該隔板≠と所定量の間隔を設け
て隔板/jを設置し、隔板よとの間に空間S3を形成す
る。さらにこの隔板/jには前記円孔9と相対応して円
孔/乙が同心状に穿設されておシ、該円孔/乙には円筒
状をしたダクト/7が排気ダク)4を囲繞する如く空間
S3と連通し、かつ右端部は隔壁jとの間に間隔Sを有
するよう設Ftされ、前記排気ダクト乙とで二重構造を
構成する。
A partition plate /j is installed inside the partition plate≠ with a predetermined distance from the partition plate≠, and a space S3 is formed between the partition plate and the partition plate. Further, in this partition plate /j, a circular hole /B is concentrically bored in correspondence with the circular hole 9, and a cylindrical duct /7 is an exhaust duct in the circular hole /B). The exhaust duct Ft communicates with the space S3 so as to surround the exhaust duct B, and the right end portion is provided with a distance S between it and the partition wall j, forming a double structure with the exhaust duct B.

/とは平板状をしたリプで、排気ダクト乙あるいはダク
ト/7のどちらか一方に固定し、他方は摺接構造にしで
ある。
/ is a flat plate-shaped lip that is fixed to either exhaust duct O or duct /7, and the other has a sliding structure.

ことにおいて前記矩形ダクト/内において排気ダク)J
及びダクト/7にて除かれる空間Sノ、ダクト/7と排
気ダク)Jにて形成される空間SX、前記空間S3とで
空気ダク)/9を構成する。
In particular, the rectangular duct/inside the exhaust duct) J
and the space S excluded by the duct /7, the space SX formed by the duct /7 and the exhaust duct J, and the space S3 constitute an air duct) /9.

そして該流体ダクト/9の空間S/に連通して流体人口
λθが、又空間S3に連通して流体出口21がそれぞれ
設置される。
A fluid population λθ is installed in communication with the space S/ of the fluid duct /9, and a fluid outlet 21 is installed in communication with the space S3.

かくして空気は流体人口コθ、空間S/、Sλ。Thus, air has fluid population θ, space S/, Sλ.

S3、流体出口λ/の順に流過し、排気ガスから空間S
aの空気へさらに該空気から空間S/の空気へと熱が二
段階で伝えられるため、排気ガスは低温の空気と直接熱
交換することはない。
S3, the fluid exit λ/ flows in this order, and from the exhaust gas to the space S
Since heat is transferred in two stages to the air in space a and from this air to the air in space S/, the exhaust gas does not directly exchange heat with the low-temperature air.

次に本願発明の作用について第1図、第3図及び第7図
に基づいて説明する。
Next, the operation of the present invention will be explained based on FIGS. 1, 3, and 7.

第7図は本装置の適用例を示したブロック図であり、本
願発明に係る第1図に示す装置すなわち熱交換器コ2は
ボイラ、23と煙突21/L間に介設され、熱交換器2
2の後流側には送風機2夕が配置される。
FIG. 7 is a block diagram showing an example of application of this device, and the device shown in FIG. Vessel 2
A blower 2 is arranged on the downstream side of the blower 2.

ボイラ23には燃料2乙と燃焼用空気27が供給され、
内部で燃料JJが燃焼し、この燃焼によつて生じた高温
の排気ガス2δ′は送風機2夕に吸引されて熱交換器2
2内の排気ダクト≦(第1図参照)を通過し、後述の如
き熱交換を行なって冷却し、送風機23の作用で煙突2
≠から大気中に放出される。
Fuel 2 and combustion air 27 are supplied to the boiler 23,
Fuel JJ burns inside, and high-temperature exhaust gas 2δ' generated by this combustion is sucked into the blower 2 and sent to the heat exchanger 2.
It passes through the exhaust duct ≦ (see Figure 1) in the chimney 2, performs heat exchange as described below and is cooled, and then moves into the chimney 2 by the action of the blower 23.
Released into the atmosphere from ≠.

又加熱すべき°空気29は流量制御弁3θを経て送風機
3/にて熱交換器2コに圧送される。この空気29は熱
交換器22の流体人口2θから流体ダクト/9内に流入
し、排気ガスダクト乙を介して排気ガス2とと熱交換し
、該排気ガス2!から熱を受けて加熱される。この時排
気ガス2とと直接熱交換するのは空間SJを流過してい
る空気であり、該空気は空間S/を流過する際に空間S
、2の空気よシすでに熱を受けである程度高温になって
いるため、排気ガスダク)4の壁面付近の排気ガス2と
は局部的にも過冷却されることがなく、よって排気ガス
2ど中に含まれるイオウ酸化物等の腐蝕性物質が排気ガ
スダクトご壁面に結露してこれを腐蝕するような事態は
発生しない。
Further, the air 29 to be heated is forced to be sent to the heat exchanger 2 by the blower 3/ through the flow rate control valve 3θ. This air 29 flows into the fluid duct/9 from the fluid population 2θ of the heat exchanger 22, exchanges heat with the exhaust gas 2 via the exhaust gas duct B, and the exhaust gas 2! It is heated by receiving heat from the At this time, it is the air flowing through the space SJ that directly exchanges heat with the exhaust gas 2.
Since the air in 2 has already been heated to a certain degree of high temperature, the exhaust gas 2 near the wall of the exhaust gas duct 4 is not locally supercooled, and therefore the air in the exhaust gas 2 is There will be no situation where corrosive substances such as sulfur oxides contained in the exhaust gas duct condense on the wall of the exhaust gas duct and corrode it.

又ボイラ、脱臭炉及び焼却炉等から排出される排気ガス
は230−どθ0℃程度の高温である場合が多く、この
ような場合排気ガスがら空気への側対伝熱も無視できな
い程度となシ、特に第3図に示す排気ガスダク)4とダ
クト/7との二重構造において、排気ガスダク)4の外
周面を白色に、ダクト/7の内周面を黒色に着色すれば
側対伝熱は効果的に行なわれる。
In addition, the exhaust gas discharged from boilers, deodorizing furnaces, incinerators, etc. is often at a high temperature of about 230°C - 0°C, and in such cases, side-to-side heat transfer from the exhaust gas to the air is not negligible. In particular, in the dual structure of the exhaust gas duct) 4 and duct 7 shown in Fig. 3, if the outer circumferential surface of the exhaust gas duct 4 is colored white and the inner circumferential surface of the duct 7 is colored black, side-to-side transmission can be achieved. Heat is applied effectively.

かくして高温の排気ガス2とから熱を受けて加熱された
空気29は流体用0.2/から外部へ流出し、これの持
つ熱エネルギーは他の有用々目的にあるいは一部はボイ
ラの給気に利用される。なお第7図において32は流量
制御弁である。
The heated air 29 receives heat from the high-temperature exhaust gas 2 and flows out from the fluid 0.2/, and its thermal energy is used for other useful purposes or a part is used as supply air for the boiler. used for. In addition, in FIG. 7, 32 is a flow control valve.

動した場合は、流量制却弁3oにょシ送気骨を該変動に
応じて調節し、熱通過率を制御することによシ排気ガス
2と中に含まれる腐蝕性物質の結露を有効に防止するこ
とができる。
If the exhaust gas 2 changes, the flow rate control valve 3o is adjusted according to the fluctuation, and the heat transfer rate is controlled to effectively prevent condensation between the exhaust gas 2 and the corrosive substances contained therein. can do.

一方構造的には排気ガスダク)4を着脱自在に構成した
ため、付着した塵等の除去を容易に行うことができる。
On the other hand, since the exhaust gas duct 4 is configured to be detachable, attached dust and the like can be easily removed.

第≠図及び第5図に他の実施例を示す。Other embodiments are shown in Figures ≠ and 5.

まず第≠図に示す実施例は、ボイラに喰えれば水管ボイ
ラに相当するもので、排気ガスダクト中に多数の流体ダ
クトを配設した例である。
First, the embodiment shown in Figure 1 corresponds to a water tube boiler, and is an example in which a large number of fluid ducts are arranged in an exhaust gas duct.

図において矩形をした排気ダクトlA/の上部及び下部
のダクト壁にはそれぞれ対応して円孔l1−2゜4L3
が穿設されており、該孔には二重管のうち外ダクトl/
Ll/Lが挿通され第2図と同様に排気ダクトl/L/
に固定される。
In the figure, the upper and lower duct walls of the rectangular exhaust duct lA/ have corresponding circular holes l1-2°4L3.
is drilled in the hole, and the outer duct l/of the double pipe is inserted into the hole.
Ll/L is inserted and the exhaust duct l/L/
Fixed.

さらに排気ダクトlI−/の上部には箱状をしたダクト
4’J−が冠着されておシ、該ダクト≠j内において前
記円孔≠2と対応して同心状に穿設され円孔≠乙を有す
る隔板≠0が排気ダクト≠/の軸方向と平行して設けら
れ、空間S/ 、SJを形成する。そして該孔4Lgに
は空間S/と連通し、かつ外ダクトlI−≠内を挿通さ
せて二重管の内ダクト≠7が設置される。
Further, a box-shaped duct 4'J- is attached to the upper part of the exhaust duct lI-/, and a circular hole is bored concentrically in the duct≠j corresponding to the circular hole≠2. A partition plate≠0 having ≠B is provided parallel to the axial direction of the exhaust duct≠/, forming spaces S/ and SJ. A double-pipe inner duct≠7 is installed in the hole 4Lg, communicating with the space S/ and passing through the outer duct lI-≠.

なお該内ダクトの下方≠とは、熱交換器の効率的見知か
らみて排気ダクト≠lの下端部近辺まで延設するのが望
ましく、又≠9は内ダクト1l−7位置固定のためのリ
プである。そしてj≠゛は排気ダクトの下部を覆うカバ
ーで外部との遮断をすべく設置されている。
Note that the lower part of the inner duct≠ means that it is desirable to extend the exhaust duct to the vicinity of the lower end of the exhaust duct≠l from the viewpoint of efficiency of the heat exchanger. This is a reply. And j≠゛ is installed with a cover that covers the lower part of the exhaust duct to isolate it from the outside.

内ダクトIA7は、外ダクト≠≠と該内ダクト≠7で囲
繞される空間S、zを介して空間Sjと連通すべく形成
し空間S7、内ダクトll−7、空間84゜SJで流体
ダクトjOを構成する。そして該空間SJに連通させて
流体入口j/を、及び空間S3に連通させて流体出口5
.2をそれぞれ設ける。
The inner duct IA7 is formed to communicate with the space Sj via the spaces S and z surrounded by the outer duct≠≠ and the inner duct≠7, and the fluid duct is connected to the space S7, the inner duct ll-7, and the space 84°SJ. Configure jO. The fluid inlet j/ is communicated with the space SJ, and the fluid outlet 5 is communicated with the space S3.
.. 2 are provided respectively.

かくして空気は流体人口kl、空間S/、内ダシ他の行
程で利用すべく送出される。
Air is thus delivered for use in the fluid volume kl, the space S/, the inner dash, and other strokes.

り 第5図は、第1図に示しだ実施例の空気ダ輿ト/9内に
多数のバッフル板夕3をダクトIOの軸方向に対して直
角方向に設けた例を示す。本実施例の如くバックル板j
3を設けることによシ絞シ効果によって空気の流速が増
大し、さらに空気の流れを乱して熱通過率を向上せしめ
以って熱回収効率を高めることができる。
FIG. 5 shows an example in which a large number of baffle plates 3 are provided in the air duct 9 of the embodiment shown in FIG. 1 in a direction perpendicular to the axial direction of the duct IO. Buckle plate j as in this example
3, the flow rate of air is increased by the constriction effect, and the air flow is further disturbed to improve the heat passing rate, thereby increasing the heat recovery efficiency.

次に被加熱流体が液体特に冷水の場合について述べる。Next, the case where the fluid to be heated is a liquid, particularly cold water, will be described.

基本的には気体の場合と同じであるが第1図における流
体ダクト/9の液密性を保持するだめに第♂図に示す如
く排気ガスダク)1<の固定フランジ7と隔板≠の間に
耐熱性の0リング例えばテフロンあるいはガラス繊維含
有のテフロン等を介装する。又第9図に示す如くベロー
ズ/≠はパツキン!乙を介して固定しさらにネジ部との
シールとしてフランジ部材タフを排気ガスダクト乙に設
置して可動フランジ//との間にパツキンjとを設けそ
れぞれシールすれば良い。以上の説明において加熱され
る流体として空気及び冷水について述べたが、本願発明
はこれに限定されることはなく、その他チッソガス、炭
酸ガス、アルゴンガス及び液体等流体一般に応用するこ
とができる。
Basically, it is the same as in the case of gas, but in order to maintain the liquid tightness of the fluid duct/9 in Fig. 1, as shown in Fig. A heat-resistant O-ring, such as Teflon or glass fiber-containing Teflon, is interposed in between. Also, as shown in Figure 9, bellows/≠ is a seal! A flange member tough may be installed on the exhaust gas duct B to seal the screw portion with the screw part B, and a seal J may be provided between the movable flange and the movable flange. Although air and cold water have been described as the fluids to be heated in the above description, the present invention is not limited thereto, and can be applied to other fluids in general such as nitrogen gas, carbon dioxide gas, argon gas, and liquids.

又本願において第を図に示すように多数の層を形成して
装置を構成しても良い。
Further, in the present application, the device may be constructed by forming a large number of layers as shown in the figure.

以上の説明で明らかな如く本発明によれば、排気ガス及
び多数の流体層で多層流を形成し流体を多段で加熱して
いるため、排気ガスが局部的に過冷却されることがなく
又排気ガス中に含まれる腐蝕性物質がダクト壁面に結露
してダクトを腐蝕するととがない。
As is clear from the above description, according to the present invention, the exhaust gas and multiple fluid layers form a multilayer flow and the fluid is heated in multiple stages, so that the exhaust gas is not locally supercooled. Corrosive substances contained in the exhaust gas condense on the duct wall and corrode the duct, which is irreversible.

さらに流体を多段で加熱しているだめよシ多くの熱を排
気ガスから受けることができる。
Furthermore, more heat can be received from the exhaust gas than by heating the fluid in multiple stages.

【図面の簡単な説明】 第1図は本発明装置を構成する熱交換器の縦断面図、第
2図は第1図A部の拡大図、第3図は第1図3−3視断
面図、第≠図〜第g図は他の実施例を示す縦断面図、第
7図は本発明装置の適用例を示したブロック図、第♂図
〜第9図はさらに他の実施例をそれぞれ示す。 なお図において乙は排気ガスダクト、/9は空気ダクト
、コθは空気入口、2/は空気出口、22は熱交換器、
23はボイラー、30は流量制御弁をそれぞれ示す。 
・ 特許出願人  キッコーマン株式会社
[Brief Description of the Drawings] Figure 1 is a longitudinal cross-sectional view of a heat exchanger constituting the device of the present invention, Figure 2 is an enlarged view of section A in Figure 1, and Figure 3 is a cross-sectional view taken along line 3-3 in Figure 1. Figures ≠ to g are longitudinal sectional views showing other embodiments, Figure 7 is a block diagram showing an example of application of the device of the present invention, and Figures ♂ to 9 show still other embodiments. Each is shown below. In the figure, B is the exhaust gas duct, /9 is the air duct, Kθ is the air inlet, 2/ is the air outlet, 22 is the heat exchanger,
23 represents a boiler, and 30 represents a flow control valve.
・Patent applicant: Kikkoman Corporation

Claims (4)

【特許請求の範囲】[Claims] (1)排気ガス及び互いに連通する少くとも二層の被加
熱流体層で多層流を形成し排気ガスから熱を回収すべく
構成しだ゛ことを特徴とする排気ガス熱回収方法。
(1) An exhaust gas heat recovery method characterized in that the exhaust gas and at least two heated fluid layers communicating with each other form a multilayer flow to recover heat from the exhaust gas.
(2)前記流体層が気体である特許請求の範囲第(1)
項記載の排気ガス熱回収方法。
(2) Claim No. (1), wherein the fluid layer is a gas.
Exhaust gas heat recovery method described in section.
(3)前記流体層が液体である特許請求の範囲第(1)
項記載の排気ガス熱回収方法。
(3) Claim No. (1), wherein the fluid layer is a liquid.
Exhaust gas heat recovery method described in section.
(4)排気ガスダクト及び互いに連通ずる少なくとも二
重構造の流体ダクトで多重構造を構成し、これらダクト
内を流過する排気ガス及び流体層が多層流を形成すべく
ユニット化して成ることを特徴とする排気ガス熱回収装
置。
(4) A multilayer structure is formed by an exhaust gas duct and at least a double-structured fluid duct that communicates with each other, and the exhaust gas and fluid layer flowing through these ducts are unitized to form a multilayer flow. Exhaust gas heat recovery equipment.
JP10401782A 1982-06-18 1982-06-18 Method and device for retrieving heat of exhaust gas Pending JPS58221382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10401782A JPS58221382A (en) 1982-06-18 1982-06-18 Method and device for retrieving heat of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10401782A JPS58221382A (en) 1982-06-18 1982-06-18 Method and device for retrieving heat of exhaust gas

Publications (1)

Publication Number Publication Date
JPS58221382A true JPS58221382A (en) 1983-12-23

Family

ID=14369485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10401782A Pending JPS58221382A (en) 1982-06-18 1982-06-18 Method and device for retrieving heat of exhaust gas

Country Status (1)

Country Link
JP (1) JPS58221382A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830937A (en) * 1971-08-25 1973-04-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830937A (en) * 1971-08-25 1973-04-23

Similar Documents

Publication Publication Date Title
US4386652A (en) Heat exchange assembly
JP5095729B2 (en) Heat exchanger and gas processing apparatus using the same
JP3882024B2 (en) Heat exchanger with double tube bundle
US3483920A (en) Heat exchangers
JPH0359397A (en) Tubular heat exchanger with fin
EP0298976A1 (en) Apparatus for recovering heat from flue gases and for cleaning the same.
GB1565912A (en) Corrugated sheet heat exchanger
WO1983000380A1 (en) Heat pipe heat exchanger
US3315739A (en) Heat-exchanger construction
US3414052A (en) Tubular heat exchangers
EP1724543A1 (en) Heat exchange unit and heat exchanger using the heat exchange unit
JP2001519885A (en) Heat exchange equipment
EP3465061B1 (en) Heat exchanger
US4632181A (en) Ceramic heat exchanger
US20060260789A1 (en) Heat exchange unit and heat exchanger using the heat exchange unit
JPS58221382A (en) Method and device for retrieving heat of exhaust gas
JP2705545B2 (en) Low temperature corrosion prevention structure of heat exchanger
ITRM980350A1 (en) BIMETALLIC CORRUGATED TUBE AND PROCEDURE FOR ITS REALIZATION
JPS586232A (en) Method and apparatus for recovering exhaust gas heat
JPS6082782A (en) Carbon block type heat pipe system heat exchanger
JPH0599586A (en) Combustion gas heat exchanger unit and its preparation
US1880291A (en) Heating device
JP2002005584A (en) Heat exchanger
JPS5920958B2 (en) Heat exchanger
JPS6011088A (en) Heat exchanger