JPS58220254A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPS58220254A
JPS58220254A JP57102697A JP10269782A JPS58220254A JP S58220254 A JPS58220254 A JP S58220254A JP 57102697 A JP57102697 A JP 57102697A JP 10269782 A JP10269782 A JP 10269782A JP S58220254 A JPS58220254 A JP S58220254A
Authority
JP
Japan
Prior art keywords
modulator
signal
light
supplied
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57102697A
Other languages
Japanese (ja)
Other versions
JPH0724113B2 (en
Inventor
Masanobu Yamamoto
山本 真伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP57102697A priority Critical patent/JPH0724113B2/en
Publication of JPS58220254A publication Critical patent/JPS58220254A/en
Publication of JPH0724113B2 publication Critical patent/JPH0724113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/128Modulators

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To ensure constitution of an optical system in a simple way and with a low cost, by modulating the light by means of an acoustic-optical modulator and a stepped digital multi-value signal of >=3 ternary value, and controlling the intensity of output light with high accuracy. CONSTITUTION:The laser light LO is supplied to an acoustic-optical modulator 11 from a laser light source 12. A digital multi-value signal SI is supplied to an amplitude modulator 14 through a terminal 13. At the same time, a high frequency signal is supplied to the modulator 14 as a carrier SC from a high frequency oscillator 15. The modulator 14 produces a signal SI' which is smoothed and modulated by an information signal SI. This signal SI' is supplied to the modulator 11 as a modulated signal via an amplitude modulator 16. The modulator 16 applies further modulation of amplitude to the signal SI' on the basis of a comparison error signal SCa obtained from a comparator 21. Therefore the primary diffracted light D1 delivered from the modulator 11 is set at a prescribed level with control of the light intensity.

Description

【発明の詳細な説明】 本発明は、例えばビデオディスクやデジタルオーディオ
ディスクに3値以上のデジタル信号を記録する光記録装
置等に用いて好適な光変調装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical modulation device suitable for use in, for example, an optical recording device that records digital signals of three or more values on a video disc or a digital audio disc.

第1図は一般に使用されている光記録装置の構成を示す
もので、同図において、記録用レーザー光源(1)から
のレーザービームはミラー(2)を介して光変調器(3
)に供給され、ここで記録しようとする情報信号で変調
を受け、さらにビームスシリツタ−(4)、シャッター
(5)、レンズ(6)、ミラー(7)及び対(1) 物レンズ(8)等のレンズ系によシ記録ディスク(9)
の感光層(例えばフォトレジスタ)上に微少径のスポラ
Lとして与えられ、モータ00で回動されている記録デ
ィスク(9)に情報信号が記録される。
Figure 1 shows the configuration of a commonly used optical recording device. In the figure, a laser beam from a recording laser light source (1) passes through a mirror (2) to an optical modulator (3).
), where it is modulated by the information signal to be recorded, and is further supplied to the beam slittor (4), shutter (5), lens (6), mirror (7) and objective lens (8). ) and other lens systems (9)
An information signal is provided as a micro-diameter spora L on a photosensitive layer (for example, a photoresistor) and is recorded on a recording disk (9) that is rotated by a motor 00.

この場合、情報信号を3値以上のデジタル信号によるも
のとすれば、記録情報密度を上げることができ有利とな
る。しかし、ステップ状となるデジタル多値信号を上述
した第1図に示すような光記録装置によって記録ディス
ク(9)に記録するのには、光変調器(3)において、
この高速なステップ状のデジタル多値信号で光を充分変
調し得ること、かつ感光層の感度特性に合せて、露光レ
ベル、即ち光°変調器(3)の出力光強度が各値毎に精
密に所定レベルに制御されることが必要となる。
In this case, if the information signal is a digital signal of three or more values, it is advantageous because the recorded information density can be increased. However, in order to record a step-like digital multilevel signal on the recording disk (9) using the optical recording device shown in FIG.
The light can be sufficiently modulated with this high-speed step-like digital multilevel signal, and the exposure level, that is, the output light intensity of the optical modulator (3), can be adjusted precisely for each value in accordance with the sensitivity characteristics of the photosensitive layer. It is necessary to control the temperature to a predetermined level.

従来、光変調器(3)としては、結晶に電界を加えると
その結晶の屈折率が変化する所謂電気光学効果を利用し
た電気光学光変調器、または音波によって媒質中の屈折
率が変化する所謂音響光学効果を利用した音響光学光変
調器が使用されている。
Conventionally, optical modulators (3) include electro-optic optical modulators that utilize the so-called electro-optic effect, in which the refractive index of a crystal changes when an electric field is applied to the crystal, or so-called electro-optic optical modulators, in which the refractive index in a medium changes by sound waves. Acousto-optic modulators that utilize the acousto-optic effect are used.

電気光学光変調器は、レーザービームを歪ませ(2) ることなく高速変調することができるが、温度変化によ
る結晶の膨張によって変調のバイアス点が変化し、感光
層の感度特性に合せて、露光レベル、即ち光変調器(3
)の出力光強度を各個毎に精密に所定レベルに制御する
のに難点がある。
Electro-optic light modulators can perform high-speed modulation without distorting the laser beam (2), but the modulation bias point changes due to the expansion of the crystal due to temperature changes, and the bias point changes depending on the sensitivity characteristics of the photosensitive layer. Exposure level, i.e. light modulator (3
) There is a difficulty in precisely controlling the output light intensity of each individual device to a predetermined level.

出力光強度の制御のために別個の電気光学光変調器を使
用することが考えられるが、この電気光学光変調器は高
価なもので、これを2個使用するということは、それだ
け全体としても高価となる。
It is conceivable to use a separate electro-optic light modulator to control the output light intensity, but this electro-optic light modulator is expensive, and using two of them means that the overall It becomes expensive.

また、光学系も複雑となる。Furthermore, the optical system becomes complicated.

本発明は斯る点に鑑みてなされたもので、1個の音響光
学光変調器を用いて構成され、上述した高速なステップ
状のデジタル多値信号で光を充分変調し得、かつその出
力光強度が各個毎に精密に所定レベルに制御されるよう
にした光変調装置を提案せんとするものである。
The present invention has been made in view of this point, and is configured using one acousto-optic modulator, which can sufficiently modulate light with the above-mentioned high-speed step-like digital multilevel signal, and whose output The present invention aims to propose a light modulation device in which the light intensity is precisely controlled to a predetermined level for each individual light modulator.

以下第2図を参照しながら本発明による光変調装置の一
実施例が光記録装置に適用された場合につき説明しよう
Hereinafter, with reference to FIG. 2, a case will be described in which an embodiment of the optical modulation device according to the present invention is applied to an optical recording device.

第2図において、α乃は音響光学光変調器であシ、この
光変調器α■にはレーザー光源(6)よりレーザー光L
O(アルゴンレーザー光、ヘリウム・カドミウムレーザ
ー光)が供給される。
In Fig. 2, α is an acousto-optic light modulator, and this optical modulator α is supplied with laser light L from a laser light source (6).
O (argon laser light, helium cadmium laser light) is supplied.

また、この第2図において、θ]は、記録しようとする
情報信号SI (第3図Bに図示)が供給される端子で
ある。この情報信号SIは3個以上、本例においては 
now 、 Itljl及びパ2”の3値のデジタル信
号である。この情報信号SIは振幅変調器04、本例に
おいては平衡変調器に変調信号として供給される。この
振幅変調器α→には、高周波発振器(ハ)よル例えば1
10MHzの高周波信号がキャリア8Cとして供給され
る。
Further, in FIG. 2, θ] is a terminal to which an information signal SI to be recorded (shown in FIG. 3B) is supplied. There are three or more information signals SI, in this example,
It is a three-value digital signal of now, Itljl, and Pa2''. This information signal SI is supplied as a modulation signal to an amplitude modulator 04, a balanced modulator in this example. This amplitude modulator α→ High frequency oscillator (c) For example 1
A 10 MHz high frequency signal is supplied as carrier 8C.

この振幅変調器(14の変調特性は、例えば第4図に示
すようにされる。この振幅変調器α→は、例えば第5図
に示すような変調特性を有する振幅変調器において、印
加バイアス及び感度を調整し、第4図に示すような変調
特性を得たものである。
The modulation characteristics of this amplitude modulator (14) are as shown in FIG. 4, for example. This amplitude modulator α→ has the modulation characteristics as shown in FIG. By adjusting the sensitivity, a modulation characteristic as shown in FIG. 4 was obtained.

結局、この振幅変調器04において、発振器(ト)よシ
供給されるキャリアSCが、情報信号SIにて平衡変調
された信号SI’(第3図Cに図示)が得られる。この
信号SI’は振幅変調器0→を介して光変調器01)に
変調信号として供給される。
As a result, in this amplitude modulator 04, a signal SI' (shown in FIG. 3C) is obtained in which the carrier SC supplied by the oscillator is balanced-modulated with the information signal SI. This signal SI' is supplied as a modulation signal to the optical modulator 01) via the amplitude modulator 0→.

光変調器a■は、第6図に示すように振幅変調器C14
から振幅変調器Q時を介して供給される信号SI’を超
音波信号に変換する変換器(l1m)と、この超音波信
号を導入してレーザー光源(ハ)からのレーザー光LO
と相互干渉させ、光変調を行なわしめる媒体(1lb)
と、超音波信号を吸収して熱に変換させる吸音材(ll
c)とからなる。振幅変調器04から供給される信号S
I’は、変換器(l1m)に供給されて超音波信号に変
換される。そして、媒体(llb)の屈折率が局所的に
変化させられ、音波の波長に相当するピッチで回折格子
が形成され、ここを通過する光が回折される。
The optical modulator a is an amplitude modulator C14 as shown in FIG.
a converter (l1m) that converts the signal SI' supplied from the amplifier via the amplitude modulator Q into an ultrasonic signal;
A medium (1 lb) that causes optical modulation by mutual interference with
and a sound-absorbing material (ll) that absorbs ultrasound signals and converts them into heat.
c). Signal S supplied from amplitude modulator 04
I' is supplied to a transducer (l1m) and converted into an ultrasound signal. Then, the refractive index of the medium (llb) is locally changed, a diffraction grating is formed with a pitch corresponding to the wavelength of the sound wave, and light passing through the grating is diffracted.

この回折光線の生じ方は、音波と光波の波長及び音束の
形状によって種々あるが、その代表的なものとして例え
ばラマンナス散乱とブリリアン散乱がある。これ等ラマ
ンナス散乱とブリリアン散乱との区別は、屈折率nを有
する媒体中における光の波長20/nと音波の波長A及
び光線の進行方向(5) に伸びる音束の幅Wの大小関係によって決定される。す
なわちKlein定数Qを次式で定義すれば、Q = 
2xWλ0/nA2・・・・・・(1)ラマンナス散乱
は4π〉Q〉00間で起こシ、ブリリアン散乱はQ>4
πで起こる。
There are various ways in which this diffracted light beam is generated depending on the wavelength of the sound wave and light wave and the shape of the sound beam, and typical examples include Ramannus scattering and Brillian scattering. The distinction between Ramannus scattering and Brillouin scattering is based on the relationship between the wavelength 20/n of light in a medium with a refractive index n, the wavelength A of the sound wave, and the width W of the sound beam extending in the direction of propagation of the light beam (5). It is determined. That is, if Klein constant Q is defined by the following formula, Q =
2xWλ0/nA2... (1) Ramannus scattering occurs between 4π>Q>00, and Brilliant scattering occurs between Q>4
Happens at π.

ラマンナス散乱による回折は、正弦波分布状に作られた
回折格子からの光の散乱と類似しておシ、入射光進行方
向に直進する0次回折光を中心として、音波進行方向に
向って対称に±1次、±2次・・・等の高次回折光が発
生する。これに対して、ブリリアン散乱による回折は、
第3図に示すように、0次回折光のほかには、1次回折
光1本を生じるだけである。
Diffraction due to Ramannus scattering is similar to the scattering of light from a diffraction grating made in the shape of a sinusoidal distribution, and is symmetrical in the direction of sound wave propagation with the 0th-order diffracted light traveling straight in the direction of propagation of the incident light as the center. Higher order diffracted light such as ±1st order, ±2nd order, etc. is generated. On the other hand, diffraction due to Brilliant scattering is
As shown in FIG. 3, in addition to the 0th-order diffracted light, only one 1st-order diffracted light is generated.

いま、光変調記録を行う場合、レーザー光効率の向上を
図ることを考えると、高次の回折光を用いることは効率
劣化を伴うため不適当であシ、ブIJ IJアン散乱を
用いた方が良い。従って本例においては、光変調器0め
をブリリアン散乱を起こすような条件下で使用し、この
光変調器α力からO次回折光の他に1次回折光を生じさ
せ、この1次回折(6) 光が用いられる。
When performing optical modulation recording, it is inappropriate to use high-order diffracted light because it will degrade the efficiency when considering the aim of improving laser light efficiency. is good. Therefore, in this example, the 0th optical modulator is used under conditions that cause Brilliant scattering, and the 1st-order diffracted light is generated in addition to the O-order diffracted light from the α power of this optical modulator, and this 1st-order diffracted light (6 ) Light is used.

この1次回折光強度I、は次式で表わされる。This first-order diffraction light intensity I is expressed by the following equation.

I、=IoRsdn2(η町    (2)この(2)
式において、■oは入射光強度、Rは変貌素子の表面お
よび内部における光量の損失率、ηは次式で与えられる
値である。
I, = IoRsdn2(η town (2) this (2)
In the equation, ■o is the incident light intensity, R is the loss rate of the amount of light on the surface and inside of the transformation element, and η is a value given by the following equation.

この(3)式において、Wは音束の幅(超音波ビームの
断面幅)、hはその音束の高さく超音波ビーム断面の幅
と垂直な方向の高さ)、Psは音波入力、Meは媒体の
偏向効率性能指数である。このMaはまた次式で表わさ
れる。
In this equation (3), W is the width of the sound bundle (cross-sectional width of the ultrasound beam), h is the height of the sound bundle (height in the direction perpendicular to the width of the ultrasound beam cross-section), Ps is the sound wave input, Me is the deflection efficiency figure of merit of the medium. This Ma is also expressed by the following formula.

この(4)式において、nは媒体の屈折率、pは光弾性
定数、ρは媒体の密度、Vは音速である。このMeは光
の波長、超音波ビームの断面形状と音波入力が一定のと
き、媒体の種類による偏向強度の比較となるもので、こ
のMeの値が大きいもの程回折光が強く、もって変調効
果も大きい。
In this equation (4), n is the refractive index of the medium, p is the photoelastic constant, ρ is the density of the medium, and V is the speed of sound. This Me is used to compare the deflection intensity depending on the type of medium when the wavelength of the light, the cross-sectional shape of the ultrasonic beam, and the sound wave input are constant.The larger the value of Me, the stronger the diffracted light, resulting in a modulation effect It's also big.

以1の関係式よシ1次回折光の強度工、は音波人力P8
によって強度変調される。そして、この音波入力Psは
光変調器θ℃の変換器(lla)に供給される信号、即
ち振幅変調器04よシ振幅変調器αQを介して供給され
る信号8I’(第3図Cに図示)の振幅の大きさによっ
て決定される。従って、1次回折光の強度I、は、情報
信号SIによって強度変調されることとなる。
According to the following relational expression 1, the intensity of the first-order diffracted light is the sonic power P8
The intensity is modulated by This sound wave input Ps is a signal supplied to the converter (lla) of the optical modulator θ°C, that is, a signal 8I' (see FIG. 3C) supplied via the amplitude modulator 04 and the amplitude modulator αQ. (as shown) is determined by the magnitude of the amplitude. Therefore, the intensity I of the first-order diffracted light is modulated by the information signal SI.

光変調器01)からは以上説明したように0次回折光と
情報信号SIにより強度変調された1次回折光り、(第
3図Gに図示)とが出力される。この1次回折光り、は
光検出器a′/)にて検出される。
As explained above, the optical modulator 01) outputs the 0th-order diffracted light and the 1st-order diffracted light whose intensity is modulated by the information signal SI (shown in FIG. 3G). This first-order diffracted light is detected by a photodetector a'/).

尚、この1次回折光D1は、図示せずも光変調器0η及
び光検出器aη間に配されたビームスシリツタ(第1図
のビームスシリツタ(4)に対応)によシ、記録信号と
して取シ出され、さらに光学系を介して記録媒体に供給
される。
Note that this first-order diffracted light D1 is transmitted to a recording signal by a beam sinter (corresponding to the beam sinter (4) in FIG. 1) disposed between the optical modulator 0η and the photodetector aη (not shown). It is then taken out as a recording medium and further supplied to a recording medium via an optical system.

光検出器0りて検出された1次回折光り、は、その強度
に応じた電気信号に変換される。この電気信号は増幅器
Mで増幅された後、サンプルホールド回路α燵に供給さ
れる。このサンノルホールド回路OIには端子−よシ第
3図りに示すようなサンプルホールドPsが供給される
。このサンプルt4ルスP畠ハ上述した情報信号SI 
(第3図Bに図示)の中間レベル″1#に対応したもの
とされる。従って、このサンプルホールド回路(至)に
おいては、情報信号SIの中間レベル″1”に対応した
1次回折光り、の光強度に応じた電気信号のみがサンプ
ルされ、その値が保持される・尚、情報信号SIの中i
レベル“1”に対応した部分をサンプルするのは、この
レベル″1#の出てくる頻度が最も多いことによってい
る。この保持されている値は比較回路0!やに供給さ、
れ、端子(イ)よj出力さ、 :れる基準電圧vr6f
と比較される。この基準電圧vrofは、1次回折光り
、の光強度が記録材料の感度等を考慮した最適レベルと
なるような値に設定される。
The first-order diffracted light detected by the photodetector is converted into an electrical signal according to its intensity. After this electrical signal is amplified by an amplifier M, it is supplied to a sample and hold circuit α. This sample hold circuit OI is supplied with a sample hold Ps as shown in the third diagram across the terminal. This sample t4 Lus P Hatake is the information signal SI mentioned above.
(shown in FIG. 3B). Therefore, in this sample and hold circuit (to), the first-order diffracted light corresponding to the intermediate level "1" of the information signal SI is , only the electrical signal corresponding to the light intensity of the information signal SI is sampled and its value is held.
The reason why the part corresponding to level "1" is sampled is because this level "1#" appears most frequently. This held value is supplied to the comparator circuit 0! and
Output from terminal (A): reference voltage vr6f
compared to This reference voltage vrof is set to a value such that the light intensity of the first-order diffracted light is at an optimum level taking into consideration the sensitivity of the recording material and the like.

この比較回路な)よ)得られる比較誤差信号Seaは、
ループ利得制御回路に)及び情報信号SIと1次回折光
り、との位相ずれを補償するための位相補償回路(ハ)
を介して、振幅変調器αQに変調信号として(9) 供給される。この振幅変調器へりは平衡変調器であシ、
その変調特性は例えば第7図に示すようにされる。この
振幅変調器a→も上述した振幅変調器α→と同様に、例
えば第5図に示すような変調特性を有する振幅変調器に
おいて、印加バイアス及び感度を調整し、第7図に示す
ような変調特性を得たものである。
The comparison error signal Sea obtained by this comparison circuit is
loop gain control circuit) and a phase compensation circuit (c) for compensating for the phase shift between the information signal SI and the first-order diffracted light.
(9) is supplied as a modulation signal to the amplitude modulator αQ via This amplitude modulator edge is a balanced modulator,
Its modulation characteristics are, for example, as shown in FIG. This amplitude modulator a→ is similar to the above-mentioned amplitude modulator α→, for example, in an amplitude modulator having a modulation characteristic as shown in FIG. 5, the applied bias and sensitivity are adjusted, The modulation characteristics are obtained.

結局、この振幅変調器へ4においては、振幅変調器Q4
より供給される信号SI’(第3図Cに図示)が、比較
誤差信号Seaに基づいてさらに振幅変調される。この
ことは、光変調器α力よ〕出力される1次回折光り、が
予め定められた所定レベルとなるようにその゛光強度が
制御されることを意味する。
Eventually, in this amplitude modulator 4, the amplitude modulator Q4
The signal SI' (shown in FIG. 3C) provided by the SI' is further amplitude modulated based on the comparison error signal Sea. This means that the light intensity of the first-order diffracted light output from the optical modulator α is controlled so that it reaches a predetermined level.

ここで、光変調器αめに供給されるレーザー光LOが第
3図人に示すように変動分Δfを伴ったものであった場
合を考える。この場合、比較器(ハ)よシ得られる比較
誤差信号SCaは同図Eに示すようになシ、振幅変調器
0ゆからは同図Fに示すような信号が得られ、結果的に
、光変調器a9からは、同図Gに示すように情報信号S
Iの各個毎にその光強度が(10) 所定レベルとされた1次回折光D0が得られる。
Here, consider a case where the laser light LO supplied to the optical modulator α is accompanied by a fluctuation amount Δf as shown in FIG. In this case, the comparison error signal SCa obtained from the comparator (c) is as shown in E of the same figure, and the signal as shown in F of the same figure is obtained from the amplitude modulator 0, and as a result, From the optical modulator a9, an information signal S is output as shown in G in the same figure.
A first-order diffracted light D0 having a light intensity of (10) at a predetermined level is obtained for each of I.

以上述べた実施例からも明らかなように、本発明による
光変調装置によれば、1個の音響光学光変調器を用いて
構成され、ステップ状の3値以上のデジタル多値信号で
充分光を変調でき、かつその光強度が精密に所定レベル
に制御される。従って、上述したような光記録装置等に
用いて好適である。
As is clear from the embodiments described above, the optical modulation device according to the present invention is configured using one acousto-optic modulator, and the step-like digital multivalue signal of three or more values is sufficient to provide light. can be modulated, and its light intensity can be precisely controlled to a predetermined level. Therefore, it is suitable for use in optical recording devices such as those described above.

尚上述実施例によれば、振幅変調器04→振幅変調器(
1→→光変調器αηの順に配置されたものであるが、振
幅変調器OQ→振幅変調器Q4→光変調器αカの順に配
するようにしてもよい。また、上述実施例では、本発明
を光記録装置に適用した場合について説明したが、斯る
機能を有するその他のものにも同様に適用できることは
勿論である。
According to the above embodiment, amplitude modulator 04→amplitude modulator (
Although they are arranged in the order of 1→→optical modulator αη, they may be arranged in the order of amplitude modulator OQ→amplitude modulator Q4→optical modulator αη. Further, in the above-described embodiments, the case where the present invention is applied to an optical recording device has been described, but it goes without saying that the present invention can be similarly applied to other devices having such a function.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光記録装置Ω−例を示す構成図、第2図
は本発明による光変調装置の一実施例を示す構成図、第
3図〜第5図及び第7図は夫々第2図例の説明に供する
線図、第6図は第2図例で使用される音響光学光変調器
の具体例を示す構成図である。 0◇は音響光学光変調器、(6)はレーザー光源、04
及びαQは夫々振幅変調器、αυは高周波発振器である
。 31
FIG. 1 is a block diagram showing an example of a conventional optical recording device, FIG. 2 is a block diagram showing an embodiment of a light modulation device according to the present invention, and FIGS. 2 is a diagram for explaining the example in FIG. 2, and FIG. 6 is a configuration diagram showing a specific example of the acousto-optic modulator used in the example in FIG. 0◇ is an acousto-optic optical modulator, (6) is a laser light source, 04
and αQ are respectively amplitude modulators, and αυ is a high frequency oscillator. 31

Claims (1)

【特許請求の範囲】[Claims] 3値以上の信号でキャリアを変調する振幅変調器と、こ
の振幅変調器の出力で光を変調する音響光学光変調器と
、この音響光学光変調器の出力を電気信号に変換し基準
信号と比較する比較器と、この比較器からの比較誤差信
号で上記キャリアを変調する振幅変調器とを有してなる
光変調装置。
An amplitude modulator that modulates a carrier with a signal of three or more values, an acousto-optic modulator that modulates light with the output of this amplitude modulator, and an acousto-optic modulator that converts the output of this acousto-optic modulator into an electrical signal and uses it as a reference signal. An optical modulation device comprising a comparator for comparison and an amplitude modulator for modulating the carrier with a comparison error signal from the comparator.
JP57102697A 1982-06-15 1982-06-15 Light modulator Expired - Lifetime JPH0724113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57102697A JPH0724113B2 (en) 1982-06-15 1982-06-15 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57102697A JPH0724113B2 (en) 1982-06-15 1982-06-15 Light modulator

Publications (2)

Publication Number Publication Date
JPS58220254A true JPS58220254A (en) 1983-12-21
JPH0724113B2 JPH0724113B2 (en) 1995-03-15

Family

ID=14334445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57102697A Expired - Lifetime JPH0724113B2 (en) 1982-06-15 1982-06-15 Light modulator

Country Status (1)

Country Link
JP (1) JPH0724113B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543996A (en) * 1977-06-10 1979-01-12 Toshiba Corp Laser working apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543996A (en) * 1977-06-10 1979-01-12 Toshiba Corp Laser working apparatus

Also Published As

Publication number Publication date
JPH0724113B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
US4847521A (en) Device for the amplification of light-sensitive
US4162398A (en) Bias control circuit for light modulators
US4616356A (en) Aperture compensation signal processor for optical recording
EP0415289B1 (en) Cutting apparatus for an optical disc
JPH0554184B2 (en)
CA1183948A (en) Light modulating apparatus
GB1529954A (en) Optically readable records and reading apparatus therefor
JPH01263953A (en) Optical system recorder
JPS6215932B2 (en)
JPS6032264B2 (en) optical reproduction device
JPH11237829A (en) Method and device for optical recording and optical reading
JPS58220254A (en) Optical modulator
US5461602A (en) Optical recording and reproducing method and apparatus using light beams of two different wavelenghts
JPH0580056B2 (en)
KR0168456B1 (en) Magneto-optical device
JPS5917527A (en) Bias controller of optical modulator
JPS6128173B2 (en)
JPS598144A (en) Optical information reader
US5706263A (en) Method and apparatus for high-density reproduction
JPH03114020A (en) Optical recorder
JPS6022738A (en) Optical disk
US5146444A (en) Servo control loop
KR800000203B1 (en) Linear method of optically recording a video of other signal
SU1229813A2 (en) Device for optical recording of transversal sound track
KR800000202B1 (en) Linear method of optically recording a video or other signal