JPS6128173B2 - - Google Patents

Info

Publication number
JPS6128173B2
JPS6128173B2 JP51036835A JP3683576A JPS6128173B2 JP S6128173 B2 JPS6128173 B2 JP S6128173B2 JP 51036835 A JP51036835 A JP 51036835A JP 3683576 A JP3683576 A JP 3683576A JP S6128173 B2 JPS6128173 B2 JP S6128173B2
Authority
JP
Japan
Prior art keywords
light
intensity
zero
signal
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51036835A
Other languages
Japanese (ja)
Other versions
JPS52119952A (en
Inventor
Takeshi Goshima
Kazuya Matsumoto
Kyonobu Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3683576A priority Critical patent/JPS52119952A/en
Publication of JPS52119952A publication Critical patent/JPS52119952A/en
Publication of JPS6128173B2 publication Critical patent/JPS6128173B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Fax Reproducing Arrangements (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

【発明の詳細な説明】 本発明は音響光学効果を利用した光変調器を使
用し信号の記録を行う信号記録方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a signal recording method for recording signals using an optical modulator that utilizes an acousto-optic effect.

音響光学効果を利用した光変調器(以後AO素
子と呼ぶ)は音波によつて媒質中に屈折率の変動
が生じる光弾性効果を利用したもので、媒質中を
超音波が通過すると媒質中に圧縮伸張が生じ、時
間的に変動する屈折率の周期的な層によつて光の
屈折又は回折が起る事により光変調を行うもので
ある。
Optical modulators that utilize the acousto-optic effect (hereinafter referred to as AO elements) utilize the photoelastic effect in which the refractive index changes in a medium due to sound waves. Compression and expansion occur, and light is modulated by refraction or diffraction of light due to periodic layers with a temporally varying refractive index.

第1図A,BはAO素子の働きを示す為の原理
図である。第1図A,Bに於いて高周波発振器1
からの高周波信号は、AO素子3に固設された圧
電素子の如き物質から成るトランス・ジユーサー
2に入力する。トランスジユーサー2は発振器1
からの高周波信号に対応する超音波を発生しこの
超音波はAO素子3内を矢印A方向に伝幡し、前
記トランスジユーサー2に対向するAO素子の端
面に設けられたアブソーバー4により吸収され
る。AO素子3は超音波が伝幡する際、超音波の
周波数に対応する屈折率の層が生じこの層が一種
の位相回折格子としての働きを行なう。AO素子
3内に斯様な超音波が伝幡し、AO素子内の或る
領域が他の領域と異なる屈折率の層を形成してい
る状態の時に、光束がAO素子に入射すると光束
は一部回折作用を受け、AO素子から出射する光
束は回折作用を受けない零次の光束と回折光束と
に分れる。
FIGS. 1A and 1B are principle diagrams showing the function of the AO element. In Fig. 1A and B, high frequency oscillator 1
The high frequency signal from the AO element 3 is input to a transformer 2 made of a material such as a piezoelectric element fixed to the AO element 3. Transducer 2 is oscillator 1
generates an ultrasonic wave corresponding to a high frequency signal from the AO element 3, and this ultrasonic wave propagates in the direction of arrow A within the AO element 3, and is absorbed by an absorber 4 provided on the end face of the AO element facing the transducer 2. Ru. In the AO element 3, when an ultrasonic wave propagates, a layer having a refractive index corresponding to the frequency of the ultrasonic wave is generated, and this layer functions as a kind of phase diffraction grating. When such an ultrasonic wave propagates within the AO element 3 and a certain region within the AO element forms a layer with a different refractive index than other regions, when a light beam enters the AO element, the light beam becomes Partly affected by diffraction, the light flux emitted from the AO element is divided into a zero-order light flux that is not affected by diffraction and a diffracted light flux.

トランスジユーサー2の幅をW、AO素子3に
入射する光の波長をλ、AO素子内を伝幡する超
音波の周波数をf、AO素子の屈折率n、AO素
子内での音速をνとし Q=2πWλ/Nν なる値を定義する。AO素子3内での光束の回折
状態はQの値がO<Q<πでは第1図Aに示す如
く、AO素子3に入射する光束5は素子3を出射
後零次の回折光6、+1次の回折光7、−1次の回
折光7′、+2次の回折光8、−2次の回折光8′,
……に分離する所謂ラマンナス回折となる。又、
4π<Qでは第1図Bに示す如くAO素子3に入
射する光束9は素子3を出射後零次光10と1次
折光11に分離する所謂ブラツク回折となる。第
1図A,Bに示す各々のタイプのAO素子は使用
目的により使い分けられるが、以後本明細書に於
いては第1図Bに示したタイプのAO素子を例示
して説明を行なう。
The width of the transducer 2 is W, the wavelength of the light incident on the AO element 3 is λ, the frequency of the ultrasonic wave propagating inside the AO element is f, the refractive index of the AO element is n, and the sound speed inside the AO element is ν. Then, define the value Q=2πWλ 0 f 2 /Nν 2 . When the value of Q is O<Q<π, the diffraction state of the light beam within the AO element 3 is as shown in FIG. +1st order diffracted light 7, -1st order diffracted light 7', +2nd order diffracted light 8, -2nd order diffracted light 8',
This is the so-called Ramannus diffraction, which separates into... or,
When 4.pi. Although each type of AO element shown in FIGS. 1A and 1B can be used depending on the purpose of use, hereinafter, in this specification, the AO element of the type shown in FIG. 1B will be exemplified and explained.

従来上記AO素子を用いた情報記録装置にはフ
アクシミリ又はレーザビームプリンターが知られ
ている。フアクシミリ又はレーザービームプリン
ターは書込みの際明瞭なコントラストが要求され
るのでAO素子から射出される回折光を用いて記
録していた。即ちAO素子から射出される回折光
は、AO素子に固設されたトランスジユーサーに
印加する高周波信号の強さにより変わる事を利用
すると、AO素子に高周波信号をかけない場合は
回折光の強度を零とすることができ、変調した回
折光の明暗の比、即ち消光比が非常に大きく取れ
コントラストの高い像が得られる。
Conventionally, facsimiles and laser beam printers are known as information recording devices using the above-mentioned AO elements. Facsimile or laser beam printers require clear contrast when writing, so they record using diffracted light emitted from an AO element. In other words, if we take advantage of the fact that the diffracted light emitted from the AO element changes depending on the intensity of the high-frequency signal applied to the transducer fixed to the AO element, the intensity of the diffracted light will change when no high-frequency signal is applied to the AO element. can be made zero, and the ratio of brightness and darkness of the modulated diffracted light, that is, the extinction ratio, can be made very large, and an image with high contrast can be obtained.

AO素子に於いては、第1図Bに示す如く入射
光束9がAO素子3中の屈折率層により回折を受
け零次の光10と回折光11とに分れるので、当
然のことではあるが回折光11が生ずるに従い零
次の光10の強度は変化する。回折光11の強度
は屈折率の層が持つ回折効率に依存しており、最
大でも通常入射光9の強度に対して60%程度のも
のであり、従つて回折光11が一番強くなつても
零次光10は入射光9の強度に対して約30%の強
度を持つ。換言すれば、AO素子から射出される
零次の回折光の強度は最も弱い場合でもAO素子
に入射する光束の強度に対して約30%の強さを有
する。第2図は上記回折光11と零次光10の強
度の関係を説明する為の図であり、縦軸に強度
I、横軸に時間tが示されている。第2図Aは回
折光の強度、第2図Bは零次光の強度を示す。回
折光11が生じない時間t0〜t1,t2〜t3は零次光1
0の強度は入射光9の強度1に等しい。但しこの
場合AO素子内での光強度の損失は無視してい
る。回折光11が生じるt1〜t2,t3〜t4では零次光
10の強度は入射光9の強度に対し、回折光11
の強度分だけ減小する。従つて零次光の消光比は
前述した如く回折光の消光比と比較すれば小さい
が、零次光も回折光と同様に高周波信号で変調さ
れている。
In the AO element, as shown in FIG. 1B, the incident light beam 9 is diffracted by the refractive index layer in the AO element 3 and split into zero-order light 10 and diffracted light 11, so this is natural. However, as the diffracted light 11 is generated, the intensity of the zero-order light 10 changes. The intensity of the diffracted light 11 depends on the diffraction efficiency of the refractive index layer, and is at most about 60% of the intensity of the normal incident light 9, so the diffracted light 11 is the strongest. The zero-order light 10 also has an intensity of about 30% of the intensity of the incident light 9. In other words, the intensity of the zero-order diffracted light emitted from the AO element is about 30% of the intensity of the light beam incident on the AO element, even at its weakest. FIG. 2 is a diagram for explaining the relationship between the intensity of the diffracted light 11 and the zero-order light 10, in which the vertical axis shows the intensity I and the horizontal axis shows the time t. FIG. 2A shows the intensity of diffracted light, and FIG. 2B shows the intensity of zero-order light. The time t 0 to t 1 and t 2 to t 3 during which the diffracted light 11 does not occur is the zero-order light 1
An intensity of 0 is equal to an intensity of 1 of the incident light 9. However, in this case, the loss of light intensity within the AO element is ignored. At t 1 to t 2 and t 3 to t 4 where the diffracted light 11 occurs, the intensity of the zero-order light 10 is higher than that of the incident light 9.
is reduced by the intensity of . Therefore, as described above, the extinction ratio of the zero-order light is small compared to that of the diffracted light, but the zero-order light is also modulated by a high-frequency signal like the diffracted light.

本発明は消光比が小さい為に従来用いられなか
つたAO素子からの零次光を有効に信号記録用光
束として用いるものである。この零次光を用いれ
ば零次光は回折光と異なりAO素子に入射する光
束と同一方向に進行するので、AO素子を含んだ
光学系のアライメントを容易にする。更に上述し
た如く回折光は消光比を得る為にその強度を零と
或る値の二段階で使用しているが、零次光はその
強度が最小の場合にも上述した如くある水準の強
度を有している。従つて零次光を用いる信号記録
方法は常に零次光内に含まれるこの最小の強度の
光束をバイアス光とし、このバイアス光に変調信
号による光束を付加できるものであり、この記録
方法は特にビデイオデイスク等の信号記録に適す
るものである。更に零次光を利用することにより
AO素子に入射する光束の光量の損失は回折光を
微少な量に押えればAO素子内で吸収される程度
に押えられるので、有効に光束を利用できるもの
である。
The present invention effectively uses zero-order light from an AO element, which has not been used conventionally due to its small extinction ratio, as a signal recording light beam. If this zero-order light is used, unlike diffracted light, the zero-order light travels in the same direction as the light beam incident on the AO element, which facilitates alignment of the optical system including the AO element. Furthermore, as mentioned above, diffracted light uses its intensity in two stages, zero and a certain value, to obtain the extinction ratio, but zero-order light has a certain level of intensity as mentioned above even when its intensity is the minimum. have. Therefore, a signal recording method using zero-order light always uses the light flux of the minimum intensity contained in the zero-order light as bias light, and a light flux by a modulation signal can be added to this bias light. It is suitable for recording signals on video discs, etc. Furthermore, by using zero-order light
The loss in the amount of light beam incident on the AO element can be suppressed to the extent that it is absorbed within the AO element by reducing the amount of diffracted light to a minute amount, so that the light beam can be used effectively.

第3図は本発明に係るAO素子の零次光を用い
た信号記録装置の一実施例を示す図である。第3
図に示す如く、レーザー等の光源15から発せら
れたビーム16はAO変調素子17で上述した如
く零次光18と回折光19は分けられる。信号源
20からの記録すべき電気信号は高周波発生器2
1により電圧が変調された高周波信号に変換さ
れ、AO素子17に固設されたトランスジユーサ
ーに入力し超音波を発生させる。該超音波はAO
素子内を伝幡し、AO素子内の屈折率か他の部分
と異なる層を形成し、前記ビーム16を回折させ
る。前記高周波信号の強さは信号源20からの記
録信号により変化させられるので、トランスジユ
ーサーにより生ずる超音波の強さは記録信号の強
度に伴つて変化する。従つてAO素子17から出
射する零次光18又は回折光19は記録信号に応
じて強度変調される。
FIG. 3 is a diagram showing an embodiment of a signal recording device using zero-order light of an AO element according to the present invention. Third
As shown in the figure, a beam 16 emitted from a light source 15 such as a laser is separated into zero-order light 18 and diffracted light 19 by an AO modulation element 17 as described above. The electrical signal to be recorded from the signal source 20 is transmitted to the high frequency generator 2
1 converts the voltage into a modulated high frequency signal, which is input to a transducer fixed to the AO element 17 to generate ultrasonic waves. The ultrasound is AO
The beam 16 is propagated through the element, forming a layer with a different refractive index than the rest of the AO element, and diffracting the beam 16. Since the strength of the high frequency signal is varied by the recording signal from the signal source 20, the strength of the ultrasound generated by the transducer varies with the strength of the recording signal. Therefore, the zero-order light 18 or the diffracted light 19 emitted from the AO element 17 is intensity-modulated according to the recording signal.

回折光19は反射ミラー22で反射され光検出
器23で受光し、光検出器23からの信号をモニ
ターすることにより変調信号をモニターすること
ができる。零次光18は例えばビームエクスパン
ダーの如き光学系24を通過し、適当な空間的強
度分布を持つビーム25に変換された後記録ヘツ
ド26内に入る。前記ビーム25は記録ヘツド内
のミラー27により下方に反射され、レンズマウ
ント28に内蔵されたレンズ29により記録材3
0上に集光する。前記レンズマウント28はバネ
31を介して記録ヘツド26に取り付けられてお
り、パイプ32を通してノズル33から記録材3
0に噴射する例えば、空気の様な気体により浮上
し、常にビーム25が記録材30上に結像する様
に調整されている。記録材30はモーター34に
より回転駆動されていて、又記録ヘツド26はガ
イド棒35でガイドされながら矢印Bの方向へ送
られる。従つて記録材30上には同心円或いは螺
線状に信号が記録されるものである。
The diffracted light 19 is reflected by the reflecting mirror 22 and received by the photodetector 23, and by monitoring the signal from the photodetector 23, the modulation signal can be monitored. The zero-order light 18 passes through an optical system 24, such as a beam expander, and is converted into a beam 25 with a suitable spatial intensity distribution before entering the recording head 26. The beam 25 is reflected downward by a mirror 27 in the recording head, and is reflected by a lens 29 built into a lens mount 28 onto the recording material 3.
Focus the light on 0. The lens mount 28 is attached to the recording head 26 via a spring 31, and the recording material 3 is passed through a pipe 32 from a nozzle 33.
For example, the beam 25 is adjusted so that it is floated by a gas such as air, and the beam 25 always forms an image on the recording material 30. The recording material 30 is rotationally driven by a motor 34, and the recording head 26 is sent in the direction of arrow B while being guided by a guide rod 35. Therefore, signals are recorded on the recording material 30 in a concentric circle or a spiral shape.

第4図Aは第3図に示した信号源20からの電
気信号の一実施例を示すもので縦軸に電圧、横軸
に時間が示されている。第4図Aに示す信号は例
えばテレビ信号をFM変調し、矩形波に成形した
波形の様なものである。第4図Bは第4図Aに示
した信号に対する零次光18の強度の変化を示す
ものであり、縦軸に強度、横軸に時間を取つてい
る。第4図Bに示す如く零次光は最大の時I1の強
度を持ち、弱い時でも或る一定の強度I2を持つて
いる。前記記録材30が例えばポジタイプのフオ
トレジストの如き記録材であるとし、第4図Bに
示す様な強度のビームで記録すれば、フオトレジ
ストに記録された信号の形状は第5図に示す如
く、光が照射されない場所40は全く掘られず、
強度I1で照射された場所41は深く掘られ、強度
Iで照射された場所42は浅く掘られる。第5図
に示す如き、フオトレジスト上に記録された信号
形状は例えばビデイオ・デイスクの一つの再生法
である針を使用して再生する場合には非常に都合
よい。即ち非照明部40が針の誘導を行ない前記
零次光により照射され掘られた場所41及び42
が0又は1の信号に対応するからである。
FIG. 4A shows an example of the electrical signal from the signal source 20 shown in FIG. 3, in which the vertical axis represents voltage and the horizontal axis represents time. The signal shown in FIG. 4A is, for example, a waveform obtained by FM modulating a television signal and shaping it into a rectangular wave. FIG. 4B shows changes in the intensity of the zero-order light 18 with respect to the signal shown in FIG. 4A, with the vertical axis representing the intensity and the horizontal axis representing time. As shown in FIG. 4B, the zero-order light has an intensity of I 1 when it is maximum, and has a certain intensity I 2 even when it is weak. Assuming that the recording material 30 is a recording material such as a positive type photoresist, and recording is performed with a beam having an intensity as shown in FIG. 4B, the shape of the signal recorded on the photoresist will be as shown in FIG. 5. , the place 40 where no light is irradiated is not dug at all,
Locations 41 irradiated with intensity I 1 are dug deeply, and locations 42 irradiated with intensity I are dug shallowly. The signal shape recorded on the photoresist, as shown in FIG. 5, is very convenient for reproduction using a stylus, which is one method of reproducing video discs, for example. In other words, the non-illuminated portion 40 guides the needle to illuminate and excavate locations 41 and 42 with the zero-order light.
This is because it corresponds to a signal of 0 or 1.

以上、本発明に於いては従来消光比が小さい為
に用いられなかつたAO素子からの零次光を、逆
にその特徴を利用して信号記録用の光束に用いた
もので書き込み光学系のアライメントが容易で、
光量の損失が少なく、しかも或る一定のバイアス
光の上に変調信号に対応する強度の光束を乗せる
ことができるものであり、例えば0,1の2段階
の信号で記録する様なビデイオデスクの書込み等
に特に優れた効果を有するものである。
As described above, in the present invention, the zero-order light from the AO element, which was conventionally not used due to its small extinction ratio, is used as a light beam for signal recording by taking advantage of its characteristics, and is used in the writing optical system. Easy alignment;
It has a low loss of light quantity and can add a light flux of intensity corresponding to a modulation signal on top of a certain bias light. For example, it is used for writing on a video desk that records with a two-level signal of 0 and 1. It has particularly excellent effects on, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,BはAO素子を説明する為の図で、
第1図Aはラマンナス回折の場合、第1図Bはブ
ラツク回折の場合を示す。第2図A,BはAO素
子内でブラツク回折された回折光の強度と零次光
の強度を説明する為の図で、第2図Aは回折光の
強度第2図Bは零次光の強度を示す。第3図は本
発明の方法を用いた記録装置の構成例を示す図、
第4図A,Bは本発明に係る変調信号と零次光の
強度を説明する為の図、第5図は本発明により記
録された状態の一実施例を示す図。 2……トランスジユーサー、3……AO素子、
6,10……零次光、7,7′,8,8′,11…
…回折光。
Figures 1A and 1B are diagrams for explaining the AO element.
FIG. 1A shows the case of Ramannus diffraction, and FIG. 1B shows the case of black diffraction. Figures 2A and 2B are diagrams for explaining the intensity of the diffracted light and the zero-order light that are black diffracted within the AO element. Figure 2A is the intensity of the diffracted light, and Figure 2B is the zero-order light. Indicates the strength of FIG. 3 is a diagram showing an example of the configuration of a recording device using the method of the present invention;
4A and 4B are diagrams for explaining the modulation signal and the intensity of zero-order light according to the present invention, and FIG. 5 is a diagram showing an example of a state recorded according to the present invention. 2...Transducer, 3...AO element,
6, 10...Zero-order light, 7, 7', 8, 8', 11...
...Diffracted light.

Claims (1)

【特許請求の範囲】[Claims] 1 音響光学効果により光の強度を変調する変調
器を設け、該変調器から発せられる零次光を光強
度に応じて形状が変化する記録材に照射し、前記
零次光に含まれるバイアス光によつて再生時の誘
導の為の記録を行ない、このバイアス光に付加さ
れた変調光束によつて記録信号の記録を行なう音
響光学的変調器を用いた信号記録方法。
1. A modulator that modulates the intensity of light by an acousto-optic effect is provided, and the zero-order light emitted from the modulator is irradiated onto a recording material whose shape changes depending on the light intensity, and the bias light contained in the zero-order light is A signal recording method using an acousto-optic modulator, in which recording is performed for guidance during playback using an acousto-optic modulator, and a recording signal is recorded using a modulated light beam added to this bias light.
JP3683576A 1976-04-02 1976-04-02 Signal recorder using acousto/optic light modulator Granted JPS52119952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3683576A JPS52119952A (en) 1976-04-02 1976-04-02 Signal recorder using acousto/optic light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3683576A JPS52119952A (en) 1976-04-02 1976-04-02 Signal recorder using acousto/optic light modulator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61037755A Division JPS61198443A (en) 1986-02-21 1986-02-21 Signal recorder using acoustooptic optical modulator

Publications (2)

Publication Number Publication Date
JPS52119952A JPS52119952A (en) 1977-10-07
JPS6128173B2 true JPS6128173B2 (en) 1986-06-28

Family

ID=12480792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3683576A Granted JPS52119952A (en) 1976-04-02 1976-04-02 Signal recorder using acousto/optic light modulator

Country Status (1)

Country Link
JP (1) JPS52119952A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157718A (en) * 1979-05-29 1980-12-08 Nec Corp Laser recorder
FR2462758A1 (en) * 1979-08-03 1981-02-13 Thomson Csf OPTICAL DEVICE FOR ACCESSING A TRACK RUN BY AN INFORMATION CARRIER AND OPTICAL MEMORY SYSTEM COMPRISING SUCH A DEVICE
CA1159150A (en) * 1980-10-20 1983-12-20 Richard L. Wilkinson Video recorder-playback machine
JPH03154238A (en) * 1989-11-10 1991-07-02 Pioneer Electron Corp Laser beam power controller in optical disk cutting device

Also Published As

Publication number Publication date
JPS52119952A (en) 1977-10-07

Similar Documents

Publication Publication Date Title
GB1506966A (en) Method of and apparatus for optically producing a reproducible recording
GB1489756A (en) Optical recording
US5157650A (en) Optical recording apparatus
GB1529954A (en) Optically readable records and reading apparatus therefor
EP0360122B1 (en) Second harmonic generator and information processing system using the same
US3770886A (en) One dimensional holographic recording of electrical signals
JPS5862630A (en) Optical modulating device
JPS647327A (en) Method and apparatus for optical information recording
JPS6128173B2 (en)
JPH0547897B2 (en)
JPS61198443A (en) Signal recorder using acoustooptic optical modulator
JPH04265534A (en) Optical waveguide recording medium reproducing device
US5461602A (en) Optical recording and reproducing method and apparatus using light beams of two different wavelenghts
JPH0451892B2 (en)
KR100230226B1 (en) Light beam modulation method and recording and reproducing optical pickup thereof
US5706263A (en) Method and apparatus for high-density reproduction
JP2600704B2 (en) Optical recording / reproducing device
JP3169025B2 (en) Image playback method
JPH05273486A (en) Optical modulator
JPS5987427A (en) Integrated optical device
JPH05242551A (en) Optical disk device
JP3189242B2 (en) Information reproducing method and apparatus
JPS582420B2 (en) Shingoukirokuhoushiki
JPS58208949A (en) Optical modulating device
JPH0724113B2 (en) Light modulator