JPS58219421A - Vortex flowmeter - Google Patents

Vortex flowmeter

Info

Publication number
JPS58219421A
JPS58219421A JP57103246A JP10324682A JPS58219421A JP S58219421 A JPS58219421 A JP S58219421A JP 57103246 A JP57103246 A JP 57103246A JP 10324682 A JP10324682 A JP 10324682A JP S58219421 A JPS58219421 A JP S58219421A
Authority
JP
Japan
Prior art keywords
vortex
width
flow rate
vortex generator
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57103246A
Other languages
Japanese (ja)
Inventor
Hideo Uematsu
英夫 植松
Takashi Tanahashi
隆 棚橋
Yoshiyuki Yokoajiro
義幸 横網代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57103246A priority Critical patent/JPS58219421A/en
Publication of JPS58219421A publication Critical patent/JPS58219421A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To make the lower limit of a measurable flow rate small, to control a pressure loss to a value lower than a reference value, and to expand range ability, by providing a width varying mechanism, which variably controls the width of a vortex generating body. CONSTITUTION:A vortex generating body 2, which is provided in a pipe 1, is constituted by a fixed part 2a and a variable width part 2b. A width detecting means 5 outputs an electric signal corresponding to the width size of the vortex generating body 2. A pressure detector 6 detects the pressure difference between the upstream and downstream of the vortex generating body 2. An electric control circuit 7 compares the electric signal from the pressure detector 6 and the electric signal from a reference pressure setter 8 and imparts the deviation signal to a width varying mechanism 4. A vortex generating frequency signal from a vortex detecting means 3 and the signal from the width detecting means 5 are inputted to a flow rate operating device 9, thereby computing the flow rate.

Description

【発明の詳細な説明】 本発明は、流動する流体中に置かれた渦発生体の後方に
、左右交互に周期的に発生するカルマン渦を利用して、
流体の流量を計測する渦流置割に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes Karman vortices that are periodically generated alternately left and right behind a vortex generator placed in a flowing fluid.
This relates to a vortex device that measures the flow rate of fluid.

カルマン渦流量計の動作原理は、衆知の如く、広いレイ
ノルで数の範囲において、渦の発生周波数fが、流速U
に直線的に比例することを応用したものである。すなわ
ち f = St−・・・・・・・・・(1)但し、St 
i  ストロ−・−ル数(比例定数)d; 渦発生体の
巾 が成立する。
The operating principle of the Karman vortex flowmeter is, as is well known, that within a wide Reynolds number range, the vortex generation frequency f is equal to the flow velocity U.
This is an application of the fact that it is linearly proportional to . That is, f = St-... (1) However, St
i Stroll number (proportionality constant) d; The width of the vortex generator is established.

一方管路を流れる流量をQとすると、流量Qは流速Uに
比例するので、(1)式で、ストロノ・−ル数St と
、渦発生体の巾dが一定であれば、流量Qは渦の発生周
波数fに比例することに々るすなわち Q=に、f        ・・・・・・・・・(2)
が成立する。但し、kは、ストロバール数、管路断面積
、渦発生体設置部のイ11積絞り率、渦発生体中等から
決定される比例定数。す々わち、渦流量計は、(2)式
から明らかのように、渦発生周波数に周期的に発生する
カルマン渦の発生周波数fを検知割数することにより体
積流量を計るものである。
On the other hand, if the flow rate flowing through the pipe is Q, then the flow rate Q is proportional to the flow velocity U, so in equation (1), if the stronor number St and the width d of the vortex generator are constant, the flow rate Q is It is often proportional to the vortex generation frequency f, that is, Q=, f... (2)
holds true. However, k is a proportionality constant determined from the Strovall number, the pipe cross-sectional area, the volume reduction ratio of the vortex generator installation part, the vortex generator, etc. In other words, the vortex flowmeter measures the volumetric flow rate by dividing the frequency f of the Karman vortex, which occurs periodically, into the vortex generation frequency, as is clear from equation (2).

従来、この種の流量計は、 (1)レンジアビリティが広い。Conventionally, this type of flowmeter is (1) Wide range ability.

(2)圧損が他の流量計と比較して小さい。(2) Pressure drop is small compared to other flowmeters.

(3)精度がフルスケールに対してではなく指示値(又
は読み)のパーセントで表現できるのでオリフィス流量
計と比べると特に低流量域において高精度である。
(3) Since the accuracy can be expressed as a percentage of the indicated value (or reading) rather than the full scale, it is more accurate than an orifice flowmeter, especially in the low flow rate range.

(4)その他、出力がデジタル出力であり、コンピュー
タ入力に適した信号が得られる。さらに機械的可動部が
なく構造が単純である。
(4) In addition, the output is a digital output, and a signal suitable for computer input can be obtained. Furthermore, there are no mechanically moving parts and the structure is simple.

等の数多くの特徴を有している為に主として大流量(例
えば常圧大気圧の場合は50mンh〜600m′//h
位)の工業用計測器として用いられてきた。
Because it has many characteristics such as
It has been used as an industrial measuring instrument.

最近この種の流量計の民生機器分野への応用化が進めら
れているが、この場合の要求性能は厳しく工業用計測器
の場合と比較して、更にレンジアビリティが広く、かつ
より低圧損であることが求められている。
Recently, this type of flowmeter has been applied to the field of consumer equipment, but the required performance in this case is stricter than that of industrial measuring instruments, with wider rangeability and lower pressure drop. Something is required.

ところで、この種の流量計の測定可能々最低流量はレイ
ノルで数と渦発生周波数fを検知するセンサ感度から決
定される。そして一般的にはセンサ感度の点からレイノ
ルズ数Re の下限値が決まり渦発生体近傍の流速をU
渦発生体の巾をd1流体の動粘性係数をνとしたときの
レインズ数の下限値は2000前後の値である。
Incidentally, the minimum measurable flow rate of this type of flowmeter is determined from the Reynolds number and the sensor sensitivity for detecting the vortex generation frequency f. Generally speaking, the lower limit of the Reynolds number Re is determined from the viewpoint of sensor sensitivity, and the flow velocity near the vortex generator is determined by U.
When the width of the vortex generating body is d1 and the kinematic viscosity coefficient of the fluid is ν, the lower limit value of the Raines number is around 2000.

寸だ、渦発生体の巾dの管路径りに対する比率は、渦の
規則性、及び安定性等の点からはソ一定の範囲にあり、
一般的には の関係にある。そして、それは、工業用計測器の場合と
比較して、測定可能な流量下限値がより小さな値として
要求されている民生用機器分野においても原理的に同一
である。
The ratio of the width d of the vortex generator to the pipe diameter is within a certain range from the viewpoint of vortex regularity and stability.
In general, there is a relationship between The principle is the same in the field of consumer equipment, where the lower limit of measurable flow rate is required to be smaller than in the case of industrial measuring instruments.

5べ、−一・ 一方、圧力損失を△p(以下本発明では△pを圧力差と
呼ぶ場合もある)流体の比重量をγとすると、 △pIlx:γU      ・・・・・・・・・(5
)の関係にある。
5be, -1. On the other hand, if the pressure loss is △p (hereinafter in the present invention, △p may be referred to as pressure difference) and the specific weight of the fluid is γ, then △pIlx:γU ・・・・・・・・・・・・・(5
).

しだがって、以上、(3L (4)、 (5)式から明
らかのように、一定寸法の管路径りに対して、渦発生体
の巾dが大きいほど、流速Uが犬になるので低流量感度
が増加し、つまり、測定可能な流量下限値が小さくなる
が、一方流量が増加するに従がい圧損が増え、したがっ
て、レンジアビリティが制限されるという問題があった
Therefore, (3L) As is clear from equations (4) and (5), the larger the width d of the vortex generator for a given pipe diameter, the smaller the flow velocity U becomes. The low flow rate sensitivity increases, that is, the measurable lower limit of the flow rate becomes smaller, but as the flow rate increases, the pressure drop increases, and therefore, there is a problem that rangeability is limited.

また逆に、渦発生体の巾dを小さくすると、センサ感度
が低下し大流量域の方へ測定可能範囲が相対的にづれる
ので、測定可能な流量下限値が大きくなるという問題が
あった。
On the other hand, if the width d of the vortex generator is made smaller, the sensor sensitivity will decrease and the measurable range will be relatively shifted toward the high flow rate region, resulting in the problem that the lower limit of the measurable flow rate will become larger. .

本発明は」二記従来の欠点を解消するもので、測定可能
な流量下限値を小さくすると共に、圧損をあらかじめ定
められた基準値以下に制御し、かつレンジアビリティの
拡大をはかることを目的とす6  、+8 :+ るものである。
The present invention solves the two conventional drawbacks, and aims to reduce the lower limit of measurable flow rate, control pressure drop below a predetermined reference value, and expand rangeability. 6, +8:+.

この目的を達成するために、本発明は渦流量計において
、渦発生体の巾を可変できる巾可変機構部と、この巾を
検出する巾検出手段と前記渦発生体の上流と下流の圧力
差を検知する圧力検出器を備え、この圧力検出器の圧力
差がはソ一定になるように前記巾可変機構部を制御する
電気制御回路を有し、渦検出手段の渦発生周波数信号と
、前記巾検出手段の出力信号により、流量を演算する流
量演算器を具備したものである。
In order to achieve this object, the present invention provides a vortex flow meter including a width variable mechanism section that can vary the width of a vortex generator, a width detection means for detecting this width, and a pressure difference between the upstream and downstream sides of the vortex generator. It has a pressure detector that detects the vortex generation frequency signal of the vortex detection means, and an electric control circuit that controls the width variable mechanism so that the pressure difference of the pressure detector is constant. It is equipped with a flow rate calculator that calculates the flow rate based on the output signal of the width detection means.

この構成によって、低流量域から大流量域まであるいは
犬流計域から低流量域へ計測点が変化しても、渦発生体
の上流と下流の圧力差を検知する圧力検知器の信号と基
準値との偏差信号により巾可変機構部は圧力差を一定に
保つように作動する。
With this configuration, even if the measurement point changes from a low flow rate area to a high flow rate area or from a dog flow meter area to a low flow rate area, the signal and reference of the pressure detector that detects the pressure difference between the upstream and downstream of the vortex generator and the standard The width variable mechanism section operates to keep the pressure difference constant based on the deviation signal from the value.

すなわち渦発生体はその巾が小さく々る方へまだは大き
くなる方へ自動的に可変制御される。したがってこのこ
とにより測定可変な流量下限値を小さくできると共に、
圧損が基準値以下で、しかもレンジアビリティの広い計
測が可能に々る。
In other words, the width of the vortex generating body is automatically variably controlled so that it becomes smaller or larger. Therefore, this makes it possible to reduce the lower limit of the flow rate that can be measured, and
The pressure drop is below the standard value, and measurement with a wide range of capabilities is possible.

7 、 以下、本発明の一実施例を第1図から第4図を用いて説
明する。
7. Hereinafter, one embodiment of the present invention will be described using FIGS. 1 to 4.

第1図及び第2図において1は被測定流体を流す管路、
2は三角柱状の渦発生体で、固定部2aと、可変中部2
bから構成されている。3は超音波式の渦検出手段、4
は、渦発生体2の可変中部2bを無段階に可変制御する
だめの、モータ、歯車、カム等から成る巾可変機構部、
5は、無段階に可変制御され、る渦発生体2の巾寸法に
対応した電気信号に発生するポテンショメータ等の巾検
出手段、6は、渦発生体2の上流と下流の圧力差を検出
する圧力検出器で6&は圧力検出器11目]、6bは圧
力導管である。そして、7Il−1:、圧力検出器6の
電気信号を、基準圧力設定器8からの電気信号と比較し
、その偏差信号をモータ等から成る4の1〕可変機構部
へ与える電気制御回路である。9は渦検出手段3からの
渦発生周波数信号とこのとき設定されている渦発生体2
の巾を検出する巾検出手段5からの信号を受けて作動す
る流量演算器そして10はカルマン渦である。
In FIGS. 1 and 2, 1 is a pipe through which the fluid to be measured flows;
2 is a triangular prism-shaped vortex generator, which includes a fixed part 2a and a variable middle part 2.
It is composed of b. 3 is an ultrasonic vortex detection means; 4
is a variable width mechanism section consisting of a motor, gears, cams, etc., for continuously variable control of the variable middle section 2b of the vortex generator 2;
5 is a width detecting means such as a potentiometer that is continuously variable controlled and is generated in response to an electric signal corresponding to the width of the vortex generator 2; 6 is a width detector that detects the pressure difference between the upstream and downstream sides of the vortex generator 2; 6& is the 11th pressure detector], and 6b is a pressure conduit. 7Il-1: An electric control circuit that compares the electric signal of the pressure detector 6 with the electric signal from the reference pressure setting device 8 and supplies the deviation signal to the variable mechanism section 4-1 consisting of a motor etc. be. 9 indicates the vortex generation frequency signal from the vortex detection means 3 and the vortex generator 2 set at this time.
A flow rate calculator 10 operates in response to a signal from a width detecting means 5 for detecting the width of the vortex, and 10 is a Karman vortex.

第3図は、本発明渦流量計の流量と圧力差(捷だは圧損
)の関係を示す特性図である。al、a2a5 の点を
通る曲線が、渦発生体2の巾をdMAXに固定した場合
の従来例に相当する。
FIG. 3 is a characteristic diagram showing the relationship between flow rate and pressure difference (pressure drop) of the vortex flowmeter of the present invention. The curve passing through the points al and a2a5 corresponds to the conventional example when the width of the vortex generator 2 is fixed to dMAX.

寸だ、第4図は本発明渦流量計の渦発生周波数fと、流
量Qの関係を示す特性図であり、Sfl”2+85の点
を通る直線が、渦発生体2の巾をdMAXに固定した場
合の従来例に相当する。
Figure 4 is a characteristic diagram showing the relationship between the vortex generation frequency f and the flow rate Q of the vortex flowmeter of the present invention, and the straight line passing through the point Sfl''2+85 fixes the width of the vortex generator 2 to dMAX. This corresponds to the conventional example when

上記構成において、第3図に於ける最小流量のQMA)
[で流れている状態から流量が増加すると、q。
In the above configuration, QMA of the minimum flow rate in Fig. 3)
[When the flow rate increases from the state where it is flowing, q.

までは、従来の特性曲線(a+ 〜1L2)に活って圧
力差△Pが△PMINから△PM□、1で変化する。q
Until now, the pressure difference ΔP changes from ΔPMIN to ΔPM□, 1 based on the conventional characteristic curve (a+ to 1L2). q
.

から更に流量が△q増大すると、圧力差Δpが、基準圧
力設定器8によって、あらかじめ定められた基準圧力Δ
pMAxより、大きく々るので、その偏差信号が、電気
制御回路7から巾可変機構部4のモータへ送信され、渦
発生体の可変中部2bの巾をdMAXからdlへ可変制
御し、はソ基準圧力△I)MAXと同じ値に々るべく自
動制御する。
When the flow rate increases further by Δq, the pressure difference Δp becomes equal to the predetermined reference pressure Δ
Since the deviation is larger than pMAX, the deviation signal is sent from the electric control circuit 7 to the motor of the variable width mechanism section 4, and the width of the variable middle part 2b of the vortex generator is variably controlled from dMAX to dl. Pressure ΔI) is automatically controlled to the same value as MAX.

これに対応して第4図に於ける渦発生周波数f9、、−
、、 はfoからfl まで△f増加することになる。そして
この時、すなわち第3図の43点、第4図の86点に於
ける、流量値は、渦検出手段3のfl及び巾検出手段5
のdl の両電気信号を受けて、9の流量演算器で、演
算される。
Correspondingly, the vortex generation frequency f9, , - in FIG.
,, will increase by Δf from fo to fl. At this time, that is, at the 43rd point in FIG. 3 and the 86th point in FIG.
After receiving both electric signals of dl, the flow rate calculator 9 calculates the flow rate.

そして、更に、ql  という流量、dlという巾の状
態すなわちa3点から流量を増大してゆくと同様にして
可変rlJ部2bの巾がdlからd2.d3へと順次狭
くなるように制御され最大定格流量qMAIではdMI
NK力る0 これに対応して、渦発生周波数fも増加し、最大定格流
量勉ムI、巾dMINではfMムXの値になる。
Then, when the flow rate is further increased from the state where the flow rate is ql and the width is dl, that is, from point a3, the width of the variable rlJ portion 2b changes from dl to d2. The maximum rated flow rate qMAI is controlled so that it gradually narrows to d3.
Correspondingly, the vortex generation frequency f also increases, and at the maximum rated flow rate I and width dMIN, it reaches the value fMX.

捷だ、流量が減少した場合には逆に可変中部2bはa2
とa4の間では巾が増大するように制御されa、とa2
では圧力差が、基準電圧△pMムX以下にな゛るので、
dMAr一定となる。これに対応して渦発生周波数fは
可変中部2bが可変制御されるS2と84の間ではfa
からfMムdで変化し、捷だ、可変中部2bの巾がdM
ム「定になるSlから82の間ではftχNからfa’
!で変化する。
However, if the flow rate decreases, the variable middle part 2b will change to a2.
The width is controlled to increase between a and a4.
Then, the pressure difference becomes less than the reference voltage △pMmX, so
dMAR becomes constant. Correspondingly, the vortex generation frequency f is fa between S2 and 84 where the variable central portion 2b is variably controlled.
The width of the variable middle part 2b is dM.
Between Sl and 82, which becomes constant, ftχN to fa'
! It changes with

10−にヅ そして、渦検出手段3からの渦発生周波数信号及び、l
]検出手段6からの信号を受けて、流量演算器9で、そ
の時の流量値を演算するものである。
10- and the vortex generation frequency signal from the vortex detection means 3 and l
] Upon receiving the signal from the detection means 6, the flow rate calculator 9 calculates the flow rate value at that time.

なお、第1図に於ける、渦発生体2の形状及び管路1内
の関係配置から明らかのように、渦発生体2が三角柱状
で、その−頂角が、流れと対向する如く配設すると、可
変中部2bの巾が、dMムd)らdM□dで変化しても
、広いレイノルで数の範囲内において、ストロバール数
Stははソ一定の値になる。
In addition, as is clear from the shape of the vortex generator 2 and the relative arrangement within the pipe line 1 in FIG. Even if the width of the variable middle part 2b changes from dMmd) to dM□d, the Strovall number St remains constant within the wide Reynolds number range.

このように、管路1内中央に可変中部2bを有する三角
柱状の渦発生体2を配設し、流量計測点の増減に対応し
て、渦発生体2の上流と下流の圧力差が一定になるよう
に可変中部2bが、自動制御されるので、第3図から明
らかのように圧力損失は全流量範囲(qMINからQM
ムXまで)にわたって基準圧力△1)Mム!以下に制御
されて流量の計測が可能になる。見方をかえて渦発生体
2の巾をdMAXに固定した場合を従来の渦流量計とす
ると、その圧力損失を△pMAI以下で、計測するだめ
の計測可能11べ − 流惜節囲はqMINからqoの間に々るが本発明の渦流
量計では(IMI)lからqM□Xまで拡大されたこと
になる。
In this way, the triangular prism-shaped vortex generator 2 having the variable middle part 2b is arranged in the center of the pipe 1, and the pressure difference between the upstream and downstream of the vortex generator 2 is constant in response to an increase or decrease in the flow rate measurement points. Since the variable middle part 2b is automatically controlled so that
Standard pressure △1) M! The flow rate can be measured under the following control. Looking at it from a different perspective, if we use a conventional vortex flowmeter with the width of the vortex generating body 2 fixed at dMAX, it is possible to measure the pressure drop below △pMAI. In the vortex flowmeter of the present invention, the range between qo is expanded from (IMI)l to qM□X.

更に見方をかえて従来の渦流量計の割測可能陣量範囲が
qMII+からCLMムXまでとすれば、このときの最
大の圧損(圧力差△pにはソ等しい)は、△pMhxに
なる。しかし、本発明の渦流量計では小さ々△l)MA
xになるものである。
Furthermore, if we look at it differently and assume that the measurable range of the conventional vortex flow meter is from qMII+ to CLM MUX, the maximum pressure drop at this time (equal to the pressure difference △p) is △pMhx. . However, in the vortex flowmeter of the present invention, the small △l) MA
It is something that becomes x.

以上の説明から明らかのように、本発明の渦流置割によ
れば、渦発生体の巾を可変制御する11〕可変機構部を
有し、前記渦発生体の上流と下流の圧力差が一定になる
ように渦発生体の巾を可変制御し、変化した巾と、渦発
生周波数との両信号により流量を演算することで、従来
より、大巾に小さな圧損で、計測できるようになる。換
言すれば、そのレンジアビリティを更に拡大できるとい
う効果が得られるものである。
As is clear from the above description, the vortex placement system of the present invention includes a variable mechanism section (11) that variably controls the width of the vortex generator, and the pressure difference between the upstream and downstream sides of the vortex generator is constant. By variably controlling the width of the vortex generator so that In other words, the effect of further expanding the range ability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の渦流量計の一実施例を示す上部から
みだ概略断面図、第2図は、上記渦流量計の側面からみ
だ概略断面図、及び、制御信号系統説明図、第3図は、
本発明一実施例の渦流量計の流量と圧力差(捷だは圧損
)の関係を示す特性図、第4図は、本発明一実施例の渦
流量計の渦発生周波数と流量の関係を示す特性図である
。 1・・・・・・管路、2・・・・・・渦発生体、3・・
・・・・渦検出手段、4・・・・・・巾可変機構部、5
・・・・・・+i検出手段、6・・・・・・圧力検出器
、7・・・・・・電気制御回路、9・・・・・・流量演
算器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図
FIG. 1 is a schematic sectional view from above showing an embodiment of the vortex flowmeter of the present invention, FIG. 2 is a schematic sectional view from the side of the vortex flowmeter, and an explanatory diagram of the control signal system. Figure 3 is
FIG. 4 is a characteristic diagram showing the relationship between the flow rate and pressure difference (pressure drop) of the vortex flowmeter according to an embodiment of the present invention. FIG. FIG. 1... Pipeline, 2... Vortex generator, 3...
... Vortex detection means, 4 ... Width variable mechanism section, 5
...+i detection means, 6 ... pressure detector, 7 ... electric control circuit, 9 ... flow rate calculator. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)被測定流体を流す管路と、この管路内に設けた渦
発生体と、これによって発生するカルマン渦を検出する
渦検出手段を設けると共に、前記渦発生体のr1]を可
変制御する中可変機構部と、この巾を検出する巾検出手
段と、前記渦発生体の上流と下流の圧力差を検知する圧
力検出器を備え、この圧力検出器の圧力差の信号と基準
値にもとづいて前記d]可変機構部を制御する電気制御
回路を有し、前記渦検出手段と前記巾検出手段の出力信
号により、流量を演算する流量演算器からなる渦流量計
(1) Provide a pipe line through which the fluid to be measured flows, a vortex generator provided in the pipe line, and vortex detection means for detecting the Karman vortex generated thereby, and variably control r1 of the vortex generator. a width detecting means for detecting the width, a pressure detector for detecting the pressure difference between the upstream and downstream sides of the vortex generator, and a pressure difference signal of the pressure detector and a reference value. d] A vortex flowmeter comprising a flow rate calculator which has an electric control circuit for controlling a variable mechanism section and calculates a flow rate based on the output signals of the vortex detection means and the width detection means.
(2)渦発生体の形状を三角柱、状とし、その−頂角を
被測定流体の流れと対向させ残り二つの頂角で定寸る前
記渦発生体の巾を可変制御するように配設した特許請求
の範囲第1項記載の渦流量計。 2ベー〕゛
(2) The shape of the vortex generator is a triangular prism, and the width of the vortex generator is arranged so that the width of the vortex generator, whose apex angle faces the flow of the fluid to be measured and is determined by the remaining two apex angles, can be variably controlled. A vortex flowmeter according to claim 1. 2 base゛
JP57103246A 1982-06-15 1982-06-15 Vortex flowmeter Pending JPS58219421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57103246A JPS58219421A (en) 1982-06-15 1982-06-15 Vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57103246A JPS58219421A (en) 1982-06-15 1982-06-15 Vortex flowmeter

Publications (1)

Publication Number Publication Date
JPS58219421A true JPS58219421A (en) 1983-12-20

Family

ID=14349079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57103246A Pending JPS58219421A (en) 1982-06-15 1982-06-15 Vortex flowmeter

Country Status (1)

Country Link
JP (1) JPS58219421A (en)

Similar Documents

Publication Publication Date Title
KR100328273B1 (en) Apparatus and method for measuring material flow in a conduit
US4856344A (en) Measuring flow in a pipe
Carmody Establishment of the wake behind a disk
EP0885382A2 (en) Coriolis viscometer using parallel connected coriolis mass flowmeters
WO1995033979A1 (en) Flowmeter
Johnson et al. Laser velocimeter and hot-wire anemometer comparison in a supersonic boundary layer
JPS60501972A (en) Eddy flow quality flowmeter for plane measurement
GB2161941A (en) Mass flow meter
JP3119782B2 (en) Flowmeter
JPS58219421A (en) Vortex flowmeter
Peng et al. Response of a swirlmeter to oscillatory flow
JPS58219418A (en) Vortex flowmeter
JPH10170320A (en) Flowmeter
JPS58219419A (en) Vortex flowmeter
Bertram et al. Prediction and measurement of the area-distance profile of collapsed tubes during self-excited oscillation
JPS58189518A (en) Mass flowmeter
JPH10320057A (en) Flow rate control valve device
RU2769093C1 (en) Method and device for determining the mass flow rate of gas
JPH0882540A (en) Ultrasonic flow-rate measuring method and ultrasonic flowmeter
JPS58219420A (en) Vortex flowmeter
JPS6033372Y2 (en) mass flow meter
JP3766777B2 (en) Flowmeter
JP2002340632A (en) Flowmeter
JP3252187B2 (en) Flowmeter
JP2002214002A (en) Flow meter