JPS58219419A - Vortex flowmeter - Google Patents

Vortex flowmeter

Info

Publication number
JPS58219419A
JPS58219419A JP57103244A JP10324482A JPS58219419A JP S58219419 A JPS58219419 A JP S58219419A JP 57103244 A JP57103244 A JP 57103244A JP 10324482 A JP10324482 A JP 10324482A JP S58219419 A JPS58219419 A JP S58219419A
Authority
JP
Japan
Prior art keywords
vortex
flow rate
width
pressure
vortex generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57103244A
Other languages
Japanese (ja)
Inventor
Hideo Uematsu
英夫 植松
Takashi Tanahashi
隆 棚橋
Yoshiyuki Yokoajiro
義幸 横網代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57103244A priority Critical patent/JPS58219419A/en
Publication of JPS58219419A publication Critical patent/JPS58219419A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
    • G01F1/3218Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices bluff body design

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To make the lower limit of a measurable flow rate small, to control a pressure loss to a value lower than a reference value, and to expand range ability, by providing a width varying mechanism, which variably controls the width of a vortex generating body. CONSTITUTION:A vortex generating body 2, which is provided in a pipe 1, is constituted by a fixed part 2a and a variable width part 2b. A pressure detector 5 detects the pressure difference between the upstream and downstream of the vortex generating body 2. An electric control circuit 6 compares the electric signal from the pressure detector 5 and the electric signal from a reference pressure setter 7, and imparts the deviation signal to a width varying mechanism 4 comprising a step motor and the like. The vortex generating frequency signal from a vortex detecting means 3 and the signal outputted to the width varying mechanism 4 from the electric control circuit 6 are inputted to a flow rate operator 8. Thus the flow rate is computed.

Description

【発明の詳細な説明】 2ページ 本発明は、流動する流体中に置かれた渦発生体の後方に
、左右交互に周期的に発生するカルマン渦を利用して、
流体の流量を計測する渦流量計に関するものである。
[Detailed Description of the Invention] Page 2 The present invention utilizes Karman vortices that are periodically generated alternately left and right behind a vortex generator placed in a flowing fluid.
This invention relates to a vortex flow meter that measures the flow rate of fluid.

カルマン渦流量計の動作原理は、周知の如く広いレイノ
ルで数の範囲において、渦の発生周波数fが、律速Vに
直線的に比例することを応用したものである。すなわち f : St 、     ・・・・・・・曲・・・ 
(1)但し、Stニストロバール数(比例定数)d:渦
発生体の巾 が成立する。
The operating principle of the Karman vortex flow meter is based on the well-known fact that the vortex generation frequency f is linearly proportional to the rate-determining V over a wide Reynolds number range. That is, f: St, ・・・・・・Song...
(1) However, St nistrovar number (proportionality constant) d: width of the vortex generator holds true.

一方管路を流れる流量をQとすると、流量Qは流速Vに
比例するので、(1)式で、ストロバール数Stと、渦
発生体の巾dが一定であれば、流量Qは渦の発生周波数
fに比例することになる。すなわち Q=kf       ・・・・・・・・・・・・・・
・  (2)が成\′rする。但し、kはマトロハール
数、管路断面積、渦発生体設置部の面積絞り率、渦発生
体dl等から決定される比例定数。すなわち、渦流置割
は(2)式から明らかのように、渦発生体後流に周期的
に発生するカルマン渦の発生周波数fを検知計数するこ
とにより体積流計を計るものである。
On the other hand, if the flow rate flowing through the pipe is Q, the flow rate Q is proportional to the flow velocity V, so in equation (1), if the Strovall number St and the width d of the vortex generator are constant, the flow rate Q is proportional to the generation of the vortex. It will be proportional to the frequency f. In other words, Q=kf ・・・・・・・・・・・・・・・
・(2) will come true. However, k is a proportionality constant determined from the Matrohar number, the pipe cross-sectional area, the area reduction ratio of the vortex generator installation part, the vortex generator dl, etc. That is, as is clear from Equation (2), the vortex placement method measures the volumetric flowmeter by detecting and counting the generation frequency f of the Karman vortex that is periodically generated downstream of the vortex generator.

従来、この種の流量計は、(1)レンジアビリティが広
い。Q)圧損が他の流量計と比較して小さい。(3)精
度がフルスケールに対してではなく指示値(又は読み)
のパーセントで表現できるのでオリフィマ流量計と比べ
ると特に低流量域において高精度である。(4)その他
、出力がデジタル出力であり、コンピュータ入力に適し
た信号が得られる。さらに機械的可動部がなく構造が単
純である。等の数多くの特徴を有している為に主として
大流量(例えば、常圧大気圧の場合は50rr?/11
〜500 mj/B位)の工業用計測器として用いられ
てきだ。
Conventionally, this type of flowmeter has (1) wide rangeability; Q) Pressure drop is small compared to other flowmeters. (3) Accuracy is not relative to full scale but to the indicated value (or reading)
Since it can be expressed as a percent of (4) In addition, the output is a digital output, and a signal suitable for computer input can be obtained. Furthermore, there are no mechanically moving parts and the structure is simple. Because it has many characteristics such as
~500 mj/B) is used as an industrial measuring instrument.

最近この種の流量計の民生機器分野への応用化が進めら
れているが、この場合の要求性能は厳しく工業用計測器
の場合と比較して、更にレンジアビリティが広く、かつ
より低圧損であることが求められている。
Recently, this type of flowmeter has been applied to the field of consumer equipment, but the required performance in this case is stricter than that of industrial measuring instruments, with wider rangeability and lower pressure drop. Something is required.

ところで、この種の流量側の測定可能な最低流量はレイ
ノルズ数と渦発生周波数fを検知するセンサ感度から決
定される。そして一般的には、センサ感度の点からレイ
ノルズ数Reの下限値が決まり渦発生体近傍の流速をV
、渦発生体の1]をd。
Incidentally, the minimum measurable flow rate on this type of flow rate side is determined from the Reynolds number and the sensor sensitivity for detecting the vortex generation frequency f. In general, the lower limit of the Reynolds number Re is determined from the viewpoint of sensor sensitivity, and the flow velocity near the vortex generator is determined by V.
, 1] of the vortex generator d.

流体の勅語性係数をVとしたときのレイノルズ数−d Re−□       ・・・・・・・・・・・・・・
 (3)■ の下限値は2000前後の値である1゜まだ、渦発生体
のdl dの管路径りに対する比率は、渦の規則性、及
び安定性等の点からはソ一定の範囲にあり、一般的には 0015(−(0,4・・団・・・・・・・・・・ (
4)の関係にある。そして、それは工業用計測器の場合
と比較して、測定可能な流量下限値がより小さな値とし
て要求されている民生用機器分野においても原理的に同
一である。
Reynolds number -d Re-□ when the terminology coefficient of the fluid is V...
(3) ■ The lower limit value is around 2000 1°, but the ratio of dl d of the vortex generator to the pipe diameter remains within a certain range from the point of view of vortex regularity and stability. Yes, generally 0015(-(0,4...group......(
4). The principle is the same in the field of consumer equipment, where the lower limit of measurable flow rate is required to be smaller than in the case of industrial measuring instruments.

6/・ 一方、圧力損失をΔp、 (以下本発明ではΔPを圧力
差と呼ぶ場合もある)流体の比重量をγとすると、 ΔPocγV      ・・・・・・・・・・・・・
・・ (5)の関係にある。
6/・ On the other hand, if the pressure loss is Δp (hereinafter ΔP may be referred to as pressure difference) and the specific weight of the fluid is γ, then ΔPocγV ・・・・・・・・・・・・・・・
...There is a relationship in (5).

したがって、以上(3)、 (4)、 (5)式から明
らかのように、一定寸法の管路径りに対して渦発生体の
巾dが大きいほど流速Vが犬になるので低流量感度が増
加し、つまり、測定可能な流量下限値が小さくなるが、
一方流量が増加するに従がい圧損が増え、したがって、
レンジアビリティが制限されるという問題があった。
Therefore, as is clear from equations (3), (4), and (5) above, the larger the width d of the vortex generator is for a given pipe diameter, the greater the flow velocity V becomes, so the low flow sensitivity becomes increases, that is, the lower limit of measurable flow rate decreases,
On the other hand, as the flow rate increases, the pressure drop increases, and therefore,
There was a problem with range abilities being limited.

まだ逆に、渦発生体のIll dを小さくすると、セン
サ感度が低下し大流量域の方へ測定可能範囲が相対的に
ずれるので、測定可能な流量下限値が犬きくなるという
問題があった。
On the other hand, if the Ill d of the vortex generator is made smaller, the sensor sensitivity will decrease and the measurable range will be relatively shifted towards the large flow area, so there is a problem that the lower limit of the measurable flow rate will become sharper. .

本発明は上記従来の欠点を解消するもので、測定可能な
流量下限値を小さくすると共に、圧損をあらかじめ定め
られた基準値以下に制御し、かつレンジアビリティの拡
大をはかることを目的とす6ページ るものである。
The present invention solves the above-mentioned conventional drawbacks, and aims to reduce the lower limit of measurable flow rate, control pressure drop to below a predetermined reference value, and expand rangeability. It is a page.

この目的を達成するだめに、本発明は渦流量計において
、渦発生体の1]を可変できる1]可変機構部と、前記
渦発生体の上流と下流の圧力差を検知する圧力検出8:
(を備え、この圧力検出器の圧力差がはソ一定になるよ
うに前記巾可変機構部を制御する電気制御回路を有し、
渦検出手段の渦発生周波数倍−りと% !Ml記電気制
御回路の出力信号により、流量を演勢する流1辻演算器
を具備したものである。
In order to achieve this object, the present invention provides a vortex flowmeter that includes a variable mechanism section that can vary the vortex generator, and a pressure sensor 8 that detects the pressure difference between the upstream and downstream sides of the vortex generator.
(comprising: an electric control circuit for controlling the width variable mechanism so that the pressure difference of the pressure detector is constant;
The vortex generation frequency of the vortex detection means is doubled by %! It is equipped with a flow one-way computing unit that controls the flow rate based on the output signal of the electric control circuit.

この構成によって、低流量域から大流量域まであるいC
L大流星威から低流−l域へ計測点が変化しても、渦発
生体のに流と下流の圧力差を検知する圧力検知型の信号
と基準値との偏差信号により巾可変機構部は)1−力差
を一定に保つように作動する、すなわち渦発生体はその
dlが小さくなる方へまだは大きくなる方へ自動的に可
変制御される。したがってこのことにより測定可能な流
量下限値を小さくできると共に、圧損が基準値以下で、
しかもレンジアビリティの広い計測が可能になる。
With this configuration, from low flow area to large flow area or C
Even if the measurement point changes from the L-large meteor force to the low-flow -L region, the width variable mechanism section is activated by the deviation signal between the standard value and the pressure detection type signal that detects the pressure difference between the flow and the downstream of the vortex generator. 1) It operates to keep the force difference constant, that is, the vortex generator is automatically variably controlled so that its dl becomes smaller or larger. Therefore, this allows the lower limit of measurable flow rate to be reduced, and the pressure drop is below the standard value.
Furthermore, it becomes possible to measure a wide range of range abilities.

以下、本発明の一実施例を第1図から第4図を用いて説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図及び第2図において1は被測定流体を流す管路、
2は三角柱状の渦発生体で、固定部2aと、可変11部
2bから構成されている。3は超音波式の渦検出手段、
4は渦発生体2の可変11部2bを無段階に可変制御す
るだめのステップモータ、歯車、カム等から成るlJ可
変機構部、5は、渦発生体2の上流と下流の圧力差を検
出する圧力検出器で6aは圧力検出取出口、5bは圧力
導管である。そして6は、圧力検出器5の電気信月を、
基準圧力設定器7からの電気信号と比較し、その偏差信
号をステップモータ等から成る4の中可変機構部へ力え
る電気制御回路である。8は、渦検出手段3からの渦発
生周波数信号と電気制御回路6からd]可変機構部4へ
出力した同じ信号を受けて作動する流量演算器、そして
9はカルマン渦である。
In FIGS. 1 and 2, 1 is a pipe through which the fluid to be measured flows;
Reference numeral 2 denotes a triangular prism-shaped vortex generator, which is composed of a fixed part 2a and a variable 11 part 2b. 3 is an ultrasonic vortex detection means;
Reference numeral 4 denotes a lJ variable mechanism section consisting of a step motor, gears, cams, etc., for continuously variable control of the variable part 11 2b of the vortex generator 2, and 5 detects the pressure difference between the upstream and downstream sides of the vortex generator 2. 6a is a pressure detection outlet, and 5b is a pressure conduit. And 6 is the electric signal of pressure detector 5,
This is an electric control circuit that compares the electric signal from the reference pressure setting device 7 and outputs the deviation signal to the intermediate variable mechanism section 4 consisting of a step motor or the like. Reference numeral 8 designates a flow rate calculator which operates upon receiving the vortex generation frequency signal from the vortex detection means 3 and the same signal output from the electric control circuit 6 to the variable mechanism section 4, and 9 a Karman vortex.

第3図は、本発明渦流置割の流量と圧力差(まだは圧損
)の関係を示す特性図である。al、a2.a5の各点
を通る曲線が、渦発生体2のl]をdMム8に固定した
場合の従来例に相当する。
FIG. 3 is a characteristic diagram showing the relationship between the flow rate and pressure difference (or pressure loss) in the eddy current arrangement according to the present invention. al, a2. A curve passing through each point of a5 corresponds to the conventional example when l] of the vortex generator 2 is fixed to dM 8.

また、第4図は本発明渦流量計の渦発生周波数fと、流
量Qの関係を示す特性図であり、sl、s2゜S5の各
点を通る直線が、渦発生体2のrjJをdMAXに固定
した場合の従来例に相当する。
Moreover, FIG. 4 is a characteristic diagram showing the relationship between the vortex generation frequency f and the flow rate Q of the vortex flow meter of the present invention, in which a straight line passing through each point sl, s2°S5 indicates that rjJ of the vortex generator 2 is dMAX. This corresponds to the conventional example when fixed to .

」二記構成において、第3図に於ける最小流量のqMI
Nで流れている状態から流量が増加すると、q。
” In the configuration described above, qMI of the minimum flow rate in Fig. 3
When the flow rate increases from a state where it is flowing at N, q.

までは、従来の特性曲線(a+〜a2りに清って圧力差
ΔPがΔPMINからΔPMA][1で変化する。qo
から更に流量がΔq増大すると、圧力差ΔPが基準圧力
設定器7によって、あらかじめ定められた基準圧力32
部ムXより大きくなるので、その偏差信号が電気制御回
路6からd]可変機構部4のステップモータへ送信され
、渦発生体2の可変中部2bのd]をdMAXからdl
へ可変制御し、はソ基準圧力Δp、ムXと同じ値になる
べく自動制御する。
Until now, the pressure difference ΔP changes from ΔPMIN to ΔPMA][1, as compared to the conventional characteristic curve (a+ to a2).
When the flow rate further increases by Δq, the pressure difference ΔP increases to the predetermined reference pressure 32 by the reference pressure setting device 7
Since the deviation signal is transmitted from the electric control circuit 6 to the step motor of the variable mechanism section 4, the deviation signal of the variable section 2b of the vortex generator 2 is changed from dMAX to dl.
The reference pressure Δp is automatically controlled to be the same value as the reference pressure Δp and the value X is automatically controlled.

これと対応して、第4図に於ける渦発生周波数fはfo
からflまでΔf増加することになる。そしてこの時、
すなわち第3図のa5点、第4図の83点に於ける流m
値は、渦検出手段3の/+、及び電気91.−・ 制御回路6のdlの両電気信号を受けて8の流量演算器
で演算される。
Correspondingly, the vortex generation frequency f in Fig. 4 is fo
Δf increases from to fl. And at this time,
In other words, the flow m at point a5 in Figure 3 and point 83 in Figure 4
The values are /+ of the vortex detection means 3 and electricity 91. - The flow rate calculator 8 receives both electrical signals dl from the control circuit 6 and calculates the flow rate.

そして更に、qlという流量、dIという巾の状態すな
わちa5点から流量を増大してゆくと、同様にして可変
11部2bの巾がdlからd2.d3へと順次狭くなる
ように制御され最大定格流量qMムXではdMINにな
る。これに対応して、渦発生周波数fも増加し、最大定
格流量qMA][、巾dMINではfMムXの値になる
Further, when the flow rate is increased from the state where the flow rate is ql and the width is dI, that is, from point a5, the width of the variable portion 2b changes from dl to d2. The flow rate is controlled to gradually become narrower to d3, and at the maximum rated flow rate qMx, it becomes dMIN. Correspondingly, the vortex generation frequency f also increases, and at the maximum rated flow rate qMA][, width dMIN, the value becomes fMX.

また、粒量が減少した場合には逆に可変中部2bはa2
とa4の間ではl〕が増大するように制御され、alと
a2では圧力差が基準圧力ΔPMiX以下になるので、
dMAX一定となる。これに対応して渦発生周波数fは
、可変中部2bが可変制御されるS2と84の間ではf
、からfMAx″!!で変化1〜、まだ、可変中部2b
の巾がdM[一定になるSlから82の間ではfMIN
からf、まで変化する。そして、渦検出手段3からの渦
発生周波数信号及び、電気制御回路6からの信号を受け
て、流量演算器8でその時の流量値を演算するものであ
る。
In addition, when the grain size decreases, conversely, the variable middle part 2b becomes a2
l] is controlled to increase between and a4, and the pressure difference between al and a2 becomes less than the reference pressure ΔPMiX, so
dMAX becomes constant. Correspondingly, the vortex generation frequency f is f between S2 and 84 where the variable central portion 2b is variably controlled.
, change from fMAX''!! to 1~, still variable middle part 2b
The width is dM [fMIN between Sl and 82 where it becomes constant
It changes from f to f. Then, upon receiving the vortex generation frequency signal from the vortex detection means 3 and the signal from the electric control circuit 6, the flow rate calculator 8 calculates the flow rate value at that time.

10ペー、・ な$−、第1図に於ける、渦発生体2の形状及び管路1
内の関係配置から明らかのように、渦発生体2が二:f
i4柱状で、その−頂角が、流れと対向する如く配設す
ると、可変11部2bのd」が、dMAXからdMru
−iで変化しても、広いレイノルズ数の範囲内において
、ストロバール数Stははソ一定の値になる。
Page 10, $-, the shape of the vortex generator 2 and the pipe line 1 in Fig. 1
As is clear from the relative arrangement within, the vortex generator 2 is
If the i4 columnar shape is arranged so that its apex angle faces the flow, d'' of the variable 11 section 2b will change from dMAX to dMru.
-i, the Strovall number St remains constant within a wide range of Reynolds numbers.

このように、管路1内中央に可変中部2bを有する三角
柱状の渦発生r1.2を配設し、流量計測点の増減に勾
応して、渦発生体2の上流と下流の圧力差が一定になる
ように可変11部2bが、自動制御されるので、第3図
から明らかのように、圧力損失は全流量範囲(qMXH
から(IMムXまで)にわたって基準圧力ΔPMkX以
下に制御されて流量の計測が可能になる。
In this way, a triangular prism-shaped vortex generator r1.2 having a variable middle part 2b is arranged in the center of the pipe line 1, and the pressure difference between the upstream and downstream of the vortex generator 2 is adjusted according to the increase or decrease of the flow rate measurement point. Since the variable 11 section 2b is automatically controlled so that qMXH remains constant, as is clear from FIG.
The flow rate can be measured by controlling the reference pressure ΔPMkX or less over the period from IMkX to IMkX.

見方をかえて渦発生体2の巾をdMAXに固定した場合
を従来の渦流量計とすると、その圧力損失をΔPMムX
以下で計測するだめの計測可能流量範囲はqMINから
(loの間になるが、本発明の渦流量計では(IMIに
からqMix’!で拡大されたことになる。
Looking at it from a different perspective, if the width of the vortex generator 2 is fixed to dMAX and it becomes a conventional vortex flowmeter, then the pressure loss is ΔPM
The measurable flow rate range to be measured below is between qMIN and (lo), but in the vortex flowmeter of the present invention, it is expanded from (IMI to qMix'!).

更に見方をかえて、従来の渦流量計の計測可能流量範囲
がqMrxからqMムXまでとすれば、このときの最大
の圧損(圧力差ΔPにはソ等しい)はΔpl、ム!にな
る。しかし本発明の渦流l計では小さなΔPMAIにな
るものである。
Looking at it from a different perspective, if the measurable flow rate range of the conventional vortex flow meter is from qMrx to qMx, then the maximum pressure drop (equal to the pressure difference ΔP) is Δpl, M! become. However, the eddy current meter of the present invention results in a small ΔPMAI.

以−にの説明から明らかのように、本発明の渦流量計に
よれば、渦発生体の巾を可変制御する巾可変機構部を有
し、前記渦発生体の上流と下流の圧力差が一定になるよ
うに渦発生体の巾を可変制御し、変化した巾と、渦発生
周波数との両信号により流量を演算することで、従来よ
り大巾に小さな圧損で計測できるようになる。換言すれ
ば、そのレンジアビリティを更に拡大できるという効果
が得られるものである。
As is clear from the above description, the vortex flowmeter of the present invention has a width variable mechanism section that variably controls the width of the vortex generator, and the pressure difference between the upstream and downstream sides of the vortex generator is By variably controlling the width of the vortex generator so that it remains constant and calculating the flow rate based on both the changed width and the vortex generation frequency, it becomes possible to measure with a much smaller pressure drop than before. In other words, the effect of further expanding the range ability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の渦流量計の一実施例を示す上部からみ
た概略断面図、第2図は上記渦流量計の側面からみだ概
略断面図、及び制御信号系統説明図、第3図は本発明一
実施例の渦流量計の流量と圧力差(または圧損)の関係
を示す特性図、第4図は本発明一実施例の渦流量計の渦
発生周波数と流量の関係を示す特性図である。 1・・・・・・管路、2・・・・・・渦発生体、3・・
・・・渦検出手段、4・・・・・・巾可変機構部、6・
・・・・圧力検出器、6・・・・・・電気制御回路、8
・・・・・流量演算器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図
Fig. 1 is a schematic sectional view from above showing an embodiment of the vortex flowmeter of the present invention, Fig. 2 is a schematic sectional view of the vortex flowmeter seen from the side, and an explanatory diagram of the control signal system. A characteristic diagram showing the relationship between the flow rate and pressure difference (or pressure drop) of a vortex flowmeter according to an embodiment of the present invention. Fig. 4 is a characteristic diagram showing the relationship between the vortex generation frequency and flow rate of the vortex flowmeter according to an embodiment of the present invention. It is. 1... Pipeline, 2... Vortex generator, 3...
... Vortex detection means, 4 ... Width variable mechanism section, 6.
...Pressure detector, 6...Electric control circuit, 8
...Flow rate calculator. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)被測定流体を流す管路と、この管路内に設けた渦
発生体と、これによって発生するカルマン渦を検出する
渦検出手段を設けると共に、前記渦発生体の巾を可変制
御する巾可変機構部と、前記渦発生体の上流と下流の圧
力差を検知する圧力検出器を備え、この圧力検出器の圧
力差の信号と、基準値にもとづいて前記巾可変機構部を
制御する電気制御回路を有し、前記渦検出手段と前記電
気制御回路の出力信号により、流量を演算する流量演算
器からなる渦流量計。 Q)渦発生体の形状を三角柱状とし、その−頂角を被測
定流体の流れと対向させ、残り二つの頂角で定まる前記
渦発生体の巾を可変制御するように配設した特許請求の
範囲第1項記載の渦流量計。
(1) A pipe line through which the fluid to be measured flows, a vortex generator provided in the pipe, and vortex detection means for detecting the Karman vortex generated thereby are provided, and the width of the vortex generator is variably controlled. It includes a variable width mechanism and a pressure detector that detects a pressure difference between upstream and downstream sides of the vortex generator, and controls the variable width mechanism based on a pressure difference signal from the pressure detector and a reference value. A vortex flowmeter comprising an electric control circuit and a flow rate calculator that calculates the flow rate based on the output signal of the vortex detection means and the electric control circuit. Q) A patent claim in which the shape of the vortex generator is a triangular prism, the apex angle thereof is opposed to the flow of the fluid to be measured, and the width of the vortex generator determined by the remaining two apex angles is variably controlled. The vortex flowmeter according to item 1.
JP57103244A 1982-06-15 1982-06-15 Vortex flowmeter Pending JPS58219419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57103244A JPS58219419A (en) 1982-06-15 1982-06-15 Vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57103244A JPS58219419A (en) 1982-06-15 1982-06-15 Vortex flowmeter

Publications (1)

Publication Number Publication Date
JPS58219419A true JPS58219419A (en) 1983-12-20

Family

ID=14349023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57103244A Pending JPS58219419A (en) 1982-06-15 1982-06-15 Vortex flowmeter

Country Status (1)

Country Link
JP (1) JPS58219419A (en)

Similar Documents

Publication Publication Date Title
RU2181477C2 (en) Flowmeter of overflow type
US3776033A (en) Vortex-type mass flowmeters
EP0885382A2 (en) Coriolis viscometer using parallel connected coriolis mass flowmeters
JP3119782B2 (en) Flowmeter
Mandard et al. Transit time ultrasonic flowmeter: Velocity profile estimation
JPS58219419A (en) Vortex flowmeter
JP3321746B2 (en) Flowmeter
RU2351900C2 (en) Rate-of-flow indicator of liquid mediums in pipelines
JPS58219421A (en) Vortex flowmeter
JPS58219418A (en) Vortex flowmeter
JPS6033372Y2 (en) mass flow meter
Itoh et al. Mass flowmeter detecting fluctuations in lift generated by vortex shedding
JPH0882540A (en) Ultrasonic flow-rate measuring method and ultrasonic flowmeter
RU2769093C1 (en) Method and device for determining the mass flow rate of gas
JP3398251B2 (en) Flowmeter
JPS58219420A (en) Vortex flowmeter
JP3766777B2 (en) Flowmeter
JP3192912B2 (en) Flowmeter
JP2002340632A (en) Flowmeter
JP3252187B2 (en) Flowmeter
JP3237366B2 (en) Vibration type flow meter
JP2002214002A (en) Flow meter
JPH11258098A (en) Gas leakage detecting device
JPS61253424A (en) Vortex flowmeter
JP2711133B2 (en) Vortex flow meter