JPS58219370A - Absorption type refrigerator - Google Patents

Absorption type refrigerator

Info

Publication number
JPS58219370A
JPS58219370A JP10070282A JP10070282A JPS58219370A JP S58219370 A JPS58219370 A JP S58219370A JP 10070282 A JP10070282 A JP 10070282A JP 10070282 A JP10070282 A JP 10070282A JP S58219370 A JPS58219370 A JP S58219370A
Authority
JP
Japan
Prior art keywords
absorber
solution
regenerator
condenser
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10070282A
Other languages
Japanese (ja)
Inventor
杉本 滋郎
箕輪 良平
坂井 講仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10070282A priority Critical patent/JPS58219370A/en
Publication of JPS58219370A publication Critical patent/JPS58219370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は温水利用−型動用吸収式冷凍機に係り、特に温
水と再生器溶液間の熱交換に好適な、複数の独立した吸
収溶液サイクルを有し、温水を低温まで利用しえるよう
にした吸収式冷凍機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot water utilization-type dynamic absorption chiller, which has a plurality of independent absorption solution cycles, particularly suitable for heat exchange between hot water and regenerator solution, and which converts hot water to low temperature. This article relates to an absorption chiller that can be used up to

従来の温水利用−型動用吸収式冷凍機では、吸収溶液サ
イクルが単一であるため、再生器も単体であった。そし
て、従来の吸収溶液サイクルの温度レベルでは、再生器
出口溶液の温度と温水入口温度との間に、両者の熱交換
に十分な温度差があっても、再生器入口溶液の飽和温度
と温水出口温度との間の温度差においては、前者はど十
分ではなく、温水の低温度までの十分な熱利用ができな
いという欠点があった。
Conventional hot water utilization type dynamic absorption refrigerators have a single absorption solution cycle, and therefore a single regenerator. And at the temperature level of the conventional absorption solution cycle, even if there is a sufficient temperature difference between the temperature of the regenerator outlet solution and the hot water inlet temperature for heat exchange between the two, the saturation temperature of the regenerator inlet solution and the hot water inlet temperature Regarding the temperature difference between the outlet temperature and the outlet temperature, the former is not sufficient and has the disadvantage that sufficient heat utilization to reach the low temperature of hot water is not possible.

本発明の目的は、温水利用−型動用吸収式冷凍機におい
て、1台で複数の吸収溶液サイクルを有することにより
、各再生器入口温度を段階的に変えることにより、温水
温度が下っても溶液の再生が可能な排温水等の熱利用率
の高い吸収式冷凍機を提供することにある。
The purpose of the present invention is to provide a hot water utilization type dynamic absorption chiller with a plurality of absorption solution cycles in one unit, so that the inlet temperature of each regenerator can be changed in stages, so that even if the hot water temperature drops, the solution An object of the present invention is to provide an absorption chiller with a high heat utilization rate for waste hot water, etc., which can regenerate waste water.

温水利用−重効用吸収式冷凍機においては、省エネルギ
ーの観点から、できるだけ温水の広い温度範囲を利用し
て、いかに有効な熱交換を行わせて溶液を再生するかが
最重要項目と考えられる。
Hot water utilization: In heavy-effect absorption chillers, from the perspective of energy conservation, the most important issue is how to utilize as wide a temperature range of hot water as possible and how to perform effective heat exchange to regenerate the solution.

さらに温水入口温度を上げることは溶液との温度差が大
きくなり熱交換上は有利であるが、それにともない再生
器圧力も上昇するので、ある一定の上限が考えられる。
Furthermore, increasing the hot water inlet temperature increases the temperature difference with the solution, which is advantageous in terms of heat exchange, but the regenerator pressure also increases accordingly, so a certain upper limit can be considered.

ここで温水入口温度は温水出口温度に左右され、温水出
口温度は溶液の再生詰入口温度によりきまってくる。溶
液の再生詰入口温度を下げれば温水出口温度との温度差
が増加するため、温水の出入口温度を変えることなしに
溶液再生のための有効な熱交換が可能となる。したがっ
て再生詰入口温度を下げることが必要であるが、溶液の
再生詰入口温度を下げるには、再生器入ロ溶液濃度=吸
収器出ロ溶液濃度をうすくする必要がある。ここで吸収
器出口溶液濃度は吸収器の冷却水平均温度により決まっ
てくるので、冷却水を吸収器の入口から出口までの途中
の温度で利用した複数の独立した吸収溶液サイクルを有
する吸収式冷凍機とすることにより、従来の吸収器出口
溶液よりうすい溶液を得ることができ、従来より低い再
生詰入口温度を得ることが可能となる。
Here, the hot water inlet temperature depends on the hot water outlet temperature, and the hot water outlet temperature is determined by the solution regeneration inlet temperature. If the solution regeneration inlet temperature is lowered, the temperature difference between the hot water outlet temperature and the hot water outlet temperature increases, so that effective heat exchange for solution regeneration becomes possible without changing the hot water inlet/outlet temperature. Therefore, it is necessary to lower the temperature at the regeneration packing inlet, but in order to lower the temperature at the regeneration packing inlet of the solution, it is necessary to reduce the concentration of solution entering the regenerator = concentration of solution exiting the absorber. Here, the absorber outlet solution concentration is determined by the average temperature of the absorber's cooling water, so absorption refrigeration has multiple independent absorption solution cycles that use cooling water at a temperature midway between the absorber's inlet and outlet. By using this method, it is possible to obtain a solution that is thinner than the conventional absorber outlet solution, and it becomes possible to obtain a regeneration filling inlet temperature lower than that of the conventional absorber.

以下、本発明の一実施例全第2図により説明する。一実
施例として、2つの独立した吸収溶液ザイクル全有する
温水利用−型動用吸収式冷凍機をあげて説明する。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. As an example, a hot water type dynamic absorption refrigerating machine having two independent absorption solution cycles will be described.

本実施例の一型動用吸収弐伶凍機は、第一凝縮器1、第
二凝縮器5、第−再生器2、第二再生器6、第一蒸発器
3、第二蒸発器7、第一吸収器4、第二吸収器8より成
り、冷媒ポンプ23にて第一蒸発器3または第二蒸発器
7の伝熱管上にスプレーされた冷媒は、冷水19より蒸
発潜熱を奪って冷媒蒸気24となる。一方溶液スプレー
21によって第一吸収器4または第二吸収器8の伝熱管
上にスプレーされた濃溶液は、伝熱管内部を通る冷却水
17によって冷却され、水蒸気分圧を下げると同時に、
第一蒸発器3または第二蒸発器7からの冷媒蒸気24を
吸収して稀溶液となる。稀溶液は溶液ポンプ22によっ
て熱交換器9または熱交換器10を経て、それぞれ第−
再生器2または第二再生器6へ送られる。第−再生器2
または第二再生器6へ送られた稀溶液は、温水18によ
って加熱され、それぞれ冷媒蒸気25を発生する。冷媒
蒸気25は第一凝縮器1または第二凝縮器5において冷
却水17によって冷却され、凝縮して冷媒液となり、そ
れぞれ冷媒戻多配管15または冷媒戻り配管16により
、第一蒸発器3または第二蒸発器7へ戻される。第−再
生器2または第二再生器6において、冷媒蒸気25を発
生して濃度の濃くなった溶液は、濃溶液戻り配管13ま
たは濃溶液戻り配管14によって、熱交換器9または熱
交換器10を経て第一吸収器4または第二吸収器8へ戻
され、再び伝熱管上にスプレーされる。
The type 1 dynamic absorption chiller of this embodiment includes a first condenser 1, a second condenser 5, a second regenerator 2, a second regenerator 6, a first evaporator 3, a second evaporator 7, It consists of a first absorber 4 and a second absorber 8, and the refrigerant sprayed onto the heat transfer tubes of the first evaporator 3 or the second evaporator 7 by the refrigerant pump 23 absorbs the latent heat of evaporation from the cold water 19 and cools the refrigerant. It becomes steam 24. On the other hand, the concentrated solution sprayed onto the heat exchanger tubes of the first absorber 4 or the second absorber 8 by the solution spray 21 is cooled by the cooling water 17 passing inside the heat exchanger tubes, and at the same time lowers the water vapor partial pressure.
It absorbs the refrigerant vapor 24 from the first evaporator 3 or the second evaporator 7 and becomes a dilute solution. The dilute solution is passed through the heat exchanger 9 or heat exchanger 10 by the solution pump 22, and is then transferred to the
It is sent to the regenerator 2 or the second regenerator 6. No.-Regenerator 2
Alternatively, the dilute solution sent to the second regenerator 6 is heated by the hot water 18 and generates refrigerant vapor 25, respectively. The refrigerant vapor 25 is cooled by the cooling water 17 in the first condenser 1 or the second condenser 5, and is condensed to become a refrigerant liquid. It is returned to the second evaporator 7. In the first regenerator 2 or the second regenerator 6, the solution that has become concentrated by generating refrigerant vapor 25 is transferred to the heat exchanger 9 or the heat exchanger 10 through the concentrated solution return pipe 13 or the concentrated solution return pipe 14. It is then returned to the first absorber 4 or the second absorber 8 and sprayed onto the heat exchanger tubes again.

力お、図のように冷却水7は第一吸収器4、第一凝縮器
1、第二凝縮器5、第二吸収器8の順に通水し、温水1
8は第二再生器6、第−再生器2の順に通水し、冷水1
9は第一蒸発器3、第二蒸発器7の順に通水する。
As shown in the figure, the cooling water 7 is passed through the first absorber 4, the first condenser 1, the second condenser 5, and the second absorber 8 in this order, and the hot water 1
8, the water is passed through the second regenerator 6 and the second regenerator 2 in that order, and the cold water 1
9, water is passed through the first evaporator 3 and the second evaporator 7 in that order.

本実施例を溶液サイクル線図に表わすと第3図のように
なる。ここでA点は第−再生参入口、B点は第−再生量
出口、0点は第一吸収器入口、D点は第一吸収器出口、
E点は第二吸収器入口、F点は第二吸収器出口、G点は
第二吸収器入口、H点は第二吸収器出口にそれぞれ相当
する。同じく第3図に点線で示したA/ B/ C/ 
:o/のサイクル線図は従来のサイクルを示している。
This example is illustrated in a solution cycle diagram as shown in FIG. 3. Here, point A is the regeneration inlet, point B is the regeneration amount outlet, point 0 is the inlet of the first absorber, point D is the outlet of the first absorber,
Point E corresponds to the inlet of the second absorber, point F corresponds to the outlet of the second absorber, point G corresponds to the inlet of the second absorber, and point H corresponds to the outlet of the second absorber. A/ B/ C/ also shown by dotted lines in Figure 3
The :o/ cycle diagram shows a conventional cycle.

これでわかるように本実施例の溶液サイクルにおける第
−再生参入口にあたるA点は、従来の溶液サイクルにお
ける再生参人口にあたるA′点よりΔ【だけ温度が下が
っている。一方第二再生器出口にあたるF点は、従来の
再生量出口にあたるB′点より温度が上がっているため
、温水と再生器溶液との間の熱交換量はほぼ等しいと考
えられる。しかしここで、従来の冷凍機においては、再
生器の溶液入口側の伝熱面積を拡張しても、温水と溶液
間の温度差がさらに小さくなって、熱回収の効果はあま
9期待できないが、本実施例の冷凍機の再生器溶液入口
温度は従来より低いので、第−再生器の溶液入口側の伝
熱面積を拡張することによシ温水の低温度までの熱利用
を有効に行なうことができる。
As can be seen, the temperature at point A, which is the regeneration entry port in the solution cycle of this embodiment, is lower than that at point A', which is the regeneration entry port in the conventional solution cycle, by Δ[. On the other hand, since the temperature at point F, which is the outlet of the second regenerator, is higher than that of point B', which is the outlet of the conventional regenerated amount, it is considered that the amount of heat exchanged between the hot water and the regenerator solution is approximately equal. However, in conventional refrigerators, even if the heat transfer area on the solution inlet side of the regenerator is expanded, the temperature difference between the hot water and the solution becomes smaller, and the heat recovery effect cannot be expected. Since the regenerator solution inlet temperature of the refrigerator of this embodiment is lower than that of the conventional one, by expanding the heat transfer area on the solution inlet side of the first regenerator, heat utilization up to a low temperature of hot water can be effectively performed. be able to.

以上、実施例では吸収器、蒸発器、再生器、凝縮器を2
分割した場合について説明したが、これに限定されるも
のではなく、3分割以上の場合でも同様な作用と効果が
得られることはもちろんである。
In the above example, the absorber, evaporator, regenerator, and condenser are
Although the explanation has been given on the case of division, the present invention is not limited to this, and it goes without saying that similar actions and effects can be obtained even when the division is divided into three or more.

以上のように、本発明によれば、再生器入口の溶液濃度
を従来レベルよりうずくできると同時に、溶液温度を下
げることができ、それにともなって対向流的熱交換によ
って温水の低温度にいたるまでの熱利用が可能となるの
で、省エネルギー上、非常に有効となる。また複数の独
立した吸収溶液サイクル毎の循還量を調節することによ
り、再生器量入口温度が調節できるため、温水温度にあ
ったす・fクルが形成できる。また経済的には、独立し
た複数の吸収溶液サイクルを有するため、冷凍機単品で
は若干複雑となり、溶液ポンプ等がふえたり伝熱面積が
増加するためコストがあがるが、温水に排温水などを使
用する場合低温まで有効に熱が利用できるため、冷凍能
力が増加し、ランニングコスト上非常に有効である。
As described above, according to the present invention, the solution concentration at the inlet of the regenerator can be lowered from the conventional level, and at the same time, the solution temperature can be lowered. This makes it possible to utilize heat, making it extremely effective in terms of energy conservation. In addition, by adjusting the circulation amount for each of a plurality of independent absorption solution cycles, the temperature at the regenerator inlet can be adjusted, so that a flow rate matching the hot water temperature can be formed. Economically, since it has multiple independent absorption solution cycles, using a single refrigerator is somewhat complicated, and the cost increases due to the need for more solution pumps and an increased heat transfer area, but waste hot water is used for hot water. In this case, heat can be effectively utilized down to low temperatures, increasing refrigeration capacity and being very effective in terms of running costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は複数の吸収溶液サイクルを有する温水利用−型
動用吸収式冷凍機のサイクル70−図、第2図は2個の
吸収溶液サイクルを有する温水利用−型動用吸収式冷凍
機のサイクルフロー図、第3図は上記吸収式冷凍機の溶
液サイクル線図である。 1・・・第一凝縮器、2・・・第−再生器、3・・・第
一蒸発器、4・・・第一吸収器、5・・・第二凝縮器、
6・・・第二再生器、7・・・第二蒸発器、8・・・第
二吸収器、9・・・熱交換器、10・・・熱交換器、1
1・・・稀溶液ライン、12・・・稀溶液ライン、13
・・・濃溶液戻り配管、14・・・濃溶液戻り配管、1
5・・・冷媒戻シ配管、16・・・冷媒戻り配管、17
・・・冷却水、18・・・温水、19・・・冷水、20
・・・冷媒スプレー、21・・・溶液スプレー、22・
・・溶液ポンプ、23・・・冷媒ポンプ、24・・・冷
媒蒸気、25・・・冷媒蒸気、26・・・第1凝縮器、
27・・・第2凝縮器、28・・・第(n−1)凝縮器
、29・・・第n凝縮器、30・・テ第1再生器、31
・・・第2再生器、32・・・第(n二1)再生器、3
3・・・第n再生器、34・・・第1蒸発器、35・・
・第2蒸発器、36・・・第(II−1)蒸発器、37
・・・第n蒸発器、38・・・第1吸収器、39・・・
第2吸収器、40・・・第(n−1)吸収器、41・・
・第n吸収器、42・・・熱交換器、43・・・熱交換
器、44・・・溶液ポンプ、46・・・冷却水、47・
・・温水、48・・・冷水、A・・・第−再生器入口、
B・・・第−再生器出口、C・・・第一吸収器入口、D
・・・第一吸収器出口、E・・・第二吸収器入口、F・
・・第二吸収器出口、G・・・第二吸収器入口、H・・
・第二吸収器出口、A′・・・再生器入口、B′・・・
再生器出口、C′・・・吸収器入口、D′・・・吸¥ 
1 凹 A
Figure 1 is a cycle 70 diagram of a hot water utilization type dynamic absorption chiller having multiple absorption solution cycles, and Figure 2 is a cycle flow diagram of a hot water utilization type dynamic absorption chiller having two absorption solution cycles. FIG. 3 is a solution cycle diagram of the above-mentioned absorption refrigerator. 1... First condenser, 2... Second regenerator, 3... First evaporator, 4... First absorber, 5... Second condenser,
6... Second regenerator, 7... Second evaporator, 8... Second absorber, 9... Heat exchanger, 10... Heat exchanger, 1
1... Dilute solution line, 12... Dilute solution line, 13
...Concentrated solution return piping, 14...Concentrated solution return piping, 1
5... Refrigerant return piping, 16... Refrigerant return piping, 17
...Cooling water, 18...Hot water, 19...Cold water, 20
... Refrigerant spray, 21 ... Solution spray, 22.
... solution pump, 23 ... refrigerant pump, 24 ... refrigerant vapor, 25 ... refrigerant vapor, 26 ... first condenser,
27... Second condenser, 28... (n-1)th condenser, 29... Nth condenser, 30... Te first regenerator, 31
...Second regenerator, 32...Nth (n21) regenerator, 3
3... nth regenerator, 34... first evaporator, 35...
- Second evaporator, 36... No. (II-1) evaporator, 37
...nth evaporator, 38...first absorber, 39...
Second absorber, 40...(n-1)th absorber, 41...
- nth absorber, 42... heat exchanger, 43... heat exchanger, 44... solution pump, 46... cooling water, 47...
...Hot water, 48...Cold water, A...No.-Regenerator inlet,
B: Outlet of the second regenerator, C... Inlet of the first absorber, D
...First absorber outlet, E...Second absorber inlet, F.
...Second absorber outlet, G...Second absorber inlet, H...
・Second absorber outlet, A'...Regenerator inlet, B'...
Regenerator outlet, C'...absorber inlet, D'...suction
1 concave A

Claims (1)

【特許請求の範囲】 1、凝縮器、再生器、蒸発器、吸収器、熱交換器、およ
び溶液ポンプよりなる一重効用吸収式冷凍機において、
凝縮器、再生器、蒸発器、吸収器、熱交換器を隔壁を介
して任意の組数に分割し、各組毎に独立した吸収溶液サ
イクルを形成させると共に冷水を任意の組数に分割した
蒸発器に順次通水し、冷却水を、冷水温度の一番高い区
分に対応する吸収器に通水した後、この蒸発器、吸収器
と吸収溶液サイクルを形成する凝縮器に流入させ、冷水
温度が二番目に高い区分に対応する凝縮器、吸収器の順
に流したことを特徴とする吸収式冷凍機。 2 冷水温度の最も低い区分に対応する吸収器に最も温
度の低い冷却水を通水した後に、これらと吸収溶液サイ
クルを形成する凝縮器に通水し、次に冷水温度の次に低
い区分に対応し、吸収溶液サイクルを形成する凝縮器、
吸収器の順に通水することを特徴とする特許請求の範囲
第1項記載の吸収式冷凍機。
[Claims] 1. A single-effect absorption refrigerator comprising a condenser, a regenerator, an evaporator, an absorber, a heat exchanger, and a solution pump,
The condenser, regenerator, evaporator, absorber, and heat exchanger are divided into any number of sets via partition walls, and each set forms an independent absorption solution cycle, and the chilled water is divided into any number of sets. Water is sequentially passed through the evaporator, and the cooled water is passed through the absorber corresponding to the category with the highest chilled water temperature, and then flows into the condenser that forms an absorption solution cycle with the evaporator and absorber. An absorption refrigerating machine characterized by flowing in the order of condenser and absorber corresponding to the second highest temperature category. 2 After passing the lowest temperature cooling water through the absorber corresponding to the lowest chilled water temperature category, the water is passed through the condenser that forms an absorption solution cycle with these, and then to the next lowest chilled water temperature category. a corresponding condenser forming an absorption solution cycle;
2. The absorption refrigerator according to claim 1, wherein water is passed through the absorber in order.
JP10070282A 1982-06-14 1982-06-14 Absorption type refrigerator Pending JPS58219370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10070282A JPS58219370A (en) 1982-06-14 1982-06-14 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10070282A JPS58219370A (en) 1982-06-14 1982-06-14 Absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPS58219370A true JPS58219370A (en) 1983-12-20

Family

ID=14281030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10070282A Pending JPS58219370A (en) 1982-06-14 1982-06-14 Absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPS58219370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144062U (en) * 1984-03-06 1985-09-25 大阪瓦斯株式会社 absorption refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144062U (en) * 1984-03-06 1985-09-25 大阪瓦斯株式会社 absorption refrigerator

Similar Documents

Publication Publication Date Title
US4337625A (en) Waste heat driven absorption refrigeration process and system
US3831397A (en) Multi-stage absorption refrigeration system
JPS60175979A (en) Multiple effect absorption type refrigerator
CN1082650C (en) Two-section or multi-section hot water lithium bromide absorbing refrigerating unit
US3990263A (en) Absorption refrigerating installation
JP2000171119A (en) Triple-effect absorption refrigerating machine
JP3102483B2 (en) Absorption refrigerator
JPS58219370A (en) Absorption type refrigerator
JPH0278866A (en) Refrigerator of absorption type
KR20080094985A (en) Hot-water using absorption chiller
JP2959210B2 (en) Absorption refrigerator
JP4004019B2 (en) Absorption refrigerator
JP2000266422A (en) Absorption refrigerating machine
JP2779565B2 (en) Absorption refrigerator
JPS5998244U (en) Multi-dimensional refrigerator
JPH07198222A (en) Heat pump including reverse rectifying part
JPS58219369A (en) Absorption type refrigerator
JPH06241615A (en) Evaporator for refrigerating machine
JPH11337198A (en) Energy saving refrigeration system
JPS5899661A (en) Engine waste-heat recovery absorption type cold and hot water machine
JPH0783530A (en) Water and lithium bromide absorption refrigerator
JP2000018753A (en) Absorption refrigerating machine
JPS58108368A (en) Double effect absorption type refrigerator
JPS6044777A (en) Absorption type cold and hot medium obtaining device
SU879202A1 (en) Bromium-litium absorption unit for producing heat and refrigeration