JPS5821935A - Fault position detecting system for measuring information multiplex transmission system - Google Patents

Fault position detecting system for measuring information multiplex transmission system

Info

Publication number
JPS5821935A
JPS5821935A JP56120723A JP12072381A JPS5821935A JP S5821935 A JPS5821935 A JP S5821935A JP 56120723 A JP56120723 A JP 56120723A JP 12072381 A JP12072381 A JP 12072381A JP S5821935 A JPS5821935 A JP S5821935A
Authority
JP
Japan
Prior art keywords
information
light
central processing
light emitting
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56120723A
Other languages
Japanese (ja)
Other versions
JPS6322696B2 (en
Inventor
Takeshi Yasuhara
安原 毅
Eiichi Nabeta
鍋田 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP56120723A priority Critical patent/JPS5821935A/en
Priority to US06/402,377 priority patent/US4531193A/en
Priority to CA000408285A priority patent/CA1220835A/en
Priority to AU86518/82A priority patent/AU549860B2/en
Priority to BR8204472A priority patent/BR8204472A/en
Priority to EP82106917A priority patent/EP0071912B1/en
Priority to DE8282106917T priority patent/DE3274495D1/en
Priority to EP84114777A priority patent/EP0159401B1/en
Priority to DE19823229010 priority patent/DE3229010A1/en
Priority to DE8484114777T priority patent/DE3279510D1/en
Publication of JPS5821935A publication Critical patent/JPS5821935A/en
Publication of JPS6322696B2 publication Critical patent/JPS6322696B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/248Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains by varying pulse repetition frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/252Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques using analogue/digital converters of the type with conversion of voltage or current into frequency and measuring of this frequency

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Small-Scale Networks (AREA)
  • Selective Calling Equipment (AREA)
  • Optical Communication System (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To detect fault positions, by making the structure duplex between a central processor and an optical branching/connecting device. CONSTITUTION:A central processor selects either a light emitting element EO11 or EO12. The information of light emission is branched into N pieces by a star coupler SC, and these branched pieces of information are received at photodetectors OE21-OE2N provided to various types of measuring devices. The measuring devices send back the prescribed information in an opposite route and based on the received information. If no send-back information is available, the rest light emitting elements are driven by the central processr to collect the information. Fault positions can be decided from the combination of the send-back information and the used light emitting elements.

Description

【発明の詳細な説明】 この発明は中央処理装置と複数oIIIl定装置との間
を光伝送路によって結合し、これらの間で光による情報
伝送を行ないうるようにした測定情報伝送方式に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measurement information transmission system in which a central processing unit and a plurality of oIIII measurement devices are coupled by an optical transmission line, and information can be transmitted between them by light. be.

従来、かかる情報伝送システムに使用される光伝送路(
光ファイバ)Fi一般に高価であるため通常は光信号の
分岐または結合を行なう光分岐、結合手段を介して中央
処理装置と複数の測定装置とを光結合することによp光
伝送路の使用本数または伝送路長を節約してシステムの
コストダウンを図っている・しかしながら、このような
りステムにおいて中央処理装置または測定装置の送、受
光素子あるいは伝送路に何らかの障害が発生すると、伝
送が金(不*!!になるという危険性を有しているとと
もに、どの部位で障害が発生したかを検出することがで
きないという欠点を有していた〇この発明は上記に鑑み
なされたもので、上述の如き欠点を除去し、システムの
信頼性を向上させるとと−K、故障点の検出を容易にす
ることを目的どする亀のである。
Conventionally, optical transmission lines (
Optical fiber) Since Fi is generally expensive, the number of optical transmission lines used is reduced by optically coupling the central processing unit and multiple measuring devices through optical branching and coupling means that branch or couple optical signals. However, in such a system, if any failure occurs in the transmission of the central processing unit or measurement device, the light receiving element, or the transmission path, the transmission will be interrupted. This invention has been made in view of the above, and has the disadvantage that it is not possible to detect in which part the failure has occurred. The purpose of this system is to eliminate such defects, improve system reliability, and facilitate the detection of failure points.

この発明の特徴は端的には光伝送路および発。The features of this invention are simply the optical transmission line and the light source.

受光素子に冗長性をもたせるととくより上述の如き危険
性をなくすとと−に、故障の検出を容易にする点にある
The purpose of providing redundancy to the light receiving element is to eliminate the above-mentioned risks and to facilitate the detection of failures.

以下、この発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の実施例を示すシステム構成図、$1
2−は測定装置O概要を示すプロッタ図、第3!IIは
測定装置0Ill細を示す回路構成図、第4■Fi横械
的な変位量を容量値に変換して検出する原理を説明する
九めの原理図、第5Iaは第3図の動作を説明するため
のタイムチャート、第611は容量検出部の他の実施例
を示す回路図である。
Figure 1 is a system configuration diagram showing an embodiment of this invention, $1
2- is a plotter diagram showing an outline of the measuring device O, 3rd! II is a circuit configuration diagram showing the measuring device 0Ill detail, 4th Fi is the ninth principle diagram explaining the principle of converting the transverse displacement amount into a capacitance value and detecting it, and 5Ia is the operation shown in Figure 3. In the time chart for explanation, No. 611 is a circuit diagram showing another embodiment of the capacitance detection section.

第1図において0111.0に12.0121〜0IC
2Nはフォトダイオード(FD)等の受光素子%101
1゜1012.1021〜l02Nは発光ダイオード(
LID)等の発光素子、cm ti集中管理室(パネル
側) 、SCは2本の光伝送路をN本の光伝送路に光分
岐するとともに、N本の光伝送路を2本の光伝送路に光
結合するスターカプラ(8C)、 T1〜’r)JFi
現場(フィールド)側に設けられる測定装置(以下、ト
ラン黒々ツタともいう。)、Ll、L2*L〒1−LT
N#′i光ファイバからなる光伝送路である。
In Figure 1, 0111.0 to 12.0121~0IC
2N is a light receiving element such as a photodiode (FD)%101
1゜1012.1021~l02N is a light emitting diode (
Light emitting elements such as LID), cm ti centralized control room (panel side), SC branches two optical transmission lines into N optical transmission lines, and connects N optical transmission lines to two optical transmission lines. Star coupler (8C) optically coupled to the path, T1~'r) JFi
Measuring device installed on the field side (hereinafter also referred to as Toran Kuromo Tsuta), Ll, L2*L〒1-LT
This is an optical transmission line consisting of N#'i optical fibers.

測定装置またはトラン黒々ツタT1〜Tl;Elf!2
1iIKそのブロック構成が示されるように検出部1、
検出部選択回路2、周波数変換回路3、カウンタ4、タ
イ!−5、基準クロック発生回路6、マイクロプロセッ
サ7(以下、μm00M演算回路ともいう・)、光伝送
回路(第1図の変換器0!21〜012N、震021〜
E02N K相当する。)8、パッチIJ Kよる電源
回路9およびキーボード10等より構成される。この測
定装置はさらに第3図に示されるように、検出部1はこ
こではコンデンサC1゜02によって構成され、検出部
選択回路2tjコンデン?C1,C2$Pよび測温用の
コンダン?C,、サーミスタRaの選択を行なうC−M
O8←相補形MOil)!イブのアナログスイッチ8W
2(ff21 。
Measuring device or trans black ivy T1~Tl; Elf! 2
1iIK As its block configuration is shown, the detection unit 1,
Detection section selection circuit 2, frequency conversion circuit 3, counter 4, tie! -5, reference clock generation circuit 6, microprocessor 7 (hereinafter also referred to as μm00M arithmetic circuit), optical transmission circuit (converters 0!21 to 012N in Figure 1, 021 to 021)
E02N K equivalent. ) 8, a power supply circuit 9 based on patch IJK, a keyboard 10, etc. Further, in this measuring device, as shown in FIG. 3, the detection section 1 is constituted by a capacitor C1.02, and the detection section selection circuit 2tj capacitor? C1, C2 $P and temperature measuring conduit? C, CM for selecting thermistor Ra
O8←complementary MOil)! Eve analog switch 8W
2 (ff21.

8W22) よ)構成され、周波数変換回路3はコンデ
ンサ01,02の充放電の切り替えおよび7リツプ70
ツブQlのクリアまたはリセットを行なうアナログスイ
ッチSWI (SWI 1 、8WI 2 )と、コン
デンサC1また#ic2の充電々圧が所定の電圧レベル
(スレッシュホールドレベル)t−MJLJトII−に
ットされ、所定の時定数(抵抗Bf  、コンデンサC
f)によって決まる一定時間後にリセットされるフリッ
プフロップQl  (D形)とから構成されている・な
お、従来の一般的なり形フリップフロップを使用する場
合は、その前段にスレッシュホールドレベルを判別する
ための特別な回路(例JLは、シエきット回路)が必要
となるが、C−MOS形の7リツプ7oツグを使用する
場合はこのような回路を必要とせず、その切シ替わ9電
圧をその筐筒スレッシュホールド電圧として使用するこ
とができる・タイマ−5/fi2段のカウンタCT2 
、 CTaから構成され、−一〇〇M演算回路7からの
リセット信号PO3の解除によって基準クロック発生回
路6から与えられるクロック信号の計数を開始し、カウ
ンタ(CTI )4からのカウントアツプ信号によって
計数を停止する。μmC0M演算回路7Fi基準クロッ
ク発生回路6からのクロック信号によって駆動され種々
の演算、制御動作を行なう。例えば、検出部選択回路2
のアナログスイッチJiiW2 F(:モード選択信号
POIまたはPO2を送出してコンデンサC1測1定モ
ード、コンデンサC2測定モード、または温度測定モー
ド(抵抗R8およびコンデンサC5に上る測定)の選択
を行ない、非漏定時にはカウンタ4およびタイマー5に
対してリセット信号PO3を与えてこれらのリセットを
行なうとともに、測定時には該リセット信号PO3を解
除して計数動作を行なわせ、カウンタ4からのカウント
アツプ信号を割込信号IRQとして受け、タイマー5か
らの計数出力を端子PIO〜P115 を介して読取り
、所定の演算を行なう。μ−〇〇M演算−路7Ktj、
管理室側(パネル側)の上位計算機との間で光による情
報の授受を行なうための発光ダイオードLEDおよびフ
ォトダイオードPDからなる光伝送回路8、キーボード
10.発光ダイオードの異常(点灯しきゃ)を検出する
検出回路11、電力を低減させるために基準クロック発
生回路6およびμ−〇〇M演算回路7自体を間欠駆動す
るスタンバイモード1路12等が設けられている。なお
、9は第2図またFi第3図に示される所要の各部へ電
源を供給する九めのバッテリ電源回路である。
8W22) y), the frequency conversion circuit 3 switches the charging and discharging of the capacitors 01 and 02, and the 7rip 70
Analog switches SWI (SWI 1, 8WI 2) for clearing or resetting the knob Ql and the charging voltage of the capacitor C1 or #ic2 are set to a predetermined voltage level (threshold level) t-MJLJ-II-, Predetermined time constant (resistance Bf, capacitor C
It consists of a flip-flop Ql (D type) that is reset after a certain period of time determined by A special circuit (example: JL is a series kit circuit) is required, but when using a C-MOS type 7-lip 7-o plug, such a circuit is not required, and the switching 9 voltage can be used as the casing threshold voltage ・Timer 5/fi 2-stage counter CT2
, CTa, starts counting the clock signal given from the reference clock generation circuit 6 by canceling the reset signal PO3 from the -100M arithmetic circuit 7, and starts counting by the count-up signal from the counter (CTI) 4. stop. μmC0M calculation circuit 7Fi is driven by the clock signal from the reference clock generation circuit 6 and performs various calculations and control operations. For example, the detection section selection circuit 2
Analog switch JiiW2 F (: Sends mode selection signal POI or PO2 to select capacitor C1 measurement mode, capacitor C2 measurement mode, or temperature measurement mode (measurement on resistor R8 and capacitor C5) to prevent leakage. At regular times, a reset signal PO3 is given to the counter 4 and timer 5 to reset them, and at the time of measurement, the reset signal PO3 is released to perform counting operations, and the count-up signal from the counter 4 is used as an interrupt signal. The count output from timer 5 is read through terminals PIO to P115, and predetermined calculations are performed.μ-〇〇M calculation path 7Ktj,
An optical transmission circuit 8 consisting of a light emitting diode LED and a photodiode PD for exchanging information by light with the host computer on the management room side (panel side), and a keyboard 10. A detection circuit 11 for detecting an abnormality in the light emitting diode (when it should not be lit), a standby mode 1 path 12 for intermittently driving the reference clock generation circuit 6 and the μ-〇〇M calculation circuit 7 itself to reduce power consumption are provided. ing. Note that 9 is a ninth battery power supply circuit that supplies power to the necessary parts shown in FIG. 2 and FIG. 3.

この実施例に示される測定装置は、圧力等の機械的な変
位量を容量値に変換して検出し、該検出結果をさらにデ
ィジタル量に変換して測定するものである・ここで、そ
の検出原理について第4図を参照して説明する。
The measuring device shown in this example converts the amount of mechanical displacement such as pressure into a capacitance value, and then converts the detection result into a digital amount for measurement. The principle will be explained with reference to FIG.

同図に)には2つの固定電極ELp間に可動電極ELV
が配置され、該可動電極ELVは圧力等の機械的な変位
に応じて図の左右(矢印R参照)方向に移動する。この
場合、各電極間の容量CA1+ CA2は一方が増大す
れば他方は減少する、つまり差動的に変位する・ここで
、各電極の面積を8.電極間の誘電率を8、可動電極E
Lvと固定電極ELFとの間隔をdとし、例えば同図■
の点線で示される如く可動電極zLyがjdだけ変位し
たときの容量CAl 、 CA2は CA1騨M A/(d−jd) CA2− #A/(d+Δd) として求められる0ここで、これらの容量の和および差
を考えると、 CA1 + CA2 = tA・2d/(d2−Δ、1
2)CA2−CA2− tA・2Δd/(d2−jd2
)となり、したがってその比をとると、 (CAL −CA2 )/(CA1 + C人?)−Δ
d/dが得られ、変位量Δdを容量値(CAI  CA
2)/(CA1+CA2)Kよって求めることができる
In the same figure), there is a movable electrode ELV between two fixed electrodes ELp.
is arranged, and the movable electrode ELV moves in the left and right directions (see arrow R) in the figure in response to mechanical displacement such as pressure. In this case, if one of the capacitances CA1+CA2 between the electrodes increases, the other decreases, that is, they are differentially displaced.Here, the area of each electrode is 8. The dielectric constant between the electrodes is 8, the movable electrode E
Let the distance between Lv and the fixed electrode ELF be d, and for example,
As shown by the dotted line, the capacitances CA1 and CA2 when the movable electrode zLy is displaced by jd are calculated as Considering the sum and difference, CA1 + CA2 = tA・2d/(d2−Δ, 1
2) CA2-CA2-tA・2Δd/(d2-jd2
), and therefore, taking the ratio, (CAL - CA2 ) / (CA1 + C people?) - Δ
d/d is obtained, and the displacement Δd is expressed as the capacitance value (CAI CA
2)/(CA1+CA2)K.

同様にして、I!4図(B)では2つの固定電極ELF
に対して可動電極ELvが図の如く配置され、外部圧力
等の変位によって図の点線位置[jdだけ変位した場合
は次のようになる。この場合、容量CA1は固定、CA
2は可変であって、それぞれの値は上記と同様にして CA1■gAld 、 CA2− mA/(d+Δd)
と表わすことができる。そこで、これらの差を考えると
、 CA 1− CA 2 = l A @Δd/d(d+
Δd)であり、したがってCAl−CA2とCA2  
との比をとると、 (C’Al−CA2−)/CA2−Δd/dとなり、い
ずれにしても変位量Δdを静電容量値の関数として表わ
すことができる。これらの式からも明らかなように、変
位量は静電容量のみの関数となるから、電極間の誘電率
や浮遊容量の影響を受けず、このため機械的な変位量を
容量によって正確に検出することが可能となる。
Similarly, I! In Figure 4 (B), two fixed electrodes ELF
When the movable electrode ELv is arranged as shown in the figure and is displaced by the dotted line position [jd in the figure due to displacement due to external pressure, etc., the result will be as follows. In this case, capacitance CA1 is fixed, CA
2 is variable, and the respective values are CA1 gAld, CA2- mA/(d+Δd) in the same way as above.
It can be expressed as Therefore, considering these differences, CA 1- CA 2 = l A @Δd/d(d+
Δd), therefore CAl-CA2 and CA2
If we take the ratio, we get (C'Al-CA2-)/CA2-Δd/d, and in any case, the amount of displacement Δd can be expressed as a function of the capacitance value. As is clear from these equations, the amount of displacement is a function only of capacitance, so it is not affected by the dielectric constant or stray capacitance between the electrodes, and therefore the amount of mechanical displacement can be accurately detected by capacitance. It becomes possible to do so.

次に、このような検出原理にもとづく測定動作について
、主として第3図および第5図を用いて説明する。
Next, a measurement operation based on such a detection principle will be explained using mainly FIGS. 3 and 5.

初期状態に訃いては、μm00M演算回路7がらはモー
ド選択信号POI 、 PO2Fi与えられず、リセッ
ト信号PO3によってカウンタ(CTI ) 4および
タイマー5#′iリセツト状態にある・ここで、第5図
(()の如きコンデンサC1の測定モード信号が与えら
れ、gs図(ロ)の如くリセット信号PO3が解除され
るとコンデンサC1% ス(7f 8W21 * SW
I 1−抵抗R1電源VDDなる経路が形成されるので
、コンデンサC1が第5図(ハ)で示されるように充電
される。t1時間後にこの充電々圧がフリップフロッグ
Q1のスレッシュホールド電圧vTHを超えると、該フ
リップフロッグQ1がセットされ、−その出力端子Qよ
り出力が得られる。この出力は抵抗Rfおよびコンデン
サCfに与えられるとともに、アナログスイッチSWI
にも与えられる。その結果、スイッチ8W12が開放さ
れて抵抗Rf とコンデン?Cfによる充電回路が形成
される。なお、このときswx iが点線の位置へ切9
替えられ、コンテ:y t C1の放電が行なわれる。
In the initial state, the μm00M arithmetic circuit 7 is not given mode selection signals POI, PO2Fi, and the counter (CTI) 4 and timer 5#'i are reset by the reset signal PO3.Here, as shown in FIG. When the measurement mode signal of the capacitor C1 as shown in () is given and the reset signal PO3 is released as shown in the gs diagram (b), the capacitor C1% (7f 8W21 * SW
Since a path from I1 to resistor R1 and power source VDD is formed, capacitor C1 is charged as shown in FIG. 5(c). When this charging voltage exceeds the threshold voltage vTH of flip-frog Q1 after time t1, flip-frog Q1 is set and an output is obtained from its output terminal Q. This output is given to the resistor Rf and capacitor Cf, and is also applied to the analog switch SWI
It is also given to As a result, switch 8W12 is opened and resistor Rf and capacitor ? A charging circuit using Cf is formed. At this time, swx i is cut to the dotted line position.
Then, the discharge of conte: y t C1 is performed.

コンデンサCfの充電々圧が111115図(ホ)で示
されるようK、所定時間tct*に所定の値になると、
7リツグ70ツブQ1はクリアされ、その結果、7リツ
プフロツグQ1からは第5図に)の如き一定幅(tc)
の出力パルスが得られる。なお、7リツプフロツプQ1
のリセットによってアナログスイッチSWIもオフとな
るので、スイッチ8W12 tj第3(2)の図示位置
に復帰し、コンデンTCfの放電回路を形成する。上述
の時間t1はコンデンサC1および抵抗Rの大きさに比
例するから、フVッグフQッグQ1の出力からはコンタ
ン?CIの容量値に比例した周波数のパルス信号が得ら
れることKなる。このパルス信号はカウンタ4によって
計数され、所定数に達すると第5崗(へ)に示される如
きパルス(カウントUP出力)を発してタイマー5によ
る計数を停止させる(I!5図(ト)参照)。タイマー
5は先のリセット信号PO3の解除上ともにパルス発生
回路6からのりaツクパルスを計数しており、該計数結
果がカウンタ4からのカラン)UP信号を受けたμ−C
OM演算回路7により端子PIO〜P!15を介して読
敗られる。
When the charging pressure of the capacitor Cf reaches a predetermined value K at a predetermined time tct* as shown in Fig. 111115 (e),
The 7-lip 70-tube Q1 is cleared, and as a result, from the 7-lip frog Q1, a constant width (tc) as shown in FIG.
output pulses are obtained. In addition, 7 lip-flop Q1
Since the analog switch SWI is also turned off by the reset, the switch 8W12tj returns to the third (2) position shown in the figure, forming a discharge circuit for the capacitor TCf. Since the above-mentioned time t1 is proportional to the size of the capacitor C1 and the resistor R, there is no constant from the output of the FFQQ1. This means that a pulse signal with a frequency proportional to the capacitance value of CI can be obtained. This pulse signal is counted by the counter 4, and when it reaches a predetermined number, it emits a pulse (count UP output) as shown in the 5th line to stop counting by the timer 5 (see Figure I!5 (G)). ). The timer 5 counts the positive pulses from the pulse generating circuit 6 upon the release of the reset signal PO3, and the counting result is calculated from the μ-C which received the UP signal from the counter 4.
The OM calculation circuit 7 selects terminals PIO~P! It is read and lost through 15.

こ\で、上記7リツプフaツブQlのスレッシュホール
ド電圧を■1Hとすれば、 tl VTR−VDD(1−e−”l ) として表わされ、したがってコンデンサC1の充電時間
11 (第5図に)参照)は、 の如く表わされる。
Now, if the threshold voltage of the above-mentioned 7-lip tube Ql is 1H, it can be expressed as tl VTR-VDD (1-e-"l), and therefore the charging time of capacitor C1 is 11 (as shown in Fig. 5). ) is expressed as follows.

を九、上記の時間tc4同様にして として表わされる。なお、Rf、Cfの値は既知である
から、このtcは一定値である。
is expressed as 9, similarly to the above time tc4. Note that since the values of Rf and Cf are known, this tc is a constant value.

したがって、コンデンサC1の充、放電動作をn回カウ
ントする迄の基準クロック発生i路6からのりQツクパ
ルスを数えることによシ、すなわちタイマー5かちの計
数出力によってコンデンサC1による充放電時間TI 
を求めることができる。
Therefore, by counting the number of Q-pulses from the reference clock generation i-path 6 until the charging and discharging operations of the capacitor C1 are counted n times, the charging and discharging time TI by the capacitor C1 can be determined by counting the count output of the timer 5.
can be found.

この充放電時間T1は第5図に)からも明らかなように
1充電(tl)はn回であるのに対して放電(tc) 
Fi韮−1回であるから T1−nJ +(n  1)tc・・・・・・・・・・
・・・・・・・・・・・・・・(1)として求めること
ができる。なお、このようfcn回カウントするのは、
時間測定カウンタ(CT2゜CTa )の分解能を上げ
るためであり、その数mは基準クロック発生回路6の出
力周波数、抵抗Rの抵抗値またはコンデンサC1の容量
値等に応じて適宜選択される。
This charging/discharging time T1 is clear from Fig. 5), one charge (tl) is n times, while discharging (tc)
Fi - 1 time, so T1 - nJ + (n 1) tc...
・・・・・・・・・・・・・・・It can be obtained as (1). In addition, counting fcn times in this way is
This is to increase the resolution of the time measurement counter (CT2°CTa), and the number m thereof is appropriately selected depending on the output frequency of the reference clock generation circuit 6, the resistance value of the resistor R, the capacitance value of the capacitor C1, etc.

このようにして、コンデンサC1の充放電時間T1を測
定し先後(なお、測定されるのは厳密には充電時間t1
だけである。)、μm00M演算回路7からの指令信号
POIまたはPO2によりスイッチ8W21を切換えて
コンタン+jc2の測定モードとし、コンデンサC2の
充放電時間を測定する。
In this way, the charging and discharging time T1 of the capacitor C1 is measured, and the charging and discharging time T1 of the capacitor C1 is measured.
Only. ), the switch 8W21 is switched by the command signal POI or PO2 from the μm00M arithmetic circuit 7 to set the measurement mode of CONT +jc2, and the charging/discharging time of the capacitor C2 is measured.

この場の動作の態様は全く同様であるから説明は省略す
るが、そのタイムチャートは第5図の右側半分KC2モ
ードとして示されている。な訃、この場合の充放電時間
〒2は(1)式と同様にしてT2 = nt2 + (
11−1)tc  ・・川・川・旧・・・・・叫・呻値
)となる。
Since the mode of operation here is completely the same, the explanation will be omitted, but the time chart thereof is shown in the right half of FIG. 5 as the KC2 mode. In this case, the charging/discharging time 〒2 is calculated as T2 = nt2 + (
11-1) tc...river, river, old...scream, groan value).

p−C0M 演jllll路7 テtj上記(1) 、
 (10式より次の如き演算を行なう。
p-C0M performance jllll road 7 Tetj above (1),
(The following calculation is performed using equation 10.

TI +72−2(n−1)tに の1)式は先の原理図における説明からも明らか・なよ
うに変位に比例するから、μmC0M演j!−路7では
上記の如き演算を行なうことによってその変位を測定で
きることがわかる。
Equation 1) for TI +72-2(n-1)t is proportional to displacement, as is clear from the explanation in the previous principle diagram, so μmC0M equation j! It can be seen that in path 7, the displacement can be measured by performing the calculations described above.

なお、上記ではコンデンサC15C2の容量を差動的に
変化させることにより機械的な変位量、例えば差圧ΔP
を測定するようにしたが、$1!6図に示されるように
、コンデンサの一方(C2)を固定とし5、他方(CI
)を可変とするものについても同様に測定しうろことは
、先の原理図の説明からも明らかである。ただし、この
場合は上記の差圧ΔPのかわりに圧力Pを求める仁とと
なるか、その演算式は上記と同様にして次のように表わ
される。
In addition, in the above, by differentially changing the capacitance of capacitor C15C2, the amount of mechanical displacement, for example, the differential pressure ΔP
However, as shown in Figure $1!6, one of the capacitors (C2) is fixed, and the other (CI
) can be measured in the same way, as is clear from the explanation of the principle diagram above. However, in this case, the pressure P is calculated instead of the above-mentioned differential pressure ΔP, and the calculation formula can be expressed as follows in the same manner as above.

上記の実施例においては、機械的な変位量を静電容量値
に変換して検出するようにしたが、これを抵抗1周波数
または電圧に変換して検出することも可能である・ 第7〜9図は検出部の他の実施例を示す回M図で、第7
LV、lは抵抗に変換する場合、第8図は周波数に変換
する場合、そして第9因は電圧に変換して検出する場合
をそれぞれ示すものである。
In the above embodiment, the amount of mechanical displacement was converted into a capacitance value and detected, but it is also possible to convert this into a resistance frequency or voltage and detect it. FIG. 9 is a diagram showing another embodiment of the detection unit, and the seventh
LV and l are converted into resistance, FIG. 8 shows the case where they are converted into frequency, and the ninth factor is converted into voltage and detected.

これらの図において、コンダン?Cの容量値および抵抗
RCの抵抗値はともに既知であり、またスイッチSWI
 1 、8W21およびフリップフロップQ1は第3一
実施例に示されるものと同様のものであるO 第7図(a)〜(e)Kおける検出原理はいずれも容量
による検出原理と全く同様であって、充電ま良は放電時
間が抵抗とコンデンサとの積に比例することを利用して
、と\では抵抗値を求めるようKしたものである。すな
わち、同図(a)K:示されるものはスイッチ8W21
をRX側に倒してその充放電時間〒1を求め、次にRC
側に倒して同様に充放電間T2を求め、 なる演算によってRXの抵抗値を求める。
In these figures, Condan? The capacitance value of C and the resistance value of resistor RC are both known, and switch SWI
1, 8W21 and flip-flop Q1 are similar to those shown in the third embodiment.O The detection principle in FIGS. 7(a) to (e)K is exactly the same as the capacitive detection principle. , the charging efficiency is calculated by using the fact that the discharge time is proportional to the product of the resistor and the capacitor, and the resistance value is determined by \. That is, in the same figure (a) K: What is shown is switch 8W21
Move it to the RX side and find its charge/discharge time 〒1, then turn the RC
Turn it to the side, calculate the charging/discharging time T2 in the same way, and calculate the resistance value of RX by the following calculation.

同じく、同一(O)に示されるものは先の実施例におけ
るコンダン? C1a C2を抵抗R1,R2におきか
えたものに相当するから、その演算式もの如く全く同様
に表わされることになる。
Similarly, what is indicated by the same (O) is the conduit in the previous example? Since it corresponds to replacing C1a and C2 with resistors R1 and R2, it can be expressed in exactly the same way as the arithmetic expression.

ま九、同WJ伽)に示されるものはライン抵抗R4が変
動する場合である。し九がって、スイッチ8W21を順
次切シ替えることKよってRz + 2R4。
The case shown in Figures 9 and 7 is a case where the line resistance R4 fluctuates. Then, by sequentially switching the switches 8W21, Rz + 2R4.

2RjおよびRCKよるそれぞれの充放電時間Tl。2Rj and RCK charging/discharging time Tl.

T2およびTうを求め なゐ演算式より抵抗値RXを測定する。Find T2 and T Measure the resistance value RX using the calculation formula.

第8図においては、検出部にてすでに周波数に変換され
ている・から、第3図実施例の如き周波数変換回路は不
要となり、検出部からの出力は適宜増巾されて直接カウ
ンタへ導入される。この場合、カウンタが所定数Nを計
数する迄にどれだけの時間Tがか\るかを演算すること
によってその周波数(N/り)を求めることができる。
In FIG. 8, since the frequency has already been converted by the detection section, the frequency conversion circuit as in the embodiment of FIG. 3 is not necessary, and the output from the detection section is appropriately amplified and introduced directly into the counter. Ru. In this case, the frequency (N/ri) can be found by calculating how much time T takes until the counter counts the predetermined number N.

$1!9図は電圧E1に変換して検出する場合であって
、コンゾンデCK一定の電流(I)を流して充電を行な
い、該充電され要電流に比例する電圧を演算増巾器OP
2の一方に与え、演算増巾器OP2のもう一方の入力に
は演算増巾器OPIによって増巾され九入力(測定)電
圧E1を導入し、充電々圧が該入力(測定)電圧Σlを
超えたとき7リツプフロツプQ1を七ッ卜するようにし
たものである。コンデンサCによる充電は一定の態様で
行なわれるのに対し、測定入力電圧レベルglが変動す
るので、これKよって電圧値に応じ九周波数信号を得る
ことができる。こ\で、スイッチSW21が図示の状1
1にあるときの時間測定出力をT2、また図示とは反対
側に切〕替えたときのそれをT1とすると、T2−Tl
−CX/I @El なる演算によって電圧El を求めることができる0こ
〜に、■はコンデンサCに与えられる一定の電’ R5
Czはコンダン?Cの容量値である。
Figure 1!9 shows the case of converting to voltage E1 and detecting it. A constant current (I) is passed through the consonde CK to charge it, and the charged voltage proportional to the required current is detected by the operational amplifier OP.
2, and input (measured) voltage E1 amplified by operational amplifier OPI into the other input of operational amplifier OP2. When the number exceeds 7, the 7 lip flop Q1 is set to 7. While charging by the capacitor C is carried out in a constant manner, the measured input voltage level gl varies, so that nine frequency signals can be obtained depending on the voltage value K. At this point, switch SW21 is set to state 1 as shown in the figure.
If the time measurement output when the output is at 1 is T2, and when the output is switched to the opposite side from that shown in the figure, it is T1, then T2 - Tl
-CX/I @El The voltage El can be found by the calculation 0, where ■ is the constant voltage given to the capacitor C' R5
Is Cz Condan? This is the capacitance value of C.

以上の如く構成され九測定装置またはトランスミッタは
、累1図で示されるように、2:Nに光分妓し、かつN
:2に光結合するスターカプラを介して集中管理室内の
中央処理装置と接続されている。すなわち、光伝送路L
1*L2は二重化されておシ、該二重化に伴ない管理室
CE内の中央処理装置には二対の発、受光素子EOII
、EO12および0111,0E12が設けられている
The nine measuring devices or transmitters configured as described above split light into 2:N and N as shown in Figure 1.
:2 is connected to the central processing unit in the central control room via a star coupler. That is, the optical transmission line L
1*L2 is duplexed, and along with the duplexing, the central processing unit in the control room CE has two pairs of emitters and light-receiving elements EOII.
, EO12 and 0111, 0E12 are provided.

と\で、再び第1図を参照して故障箇所検出方法につい
て説明する。
and \, the fault location detection method will be explained with reference to FIG. 1 again.

まず、管理室CE内の発光素子E011またはEO12
のいずれか一方を選択してしかるべき情報を発する。該
情報は光伝送路L 1 * L 2のいずれか一方を介
してスターカプラ8Cに与えられ、と\でN個に分岐さ
れる。!’DI!Iに分岐された情報はさらに光伝送路
LTI〜l7rNt介して各トランスミッタの受光素子
0E21〜0E2N  で受信される。各トランスミッ
タはこの受信情報にもとづいて所足の情報を発光素子E
O21−EO2Nを経て上記とは逆のルートで管理室C
Iへ返送するので、管理室CE内の中央処理装置では上
記指令情報にもとづく所定の情報が返送されてくるか否
か、ま九はその返送情報の内容によって、その故障点位
置を診断する・ いま、例えば中央II&珊装置側の受光素子0)C1l
カ故障しているものと仮定する。ただし、ここでは故障
部所が同11には2つ以上発生しないことが前提である
First, the light emitting element E011 or EO12 in the control room CE
select one of them and issue the appropriate information. The information is given to the star coupler 8C via one of the optical transmission lines L1*L2, and is branched into N pieces at and\. ! 'DI! The information branched to I is further received by the light receiving elements 0E21 to 0E2N of each transmitter via the optical transmission lines LTI to l7rNt. Based on this received information, each transmitter transmits the necessary information to the light emitting element E.
Go to the control room C via O21-EO2N and take the opposite route to the above.
Since the information is returned to I, the central processing unit in the control room CE determines whether or not predetermined information based on the above command information is returned, and the machine diagnoses the location of the failure point based on the content of the returned information. Now, for example, the light receiving element 0) C1l on the central II & coral device side
Assume that the engine is malfunctioning. However, here it is assumed that two or more failure locations do not occur in the same 11 locations.

この場合、盲ず発光素子1011から指令情報を送出す
ると、その返送情報はトランスオッタT1〜TNからス
ターカブ′y8Cを介して光伝送路Ll。
In this case, when command information is sent from the blind light emitting element 1011, the returned information is transmitted from the transotters T1 to TN to the optical transmission line Ll via the star cube 'y8C.

L2に返送されて(為ので、受光素子01812ではそ
の返送情報を受信するが、受光素子01CIIは故障し
ているため受信することができない・これは、発光素子
E012を選択して指令情報を発した場合も同様であっ
て、矢張9受光素子01CIIでは返送情報を受信する
仁とができない・また、例えば発光素子Foilが故障
している場合は、骸発光素子E011を選択して指令情
報を発しても、もともと発光素子が故障しているので受
光素子ogt1.ox12では情報を受信し得す、発光
素子EO12を選択して指令情報を発した場合にはじめ
て両受光素子0E11,0E12にて清報が受信される
ことになる。
Since the information is returned to L2, the light receiving element 01812 receives the returned information, but the light receiving element 01CII cannot receive it because it is out of order. The same goes for the case where the Yabari 9 light receiving element 01CII cannot receive the return information.For example, if the light emitting element Foil is out of order, select the bare light emitting element E011 and send the command information. Even if the light emitting element is originally malfunctioning, the light receiving element ogt1.ox12 will be able to receive the information. Only when the light emitting element EO12 is selected and the command information is emitted, both light receiving elements 0E11 and 0E12 will be able to receive the information. information will be received.

さらに、例えば伝送路Llが故障している場合を考える
と、この場合も発光素子EOIIを選択したときは受光
素子OEI 1 、0E12では情報を受信できないが
、発光素子1012を選択したときは受光素子0E12
のみにて所定の情報が受信される。以下、同様にして、
これら故障位置(へ)と、受光素子0E11.0IC1
2K>ける受信情報の有0)、無(X) 、&の関係を
まとめると次表の如く表わされる。なお、(→は発光素
子E011を選択して指令情報を送出し九場合であシ、
fl/Ii発光素子発光素子全O12九場合である。
Furthermore, for example, considering a case where the transmission line Ll is out of order, in this case as well, when the light emitting element EOII is selected, the light receiving elements OEI 1 and 0E12 cannot receive information, but when the light emitting element 1012 is selected, the light receiving element OEI 1 and 0E12 cannot receive information. 0E12
Predetermined information is received only by the user. Similarly, below,
These failure positions and light receiving element 0E11.0IC1
The relationship between the presence (0), absence (X), and & of the received information received by 2K> is summarized as shown in the following table. Note that (→ is the case when the light emitting element E011 is selected and the command information is sent out).
This is the case when the fl/Ii light emitting device has a total of O129 light emitting devices.

表 上記の表からも明らかなように、故障位置に応じて受光
素子01CII、0112における受信情報の有無の対
様が異なるので、管理室CE内の中央処理装置ではこの
パターンを調べることKよりどの位置で故障が生じてい
るかを知ることができる。なお、光伝送路LTI””L
TN=発光累子E021〜KO2’N。
Table As is clear from the table above, the pairing of the presence or absence of received information in the light receiving elements 01CII and 0112 differs depending on the fault location, so the central processing unit in the control room CE should check this pattern. It is possible to know whether a failure is occurring at the location. In addition, the optical transmission line LTI""L
TN=light emitting element E021 to KO2'N.

受光素子0E21〜0N2Nを含むトランスミツタテ1
〜TN系においては、どの伝送路(LTI〜I、TN)
 またけ累子(0121〜2N 、 KO21〜2N)
に故障が生じたかの判定までは出来ないが、返送情報の
内容を調べることKよって、スターカプラSCから先の
どのトランスンツタ系に故障が生じたかを知ることがで
きる。
Transmitter 1 including light receiving elements 0E21 to 0N2N
~In the TN system, which transmission line (LTI~I, TN)
Yuko Matake (0121~2N, KO21~2N)
Although it is not possible to determine whether a failure has occurred in the star coupler SC, by checking the contents of the returned information, it is possible to know in which transformer system beyond the star coupler SC a failure has occurred.

以上のように、この発明によれば、光伝送路を二重化す
るとともに、該二重化に対応して二対の発、受光素子を
管理室内の中央処理装置に設けるようKしたので、シス
テムの信頼性が向上するとともに故障位置の検出をきわ
めて容J6になしうるものである。
As described above, according to the present invention, the optical transmission line is duplicated, and two pairs of light emitting and light receiving elements are provided in the central processing unit in the management room in response to the duplexing, thereby increasing the reliability of the system. This improves the accuracy and makes it extremely easy to detect the location of a fault.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示すシステム構成図、第2
図は測定装置t()ランスミッタ)の概要を示すブロッ
ク図、第3図は測定装置(トランスきツタ)の詳細を示
す回路構成図、第4図t’h機械的な変位量を容量値に
変換して検出する原理を説明するための原理図、第5図
は第3図の動作を説明するためのタイムチャート、第6
図は容値検出部の他の実施例を示す回路図、第7図は抵
抗検出部の実施例を示す回路図、第8図は周波数検出部
の実施例を示す回路図、第9図は電圧検出部の実施例を
示す回路図である。 符号説明 1・・・検出部、2・・・検出部選択回路、3・・・周
波数変換回路、4・・・カウンタ、5・・・タイマー、
6・・・基準クロックパルス発生回路、7・・・μmC
0M演X口路、8・・・光伝送回路、9・・・バッテリ
電源回路、10・・・キーボード、11・・・LED異
常検出回路、12・−・スタンバイモード回路、CE・
−・集中管理室、OEl 1゜0K12 、0E21〜
0E2N・・・受光素子、EOII、KO12・]1C
021〜KO2N ・・・発光素子、L11L2#LT
11LTN・−・光伝送路、8C・・・カプラ、T1〜
TN−・測定装置(トランス建ツメ) 、 8W1 、
8W2・・・アナログスイッチ、CTI〜CT3−・カ
ウンタ、Ql ・・・7リツプフロツグ、OPI 、 
OF2・・・演算増巾器代理人 弁理士 並 木 昭 
夫 代理人 弁理士 松 崎   清
Fig. 1 is a system configuration diagram showing an embodiment of this invention;
The figure is a block diagram showing the outline of the measuring device t (transmitter), Figure 3 is a circuit diagram showing the details of the measuring device (transmitter), and Figure 4 is converting the amount of mechanical displacement into a capacitance value. A principle diagram for explaining the principle of conversion and detection, Figure 5 is a time chart for explaining the operation of Figure 3, and Figure 6 is a diagram for explaining the principle of conversion and detection.
The figure is a circuit diagram showing another embodiment of the capacitance value detection section, FIG. 7 is a circuit diagram showing an embodiment of the resistance detection section, FIG. 8 is a circuit diagram showing an embodiment of the frequency detection section, and FIG. 9 is a circuit diagram showing an embodiment of the frequency detection section. FIG. 2 is a circuit diagram showing an example of a voltage detection section. Description of symbols 1...detection section, 2...detection section selection circuit, 3...frequency conversion circuit, 4...counter, 5...timer,
6...Reference clock pulse generation circuit, 7...μmC
0M operation
-・Centralized control room, OEl 1゜0K12, 0E21~
0E2N...Photodetector, EOII, KO12・]1C
021~KO2N...Light emitting element, L11L2#LT
11LTN--Optical transmission line, 8C...Coupler, T1~
TN-・Measuring device (transformer claw), 8W1,
8W2...analog switch, CTI~CT3-・counter, Ql...7 lipfrog, OPI,
OF2...Operation amplifier agent Akira Namiki, patent attorney
Husband's agent: Kiyoshi Matsuzaki, patent attorney

Claims (1)

【特許請求の範囲】[Claims] 一方向には光を分岐し、働方肉には光を結合す為光分鋏
、曽合手段を介して1側の中央461m装置と鳳儒の一
定装置とを光結合し、該中央処理装置からO指令に%と
づいて烏−の一定装置からの各測定情報を多重化して伝
送するようKした測定情報多重伝送システムにおいて、
該中央処理装置と光分紋、曽合手段との間の光伝送路を
二重化するとともに、腋二重化に応じて中央処理装置に
二対の発、受光素子を設け、中央処理装置から前記発光
素子のいずれかを交互に選択して各測定装置に指令を発
し、腋指令にもとづく台測定装置からの返送情報が前記
光分岐、結合手段および光伝送路゛を介して中央処理装
置内の受光素子で受信されるか否かまたはその受信内容
を調べることによりその故障箇所を検出しうるようKし
たことを特徴とする測定情報多重伝送システムにおけゐ
故障位置検出方式。
In order to split the light in one direction and combine the light in the working meat, the central 461m device on the 1st side and the fixed device of Fengyu are optically coupled through the optical splitting scissors and the combining means, and the central processing In a measurement information multiplex transmission system in which each measurement information from a certain device is multiplexed and transmitted based on an O command from the device,
The optical transmission path between the central processing unit and the light-separating and combining means is duplicated, and two pairs of light-emitting and light-receiving elements are provided in the central processing unit in accordance with the duplexing, and the light-emitting element is connected to the central processing unit. A command is issued to each measuring device by alternately selecting one of the above, and the information returned from the stand measuring device based on the armpit command is sent to the light receiving element in the central processing unit via the optical branch, coupling means, and optical transmission line. 1. A failure location detection method in a measurement information multiplex transmission system, characterized in that the location of the failure can be detected by checking whether or not the information is received or the contents of the reception.
JP56120723A 1981-07-30 1981-08-03 Fault position detecting system for measuring information multiplex transmission system Granted JPS5821935A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP56120723A JPS5821935A (en) 1981-08-03 1981-08-03 Fault position detecting system for measuring information multiplex transmission system
US06/402,377 US4531193A (en) 1981-07-30 1982-07-27 Measurement apparatus
CA000408285A CA1220835A (en) 1981-07-30 1982-07-28 Measurement apparatus
AU86518/82A AU549860B2 (en) 1981-07-30 1982-07-28 Measurement apparatus
BR8204472A BR8204472A (en) 1981-07-30 1982-07-29 APPLIANCE FOR MEASURING A PHYSICAL QUANTITY AND PROVIDING CORRESPONDING MEDICATION DATA
EP82106917A EP0071912B1 (en) 1981-07-30 1982-07-30 Measurement apparatus
DE8282106917T DE3274495D1 (en) 1981-07-30 1982-07-30 Measurement apparatus
EP84114777A EP0159401B1 (en) 1981-07-30 1982-07-30 Measurement apparatus
DE19823229010 DE3229010A1 (en) 1981-07-30 1982-07-30 DIGITAL MEASURING DEVICE FOR A PHYSICAL SIZE
DE8484114777T DE3279510D1 (en) 1981-07-30 1982-07-30 Measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56120723A JPS5821935A (en) 1981-08-03 1981-08-03 Fault position detecting system for measuring information multiplex transmission system

Publications (2)

Publication Number Publication Date
JPS5821935A true JPS5821935A (en) 1983-02-09
JPS6322696B2 JPS6322696B2 (en) 1988-05-12

Family

ID=14793402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56120723A Granted JPS5821935A (en) 1981-07-30 1981-08-03 Fault position detecting system for measuring information multiplex transmission system

Country Status (1)

Country Link
JP (1) JPS5821935A (en)

Also Published As

Publication number Publication date
JPS6322696B2 (en) 1988-05-12

Similar Documents

Publication Publication Date Title
CA1220835A (en) Measurement apparatus
JP3600226B2 (en) Data transmission method using photoelectric keyboard
US4242574A (en) Digital display tape measure with photoelectric sensing of tape displacement
CN201876348U (en) Tunable optical time domain reflectometer
CN103067090B (en) Reinforcement received signal power indicator and using method for optical device
JPH039518B2 (en)
CN201733310U (en) Self-linking optical returning module capable of power supply indication
WO1992002912A1 (en) Sensing apparatus
CN102607606A (en) Ultra-multi-point sensing system based on OTDR (optical time-domain reflectometer) mode and low-reflectivity fiber bragg gratings
CN109560875B (en) Fiber bragg grating coding device and method with temperature detection and compensation functions
CN104299408A (en) Temperature monitoring device for high-voltage electrical equipment
CN102243102A (en) Photoelectric measuring device capable of measuring power and wavelength at same time
JPS5821935A (en) Fault position detecting system for measuring information multiplex transmission system
US5408091A (en) Device for measuring a physical quantity by time-division coding
CN209358545U (en) The synthesis optical fiber inspection device of integrated FC optical fiber link and Network Check
CN102759366A (en) Detection device of optical fiber gyroscope optical module
JPH0140400B2 (en)
CN204836173U (en) Multi -functional fiber test appearance
JPS6089149A (en) Time division multiplex transmission system of measured information
CN204189300U (en) A kind of high voltage electric equipment device for detecting temperature
JPS5822966A (en) Battery built-in type digital measuring device
JPH0376054B2 (en)
CN206164534U (en) Optical fiber tester
JPH0522163B2 (en)
CN211346932U (en) Photosensitive infrared integrated key structure for ultrasonic water meter