JPS58218879A - Compensation of commutation lag of inverter - Google Patents

Compensation of commutation lag of inverter

Info

Publication number
JPS58218879A
JPS58218879A JP57102412A JP10241282A JPS58218879A JP S58218879 A JPS58218879 A JP S58218879A JP 57102412 A JP57102412 A JP 57102412A JP 10241282 A JP10241282 A JP 10241282A JP S58218879 A JPS58218879 A JP S58218879A
Authority
JP
Japan
Prior art keywords
circuit
current
angle
commutation
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57102412A
Other languages
Japanese (ja)
Other versions
JPH0250719B2 (en
Inventor
Norio Fukuyama
典夫 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP57102412A priority Critical patent/JPS58218879A/en
Publication of JPS58218879A publication Critical patent/JPS58218879A/en
Publication of JPH0250719B2 publication Critical patent/JPH0250719B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To compensate the phase error of an output current by a method wherein a DC current command, inverting angular frequency, a magnetic flux command and an exciting current command are operated to decide the commutation lag angle of an inverting circuit, and the phase angle of the driving pulse of the inverting circuit is corrected corresponding to the commutation lag angle thereof. CONSTITUTION:A circuit consisting of a torque current operating circuit 7, a DC operating circuit 8, a number of revolutions/magnetic flux converting circuit 13 and an exciting current operating circuit 14 controls a current limiting circuit 9 to control the respective thyristors of a rectifying circuit 3. A circuit consisting of an inverting angular frequency operating circuit 15, an angular frequency/ phase angle operating circuit 16, a phase angle operating circuit 17, a slip angular frequency operating circuit 22 and a torque angle operating circuit 23 decides a phase angle signal necessary to make an induction motor 2 to rotate according to a speed command, and the decided signal is supplied to a communtation lag compensating circuit 18. The commutation lag compensating circuit 18 corrects the amount of commutation lag of the phase angle command, and the corrected signal is supplied to a gate pulse operating circuit 19.

Description

【発明の詳細な説明】 この発明は誘導電動機等の電動機をベクトル制御するイ
ンバータの転流遅れ補償方法に係如、特に演算によシ逆
変換側サイリスタの転流遅れ角を求めてこれらサイリス
タの位相角を補正するようにしたインバータの転流遅れ
補償方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a commutation delay compensation method for an inverter that vector-controls an electric motor such as an induction motor. The present invention relates to a commutation delay compensation method for an inverter that corrects the phase angle.

かご形誘導′#j、動機等の回転速度を無段階に変え4
’4ルインバータの一つとして電流形イン/< −夕i
)1ある。第1図はこのような電流形インバータの一構
成例を示す回路図である。この図において、1は誘導電
動機2の駆動電流値(入力1!流値)を制御する電流値
制御回路であシ、この電流値制御回路lは電流値指令S
1および電流値検出信号82に基づいて順変換回路品匹
おける各サイリスタ3 K、 −a〜3 T −bの導
通角を制御して同順変換回路3の出力電流値を制御する
。また、4は前記誘導電動機2の駆動電流周波数を制御
する周波数制御回路であシ、この周波数制御回路4は周
波数指令S3に基づいて逆変換回路5における各サイリ
スタ5R−a〜5T−bの導通を制御して前記順変換回
路3の出力電流を導通角lコO0の3相電流に変換する
。これによシ、逆変換回路5から第2図ビ)〜(ハ)に
示すR相電流lR55相電流工8、T相電流ITが出力
され誘動電動機2に供給される。このように電流形イン
バータは誘導電動機2の駆動電流の値および周波数を直
接制御することによム゛誘導電動機2の回転速度を任意
の速度に制御することができる。
Cage-shaped induction '#j, steplessly changing the rotational speed of the motive etc. 4
'4 As one of the inverters, current source input/< - evening i
) There is 1. FIG. 1 is a circuit diagram showing an example of the configuration of such a current source inverter. In this figure, 1 is a current value control circuit that controls the drive current value (input 1! current value) of the induction motor 2, and this current value control circuit 1 is a current value command S
1 and the current value detection signal 82, the conduction angle of each thyristor 3K, -a to 3T-b in the forward conversion circuit is controlled to control the output current value of the forward conversion circuit 3. Further, 4 is a frequency control circuit for controlling the driving current frequency of the induction motor 2, and this frequency control circuit 4 conducts conduction of each thyristor 5R-a to 5T-b in the inverse conversion circuit 5 based on the frequency command S3. is controlled to convert the output current of the forward conversion circuit 3 into a three-phase current with a conduction angle of 100. As a result, the inverse conversion circuit 5 outputs an R-phase current 1R55-phase current 8 and a T-phase current IT shown in FIG. In this way, the current source inverter can control the rotational speed of the induction motor 2 to an arbitrary speed by directly controlling the value and frequency of the drive current of the induction motor 2.

ところでこのような電流形インバータにおいては、逆変
換回路5の各サイリスタ5R−,〜5T−bの導通を切
換える時に転流遅れが発生する。
By the way, in such a current source inverter, a commutation delay occurs when switching conduction of each thyristor 5R-, to 5T-b of the inverse conversion circuit 5.

以下このことを第3図および第参図を参照しながら説明
する。まず、第参図(イ)に示すゲートパルスQrがサ
イリスタ5R−aに供給されている時には第3図の破線
Llで示す経路でR相電流IR(第μ図に)参照)が流
れ、かつこの時転流コンデンサ6R−8は第3図に示す
極性で電圧−Vcまで充電されている。ここで第弘図に
示す時刻t1において同図(ロ)に示すゲートパルスG
 s、でサイリスタ58−aを導通させると、サイリス
タ5R−aは逆バイアスされて非導通状態となるから、
R相電流の経路は破線L1に示す経路から破線L2に示
す経路に切換えられて、転流コンデンサ6R−8の放電
が開始される。そして時刻tlから期間T−ΔT(ここ
で、Tは転流遅れ期間、ΔTは転流重なシ期間である)
になると、転流コンデンサ6R−8が第3図に示す極性
と逆の極性で電圧+Vcまで充電されるからR相電流I
Rは遮断されて、破線L3に示す経路でS相電流Is(
第グ図(ホ)参照)が出力される。
This will be explained below with reference to FIG. 3 and the accompanying drawings. First, when the gate pulse Qr shown in Fig. 3 (A) is supplied to the thyristor 5R-a, the R-phase current IR (see Fig. µ) flows along the path shown by the broken line Ll in Fig. 3, and At this time, commutating capacitor 6R-8 is charged to voltage -Vc with the polarity shown in FIG. Here, at time t1 shown in Fig. 1, the gate pulse G shown in Fig.
When the thyristor 58-a is made conductive at s, the thyristor 5R-a is reverse biased and becomes non-conductive.
The path of the R-phase current is switched from the path shown by the broken line L1 to the path shown by the broken line L2, and the commutation capacitor 6R-8 starts discharging. Then, from time tl, the period T - ΔT (here, T is the commutation delay period, and ΔT is the commutation heavy period)
Then, the commutating capacitor 6R-8 is charged to the voltage +Vc with the polarity opposite to that shown in Fig. 3, so the R phase current I
R is cut off, and the S-phase current Is (
(Refer to Figure (E)) is output.

一方、誘導電動機の速度制御の1つとして、誘導電動機
の駆動電流の位相をも制御する・、ベクトル     
°”:i制御がある。そしてとのペクト、ル制御におい
ては、誘動電動機の駆動電流を磁束発生分とトルク発生
分とに分離し、これらを個々に制御しなければならない
ことから、前記駆動電流の振幅のみならず、その位相角
をも指令値通シ正確に制御する必要がある。したがって
、前述したような電流形インバータを用いて、誘導電動
機のベクトル制御を行なうと、逆変換回路の転流遅れに
よシ駆勧電流の位相角に誤差が生じ良好な制御特性が得
にくいという問題がある。
On the other hand, as one of the speed controls of the induction motor, the phase of the drive current of the induction motor is also controlled.
°": i control. In the control, the drive current of the induction motor must be separated into a magnetic flux generation component and a torque generation component, and these must be controlled individually. It is necessary to accurately control not only the amplitude of the drive current but also its phase angle through the command value.Therefore, when vector control of an induction motor is performed using the current source inverter as described above, the inverse conversion circuit There is a problem in that the commutation delay causes an error in the phase angle of the excitation current, making it difficult to obtain good control characteristics.

この発明は上記の点に鑑み、逆変換回路の転流遅れによ
る出力電流の位相誤差を補償し、良好な制御特性を得る
ことができるインバータの転流遅れ補償方法を提供する
もので、第1の発明においては、速度指令に基づいて得
られる直流電流指令および電動機を駆動して得られる逆
変換角周波数、磁束指令、励磁電流指令を演算して転流
遅れ角を求め、この転流遅れ角に応じて逆変換回路のゲ
ートパルスの位相角を補正することを特徴とし、第一の
発明においては、逆変換回路における第7相、第2相の
各転流コンデンサ電圧を検出すると共に、前記逆変換回
路の出力電流を検出し、この出力電流、前記各転流コン
デンサ電圧および電動機を駆動して得られる逆変換角周
波iを演算して転流遅れ角を求め、この転流遅れ角に応
じて前記、逆変換回路のゲートパルスの位相角を補正す
ることを特徴としている。
In view of the above points, the present invention provides an inverter commutation delay compensation method that can compensate for the phase error of the output current due to the commutation delay of the inverse conversion circuit and obtain good control characteristics. In the invention, a commutation lag angle is calculated by calculating a DC current command obtained based on a speed command, an inverse conversion angular frequency obtained by driving the motor, a magnetic flux command, and an excitation current command, and this commutation lag angle is The first invention is characterized in that the phase angle of the gate pulse of the inverse conversion circuit is corrected according to the phase angle of the gate pulse of the inverse conversion circuit. Detect the output current of the inverse conversion circuit, calculate the output current, the voltage of each of the commutation capacitors, and the inverse conversion angular frequency i obtained by driving the motor to obtain the commutation delay angle, and calculate the commutation delay angle. The present invention is characterized in that the phase angle of the gate pulse of the inverse conversion circuit is corrected accordingly.

以下この発明の一実施例を図面にし元がって説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図はこの発BAVcよるインバータの転流遅れ補償
方法を適用した速度制御装置の第7実施例を示すブロッ
ク図である。なおこの図に示すブロック図は第7の発明
を示すものである1、この図において、7は加算部7a
と速度制御部7bとから構成されるトルク電流演算回路
であシ、このトルク電流演算回路7は速度指令ωrおよ
び速度フィードバック信号ωmTIc基づいて誘導電動
機2を駆動する電流のトルク電流成分(トルク電流指令
1qs)を求め直流′電流演算回路8に供給する。
FIG. 3 is a block diagram showing a seventh embodiment of a speed control device to which this inverter commutation delay compensation method using the output BAVc is applied. The block diagram shown in this figure shows the seventh invention 1. In this figure, 7 is an adder 7a.
The torque current calculation circuit 7 includes a torque current component (torque current command) of a current that drives the induction motor 2 based on a speed command ωr and a speed feedback signal ωmTIc. 1qs) and supplies it to the DC' current calculation circuit 8.

直流電流演算回路8は乗算部8a、8bと加算部8Cと
開平部8dとから構成されるものであシ、前記トルク電
流指令iqsお、↓び励磁電流指令idsに基づいて誘
導電動機2の駆動電流値(直流′IM、流指令工)を求
め電流制御回路9に供給する。
The DC current calculation circuit 8 is composed of multipliers 8a and 8b, an adder 8C, and a square root section 8d, and drives the induction motor 2 based on the torque current commands iqs and ↓ and the excitation current command ids. A current value (DC'IM, current command value) is determined and supplied to the current control circuit 9.

電流制御回路9は加算部〜、9 aと電流制御部9bと
から構成されるものであシ、前記直流電流指令工および
変流器10.整流回路11によシ得られる電流フィード
バック信号Ifに基づいて順変換回路3の各サイリスタ
を制御する。また、12は誘導電動機2の回転速度を検
出する速度検出器であシ、この速度検出器12は検出動
作Vこよシ得られた速度フィードバック信号ωmを前記
トルク電流演算回路7および回転数/磁束変換回路13
Vc供給する。回転数/磁束変換回路13は磁束演算部
13aから構成されるものであシ、前記速度フィードバ
ック信号ωmから誘導電動機2の必要磁束値(磁束指令
ψ)を求め励磁電流演算回路14に供給する。励磁電流
演算回路14は加算部14aと磁束制御部14bとによ
多構成されるものであわ、前記磁束指令ψおよび磁束フ
ィードバック信号φス・に基づいて誘導電動機2を駆動
する電流の励磁電流成分(励磁電流指令i、、ds)を
求め前記直流′rη、流演其回路8Vc供給する。すな
わち、トルク電流演算回路7〜整流回路11および゛速
度検出器12〜励磁電流演算回路14は訪導’!動機2
の駆動電流値を制御するものである。
The current control circuit 9 is composed of an adder section 9a and a current control section 9b, and includes the DC current command unit and current transformer 10. Each thyristor of the forward conversion circuit 3 is controlled based on the current feedback signal If obtained by the rectifier circuit 11. Further, 12 is a speed detector for detecting the rotational speed of the induction motor 2, and this speed detector 12 performs a detection operation V and sends the obtained speed feedback signal ωm to the torque current calculation circuit 7 and the rotational speed/magnetic flux. Conversion circuit 13
Supply Vc. The rotation speed/magnetic flux conversion circuit 13 is composed of a magnetic flux calculation section 13a, and calculates a required magnetic flux value (magnetic flux command ψ) of the induction motor 2 from the speed feedback signal ωm and supplies it to the excitation current calculation circuit 14. The exciting current calculation circuit 14 is composed of an adder 14a and a magnetic flux controller 14b, and calculates the exciting current component of the current that drives the induction motor 2 based on the magnetic flux command ψ and the magnetic flux feedback signal φS. (Excitation current commands i, ds) are determined and the DC 'rη is supplied to the current circuit 8Vc. That is, the torque current calculation circuit 7 to the rectifier circuit 11 and the speed detector 12 to the excitation current calculation circuit 14 are connected to each other. Motive 2
This is to control the drive current value.

また前記速度検出器12の出力は逆変換角周波数演算回
路15にも供給される。逆変換角周波数演算回路15は
加算部15aから構成ざ糺るものであシ、すべ多角周波
数信号ωSに基づいて前記速度フィードバック信号ωm
を補正して逆変換角周波数指令ω0)を求め角周波数/
位相角変換回路16に供給する。角周波数/位相褐変i
回路16は位相角演算部16aから構成されるものであ
シ、前記逆変換角周波数指令ω0に基づいて位相角信号
0oを求め位相角演算回路17に供給する。位相角演算
回路17は加算部17aから構成されるものであり、ベ
クトル角信号θi[基づいて前記位相角信号θ0を補正
して位相角θCを求め転流遅れ補償回路18に供給する
。転流遅れ補償回路18は加算部18Bから構成される
ものであシ、転流遅れ角信号θ6に基づいて前記位相角
信号θCを補正して転流遅れを補償した位相角箱台θp
を求めゲートパルス演算回路19Vc供給する。ゲート
パルス演算回路19は前記位相角指令θpに基づいて逆
変換回路5の各サイリスクを制御する。
The output of the speed detector 12 is also supplied to an inverse conversion angular frequency calculation circuit 15. The inverse conversion angular frequency calculation circuit 15 consists of an adding section 15a, and calculates the speed feedback signal ωm based on the multi-angular frequency signal ωS.
is corrected to obtain the inverse conversion angular frequency command ω0) and the angular frequency/
The signal is supplied to the phase angle conversion circuit 16. Angular frequency/phase browning i
The circuit 16 includes a phase angle calculation section 16a, which obtains a phase angle signal 0o based on the inverse conversion angular frequency command ω0 and supplies it to a phase angle calculation circuit 17. The phase angle calculation circuit 17 includes an adder 17a, which corrects the phase angle signal θ0 based on the vector angle signal θi to obtain a phase angle θC and supplies it to the commutation delay compensation circuit 18. The commutation delay compensation circuit 18 includes an adder 18B, and a phase angle box θp that compensates for the commutation delay by correcting the phase angle signal θC based on the commutation delay angle signal θ6.
is determined and supplied to the gate pulse calculation circuit 19Vc. The gate pulse calculation circuit 19 controls each phase risk of the inverse conversion circuit 5 based on the phase angle command θp.

このように速度検出器12および逆変換角周波数演算回
路15〜ゲ一トパルス演葬回路19によシ誘導電動機2
の駆動電流周波数が制御される。まだ、20は誘導電動
機2内の磁束を検出する磁束検出器であシ、この磁束検
出器20は検出動作によシ得られた磁束検出信号φα、
pβを磁束振幅演算回路21に供給する。磁束振幅演算
回路21は前記磁束検出信号φα、φβに基づいて、誘
導電動機2内の磁束振幅(Vφα2+φβ2)を求める
ものであり、この磁束振幅に対応した磁束フィードバッ
ク信号φfを出力して前記励磁電流演算回路14および
ずベシ角周波数演算回路22に供給する。すべ多角周波
数演算回路22は除算部22aとすベシ角周波数演算部
22bとから構成されるものであシ、前記トルク電流指
令1qsおよび前記磁束フィードバック信号φfに基づ
いて誘導電動機2のすベシ角周波数(すベシ角周波数信
号ω8)を求め前記逆変換角周波数演算回路15に供給
する。なおここですベシ角周波数演算部22bに示すM
は誘導電動機2の7次巻線、2次巻線間の相互インダク
タンス(H)、Lrは誘導電動機2の2次巻線自己イン
ダクタンス(H)、Rrは誘導電動機2のコ次巷線抵抗
(Ω)ソある。また、23は除算部23aとベクトル角
演算部23bとから構成されるベクトル角演算回路でア
シ、このベクトル角演算回路23はMi前記トルク電流
指令iqsおよび前記励磁電流指令1dsK基づいてベ
クトル角信号θiを求め位相角演算回路17に供給する
。また、24は逆変換回路5において発生するサイリス
タの転流遅れ角を求める転流遅れ自演算回路である。
In this way, the speed detector 12 and the inverse conversion angular frequency calculation circuit 15 to the gate pulse calculation circuit 19 operate the induction motor 2
The drive current frequency is controlled. Still, 20 is a magnetic flux detector that detects the magnetic flux inside the induction motor 2, and this magnetic flux detector 20 detects the magnetic flux detection signal φα, which is obtained by the detection operation.
pβ is supplied to the magnetic flux amplitude calculation circuit 21. The magnetic flux amplitude calculation circuit 21 determines the magnetic flux amplitude (Vφα2+φβ2) in the induction motor 2 based on the magnetic flux detection signals φα and φβ, and outputs a magnetic flux feedback signal φf corresponding to this magnetic flux amplitude to adjust the excitation current. It is supplied to the arithmetic circuit 14 and the angular frequency arithmetic circuit 22. The total polygonal frequency calculation circuit 22 is composed of a dividing section 22a and a minimum angular frequency calculation section 22b, and calculates the total angular frequency of the induction motor 2 based on the torque current command 1qs and the magnetic flux feedback signal φf. (subjective angular frequency signal ω8) is obtained and supplied to the inverse conversion angular frequency calculation circuit 15. Here, M shown in the Besi angular frequency calculation section 22b
is the mutual inductance (H) between the 7th winding and the secondary winding of the induction motor 2, Lr is the secondary winding self-inductance (H) of the induction motor 2, and Rr is the 7th line resistance (H) of the induction motor 2. Ω) Yes. Reference numeral 23 denotes a vector angle calculation circuit composed of a division section 23a and a vector angle calculation section 23b. is determined and supplied to the phase angle calculation circuit 17. Further, 24 is a commutation delay calculation circuit for calculating the commutation delay angle of the thyristor generated in the inverse conversion circuit 5.

ここで、この転流遅れ自演算回路24の演算内容につい
て詳述する。まず逆変換回路5の転流遅れ期間T(第v
図参照)は転流コンデンサの電圧が−VCから+Vcま
で変化する期間と等しいから、 2C” vc(s e c)  −・−=  (1)T
−−] (但し、■は誘導電動機2に供給される駆動電流の値(
A) 、Cは転流コンデンサの容量(F)) となる。また、転流遅れ角O11は (但し、ω0は逆変換角周波数) であるから、ここで(1)式を(2)式に代入して転流
遅れ期間Tを消去すれば、 が得られる。一方、転流コンデンサ電圧Vcは、なる式
で与えられる。但し、Lは転流インダクタンス(H) 
、Emは誘導電動機2の電源入力端子の端子間電圧のピ
ーク値’ff)、ψは力率角である。したがって、(滲
式を(3)に代入して転流コンデンサ電圧vcを消去す
れば、 ビーダー責よって生じる電圧降下は無視できるt欲ど小
さいから、誘導電動機2の端子間電圧Emは、Em=ω
0φ  ・・・・・・・・・  (6)なる式で表わす
ことができる。またiIJ記力率角ψは第6図に示すベ
クトル図から明らかなように、ds 虐ψ=□ ・・・・・・・・・ (7)■ である。なお第を図において、id8は励磁電流ベクト
ル、i4sはトルク電流ベクトル、Φは磁束ベクトル、
Emは電圧ベクトル、■は電流ベクトル(v/i d 
s 2−1−i q s 2)を示すものである。
Here, the calculation contents of this commutation delay self-calculation circuit 24 will be explained in detail. First, commutation delay period T (vth
(see figure) is equal to the period during which the voltage of the commutating capacitor changes from -VC to +Vc, so 2C" vc(sec) -・-= (1)T
−−] (However, ■ is the value of the drive current supplied to the induction motor 2 (
A) and C are the capacitance (F) of the commutation capacitor. Also, the commutation delay angle O11 is (however, ω0 is the inverse conversion angular frequency), so if we substitute equation (1) into equation (2) and eliminate the commutation delay period T, we get . On the other hand, the commutating capacitor voltage Vc is given by the following equation. However, L is commutation inductance (H)
, Em is the peak value 'ff) of the voltage between the power supply input terminals of the induction motor 2, and ψ is the power factor angle. Therefore, by substituting the formula into (3) and eliminating the commutating capacitor voltage vc, the voltage drop caused by Bieder's fault is so small that it can be ignored, so the voltage between the terminals of the induction motor 2, Em, becomes Em= ω
0φ can be expressed by the equation (6). Further, as is clear from the vector diagram shown in FIG. 6, the iIJ power ratio angle ψ is ds ψ=□ (7)■. In the figure, id8 is the excitation current vector, i4s is the torque current vector, Φ is the magnetic flux vector,
Em is the voltage vector, ■ is the current vector (v/i d
s2-1-iqs2).

ここで、前記(6)式および(7)式を前記(5)式に
代入して整理すれば、 ・・・・・・・・・ (8) が得られる。すなわち、転流遅れ自演8−路24は直流
電流演算回路8の出力(直流電流指令工)、回転数/磁
束質換回路13の出力(磁束指令ρ)、励磁電流演算回
路14の出力(励磁電流指令1ds)逆変換角周波数演
算回路15の出力(逆変換角周波数指令ω0)および定
数である転流インダクタンスし1転流コンデンサ容tC
Vc基づいて(8)式に示す演算を行なって転流遅れ角
θεを求め転流遅れ補償回路18に供給する。
Here, by substituting the above equations (6) and (7) into the above equation (5) and rearranging, the following is obtained. That is, the commutation delay control circuit 24 outputs the output of the DC current calculation circuit 8 (DC current command), the output of the rotation speed/magnetic flux conversion circuit 13 (magnetic flux command ρ), and the output of the excitation current calculation circuit 14 (excitation current command). Current command 1ds) Output of the inverse conversion angular frequency calculation circuit 15 (inverse conversion angular frequency command ω0) and constant commutation inductance and 1 commutation capacitor capacity tC
Based on Vc, the calculation shown in equation (8) is performed to obtain the commutation delay angle θε, which is supplied to the commutation delay compensation circuit 18.

次に以上の構成になる実施例の動作を説明する。Next, the operation of the embodiment having the above configuration will be explained.

まず、トルク電流演算回路7、直流電流演算回路8、回
転数/磁束変換回路13および励磁電流演算回路14か
らなる回路は速度フィードバック信号ωmおよび励磁フ
ィードバック信号ρfに基づいて誘導電動機2を速度指
令ωrで示される回転速度で回転きせるのに必要な直流
電流指令工を求めると共に、この直流電流指令工に基づ
いて電流制御回路9を制御して順変換回路3における各
サイリスタの導通角を制御する。またこのような電流値
制御動作と並行して、逆変換角周波数演算回路15、角
周波数/位相角演算回路16、位相角演算回路17およ
びTベリ角周波数演算面路22、ベクトル角演算回路2
3からなる回路はトルク電流指令i q s、励磁電流
指令i d s、磁束フィードバック信号Of、:AA
良フィードバック信号ωnlに基づいて誘導電動機2を
前記速度指令ωrで回転させるのに必要な位相角信号θ
0葡求めて転流遅11袖償回路18に供給■る。一方こ
nらの動作と共にふ流遅れ自演算回路24 Get t
ill記直流■流指令工、励磁電流指令i d s、磁
束指令y7変換角周波数指令ω0に基づいて前記(8)
式に示す演nを行なって辿変換回路5の転流遅tLjf
4tlεを求め転流遅n袖償回路18に供給Tる。転流
遅れ補償回路18はこの転流遅n角θεに基づいて前記
位相角指令IOの転流遅n分を補正し、こnにより得ら
n75位相角指令lpをゲートパルス演算回路19に供
給Tる。これにより、ゲートパルス演算回路19の出力
(ゲートパルス)の位相は逆変換回路50転流遅れだけ
早めらnたものとなり、逆変換回路、5から転流遅れの
ない導通角1200の3相市流が出力8旧、る。
First, a circuit consisting of a torque current calculation circuit 7, a DC current calculation circuit 8, a rotation speed/magnetic flux conversion circuit 13, and an excitation current calculation circuit 14 commands the induction motor 2 to a speed ωr based on a speed feedback signal ωm and an excitation feedback signal ρf. The DC current command required to rotate at the rotational speed shown by is determined, and the current control circuit 9 is controlled based on this DC current command to control the conduction angle of each thyristor in the forward conversion circuit 3. In addition, in parallel with such current value control operation, an inverse conversion angular frequency calculation circuit 15, an angular frequency/phase angle calculation circuit 16, a phase angle calculation circuit 17, a T-berry angular frequency calculation surface path 22, a vector angle calculation circuit 2
The circuit consisting of 3 is a torque current command iqs, an excitation current command ids, a magnetic flux feedback signal Of, :AA
Phase angle signal θ necessary to rotate the induction motor 2 at the speed command ωr based on the good feedback signal ωnl
0 is determined and supplied to the commutation delay 11 sleeve compensation circuit 18. On the other hand, along with these operations, the flow delay self-calculation circuit 24 Get t
(8) above based on DC current command, excitation current command i d s, magnetic flux command y7 conversion angular frequency command ω0
The commutation delay tLjf of the trace conversion circuit 5 is calculated by performing the operation n shown in the equation.
4tlε is determined and supplied to the commutation delay n compensation circuit 18. The commutation delay compensation circuit 18 corrects the commutation delay n of the phase angle command IO based on this commutation delay n angle θε, and supplies the n75 phase angle command lp obtained thereby to the gate pulse calculation circuit 19. Tru. As a result, the phase of the output (gate pulse) of the gate pulse calculation circuit 19 is advanced by the commutation delay of the inverse conversion circuit 50, and the phase of the output (gate pulse) of the gate pulse calculation circuit 19 is advanced by the commutation delay of the inverse conversion circuit 50. The current is output 8 old.

第7図【ま第3図に示す転流遅れ角演算回路24の具体
回路の一例を示すブロック図である。この図において、
25は逆変換角周波数指令ω0の絶対値を求める絶対値
検出回路でアシ、この絶対値検出回路25の出力は演算
回路26の第11第コの乗算部26a、26bに供給さ
れる。また、27は逆変換角周波数指令ω0の極性を検
出する正逆検出回路であシ、との正逆検出回路27は前
記逆変換角周波数指令ω0が正転を示している時は「+
1」を出力し、また逆に逆転を示している時は「−1」
を出力して演算回路26の第3の乗算部26cに供給す
る。演算回路26は第1〜第≠の乗算部26a〜26d
1第7〜第3の除算部26e〜26gおよび加算部26
fから構成されるものであシ、前記絶対値検出回路25
の出力、正逆検出回路27の出力および磁束指令ρ、直
流電流指令工、励磁電流指令ids、定数丹、2 JT
Mに基づいて前記(8)式に示す演算を行ない転流遅れ
角θeを求める。
FIG. 7 is a block diagram showing an example of a specific circuit of the commutation delay angle calculation circuit 24 shown in FIG. 3. In this diagram,
Reference numeral 25 denotes an absolute value detection circuit for determining the absolute value of the inverse conversion angular frequency command ω0.The output of this absolute value detection circuit 25 is supplied to the eleventh multipliers 26a and 26b of the arithmetic circuit 26. Further, 27 is a forward/reverse detection circuit for detecting the polarity of the inverse conversion angular frequency command ω0.
1" is output, and conversely, when it indicates a reversal, "-1" is output.
is output and supplied to the third multiplier 26c of the arithmetic circuit 26. The arithmetic circuit 26 includes first to ≠ multipliers 26a to 26d.
1 Seventh to third division sections 26e to 26g and addition section 26
f, and the absolute value detection circuit 25
output, output of forward/reverse detection circuit 27, magnetic flux command ρ, DC current command, excitation current command ids, constant tan, 2 JT
Based on M, the calculation shown in equation (8) is performed to find the commutation delay angle θe.

第1図および第り図はこの発明によるインバータの転流
遅れ補償方法を適用した転流遅れ自演算回路の第2実施
例を示すブロック図であ名。なおこの図に示すプロゾク
図は第2の発明を示すものである。これらの図において
、28は転流コンデンサ6R−8の端子間電圧を検出す
る絶縁増幅器であシ、この絶縁増幅器28の出力([圧
V (!(’R−8))は一方の絶対値検出回路29に
供給される。
1 and 2 are block diagrams showing a second embodiment of a commutation delay self-computing circuit to which the inverter commutation delay compensation method according to the present invention is applied. Note that the Prozok diagram shown in this figure shows the second invention. In these figures, 28 is an isolation amplifier that detects the voltage between the terminals of the commutating capacitor 6R-8, and the output ([voltage V (!('R-8)) of this isolation amplifier 28 is one absolute value. The signal is supplied to the detection circuit 29.

絶対値検出回路29は前記電EEV c (R−’8 
)の絶対値を求めるものであシ、この絶対値検出回路2
9の出力(l V(! (R−s)  l ) Iti
Nt大4B、?出回路30に供+18される。また、3
1は転流コンデンサ6B−Tの端子間電圧を検出する絶
縁増幅器であシ、この絶縁増幅器31の出力(電圧VC
(8−T))は他方の絶対値検出回路32に供給され、
ここで絶対値(値はlVc (8−T)I)vc変換さ
れ最大値検出回路30&C供給される。最゛大値検出回
路30は前記絶対値検出回路29.32の各出力のうち
値の大きい方を選択し、これを転流コンデンサ電圧vc
として演算回路33の第1の乗算部33aK供給する。
The absolute value detection circuit 29 detects the voltage EEV c (R-'8
), this absolute value detection circuit 2
9's output (l V(! (R-s) l ) Iti
Nt University 4B,? The output circuit 30 is supplied with +18. Also, 3
1 is an isolation amplifier that detects the voltage between the terminals of the commutating capacitor 6B-T, and the output of this isolation amplifier 31 (voltage VC
(8-T)) is supplied to the other absolute value detection circuit 32,
Here, the absolute value (the value is lVc (8-T)I)vc is converted and supplied to the maximum value detection circuit 30&C. The maximum value detection circuit 30 selects the larger value of the outputs of the absolute value detection circuits 29 and 32, and uses this as the commutating capacitor voltage vc.
The signal is supplied to the first multiplier 33aK of the arithmetic circuit 33 as a signal.

壕だ、34−はH2j−動機2Vc供給される駆動電流
の値を検出する絶縁増幅器であシ、この絶縁増幅器34
の出力(電流値■を示す信号)は演算回TN133の除
算部33dに供給される。また、35は第3図に示す逆
変換角周波数指令ω0と同様にして求められた逆変換角
周波数指令ω0の極性を検出する正逆検出回路であり、
この正逆検出回路35の出力(r+IJまたは「−1」
は演算回路33の第一の乗算部33bK供給される。演
算回路33は第1〜第3の乗算部33a〜33cおよび
除算部33dから構成されるものであシ、前起転流コン
デンサ電圧VC1前記絶縁増幅′器34の出力(値は工
)、前記逆変換周波数ω0お−よび前記正逆検出回路3
5の出力に基づいて前記(3)式に示す演算を行ない転
流遅れ角0εを求める。このようにこめ第2の実施例に
おいても前述した第7の実施例と同様に転流遅れ角θε
が求められ、この転流遅れ角θεに基づいて逆変換回路
5における各サイ!Jスタ5R−a〜5T−bの点弧角
の位相が補正される。
34- is an isolation amplifier that detects the value of the drive current supplied to H2j-motor 2Vc, and this isolation amplifier 34
The output (signal indicating the current value ■) is supplied to the division section 33d of the arithmetic circuit TN133. Further, 35 is a forward/reverse detection circuit for detecting the polarity of the inverse conversion angular frequency command ω0 obtained in the same manner as the inverse conversion angular frequency command ω0 shown in FIG.
The output of this forward/reverse detection circuit 35 (r+IJ or "-1"
is supplied to the first multiplier 33bK of the arithmetic circuit 33. The arithmetic circuit 33 is composed of first to third multipliers 33a to 33c and a divider 33d. Inverse conversion frequency ω0 and the forward/reverse detection circuit 3
Based on the output of step 5, the calculation shown in equation (3) is performed to find the commutation delay angle 0ε. In this way, in the second embodiment as well, the commutation delay angle θε
is determined, and each size ! in the inverse conversion circuit 5 is determined based on this commutation delay angle θε. The phases of the firing angles of J stars 5R-a to 5T-b are corrected.

以上説明したように第1の発明によるインバー電流 りの転流遅れ補償方法は、直重1’4!4および逆変換
 、角周波数、磁束指令、励磁電流指令を演算して逆変
換回路の転流遅れ角を求め、この転流遅れ角に応じて逆
変換回路の駆動パルスの位相角を補正し、第一の発明に
よるインバータの転流遅れ補償方法は、逆変換回路にお
ける第7相、第2゛相の各転流コンデンサ電圧を検出す
ると共に、前記逆変換回路の出力電流を検出し、この出
力電流、前記各転流コンデンサ電圧および銹導電動機を
駆動して得られる逆変換角周波数を演算して前記逆変換
回路の転流遅れ角を求め、この転流遅れ角に応じて前記
逆変換回路の駆動パルスの位相角を補正するようにした
ので、これら第1または第一の発明によれば特に高速の
サイリスタを用いることなく逆変換回路の転流遅れに起
因する出力電流の位相誤差を補償することができ、良好
な制御特性を得ることができる。
As explained above, the method for compensating commutation delay for an inverter current according to the first invention calculates the direct weight 1'4!4, inverse conversion, angular frequency, magnetic flux command, and excitation current command to convert the inverse conversion circuit. The commutation delay compensation method for an inverter according to the first invention involves determining the commutation delay angle and correcting the phase angle of the drive pulse of the inverter according to this commutation delay angle. At the same time as detecting the voltage of each commutating capacitor of the 2゛ phase, the output current of the inverse conversion circuit is detected, and the inverse conversion angular frequency obtained by driving this output current, each of the commutating capacitor voltage and the rust conduction motor is calculated. The commutation delay angle of the inverse conversion circuit is calculated and the phase angle of the driving pulse of the inverse conversion circuit is corrected according to this commutation delay angle. Accordingly, it is possible to compensate for the phase error of the output current due to the commutation delay of the inverse conversion circuit without using a particularly high-speed thyristor, and it is possible to obtain good control characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は電流形インバータの一構成例を示す回路図、第
2図は第1図を説明するための波形図、第3図は第7図
に示す逆変換回路50転流遅れを説明するための回路図
、第弘図は第3図を説明するための波形図、第5図はこ
の発明によるインバー1の転流遅れ補償方法を適用した
速度制御装置の第7実施例を示すブロック図、第6図は
同実施例を説明するためのベクトル図、第7図は第j囚
に示す転流遅れ角波算回路24の詳細を示すブロック図
、第r図および第り図はこの発明によるインバータの転
流遅れ補償方法を適用した転流遅れ角波算回路の第一実
施□例を示すブロック図である。 3・・・・・・順変換回路、5・・・・・・逆変換回路
56u−s。 6B−T”・・・・・転流コンデンサ、8・・・・・・
直流電流演算回路、13・・−・・・回転数/磁束変換
回路、14・・・・・・励磁電流演算回路、15・・・
・・・逆変換角周波数演算回路、18・・・・・・転流
遅れ補償回路、24・・・・・・転流遅れ角波算回路、
26・・・・・・演算回路、28,31゜34・・・・
・・絶縁増幅器、33・・・・・・演算回路。
FIG. 7 is a circuit diagram showing one configuration example of a current source inverter, FIG. 2 is a waveform diagram for explaining FIG. 1, and FIG. 3 is for explaining commutation delay of the inverse conversion circuit 50 shown in FIG. 7. FIG. 5 is a block diagram showing a seventh embodiment of a speed control device to which the invar 1 commutation delay compensation method according to the present invention is applied. , FIG. 6 is a vector diagram for explaining the same embodiment, FIG. 7 is a block diagram showing the details of the commutation delay angle wave calculation circuit 24 shown in the J column, and FIGS. FIG. 2 is a block diagram showing a first implementation example of a commutation delay angle calculation circuit to which the inverter commutation delay compensation method is applied. 3... Forward conversion circuit, 5... Inverse conversion circuit 56u-s. 6B-T”・・・Commuting capacitor, 8・・・・・・
DC current calculation circuit, 13... Rotation speed/magnetic flux conversion circuit, 14... Excitation current calculation circuit, 15...
... Inverse conversion angular frequency calculation circuit, 18 ... Commutation delay compensation circuit, 24 ... Commutation delay angle wave calculation circuit,
26... Arithmetic circuit, 28, 31° 34...
...Isolated amplifier, 33... Arithmetic circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)順変換回路および逆変換回路を有し、負荷である
電動機の入力電流を磁束発生分とトルク発生分とに分離
し、これら磁束発生分とトルク発生分とを個々に制御す
るインバータにおいて、直流電流指令および逆変換角周
波数、磁束指令、励磁電流指令を演算して前記逆変換回
路の転流遅れ角を求め、との転瀝遅れ角に応じて前記逆
変換回路の駆動パルスの位相角を補正することを特徴と
するインバータの転流遅れ補償方法。
(1) In an inverter that has a forward conversion circuit and an inverse conversion circuit, separates the input current of the electric motor (load) into a magnetic flux generation portion and a torque generation portion, and controls these magnetic flux generation portion and torque generation portion individually. The commutation delay angle of the inverse conversion circuit is calculated by calculating the DC current command, the inversion angular frequency, the magnetic flux command, and the excitation current command, and the phase of the drive pulse of the inversion circuit is determined according to the commutation delay angle of the inversion circuit. An inverter commutation delay compensation method characterized by correcting the angle.
(2)  順変換回路および逆変換回路を有し、負荷で
ある電動機の入力電流を磁束発生分とトルク発生分とに
分離し、これら磁束発生分とトルク発生分とヲ個々に制
御するインバータにおいて、前記逆変換回路における第
7相、第2相の各転流コンデンサ電圧を検出すると共に
、前記逆変換回路の出力電流を検出し、この出力電流、
前記各転流コンデンサ電圧および前記電動機を駆動して
得られる逆変換角周波数を演算して転流遅れ角を求め、
この転流遅れ角に応じて前記逆変換回路の駆動ノくルス
の位相角を補正することを特徴とするインノ(−タの転
流遅れ補償方法。
(2) In an inverter that has a forward conversion circuit and an inverse conversion circuit, separates the input current of a motor, which is a load, into a magnetic flux generation component and a torque generation component, and controls these magnetic flux generation component and torque generation component individually. , detecting the voltages of the commutating capacitors of the seventh phase and the second phase in the inverse conversion circuit, and detecting the output current of the inverse conversion circuit, and detecting the output current,
calculating a commutation delay angle by calculating each commutation capacitor voltage and an inverse conversion angular frequency obtained by driving the motor;
A method for compensating for commutation delay of an inverter, characterized in that a phase angle of a drive pulse of the inverse conversion circuit is corrected according to this commutation delay angle.
JP57102412A 1982-06-15 1982-06-15 Compensation of commutation lag of inverter Granted JPS58218879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57102412A JPS58218879A (en) 1982-06-15 1982-06-15 Compensation of commutation lag of inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57102412A JPS58218879A (en) 1982-06-15 1982-06-15 Compensation of commutation lag of inverter

Publications (2)

Publication Number Publication Date
JPS58218879A true JPS58218879A (en) 1983-12-20
JPH0250719B2 JPH0250719B2 (en) 1990-11-05

Family

ID=14326722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57102412A Granted JPS58218879A (en) 1982-06-15 1982-06-15 Compensation of commutation lag of inverter

Country Status (1)

Country Link
JP (1) JPS58218879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122784A (en) * 1984-07-02 1986-01-31 ゼネラル・エレクトリツク・カンパニイ Method and device for controlling phase locked loop of induction motor drive device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504533A (en) * 1973-05-16 1975-01-17
JPS5461629A (en) * 1977-10-26 1979-05-18 Hitachi Ltd Inverter controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504533A (en) * 1973-05-16 1975-01-17
JPS5461629A (en) * 1977-10-26 1979-05-18 Hitachi Ltd Inverter controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122784A (en) * 1984-07-02 1986-01-31 ゼネラル・エレクトリツク・カンパニイ Method and device for controlling phase locked loop of induction motor drive device

Also Published As

Publication number Publication date
JPH0250719B2 (en) 1990-11-05

Similar Documents

Publication Publication Date Title
KR101594662B1 (en) Power conversion device
JP4131421B2 (en) Inverter test equipment
JP4998693B2 (en) Motor simulation device and motor simulation method
JP3773794B2 (en) Power converter
JP3959617B2 (en) AC motor constant measuring method and control device
JPS58218879A (en) Compensation of commutation lag of inverter
US20240171109A1 (en) Power conversion apparatus
JP2005110335A (en) Power converter
JPS6118439B2 (en)
JPH0870598A (en) Sensorless vector control apparatus for induction motor speed
JPH04281387A (en) Controller for brushless dc motor
JP4168698B2 (en) Induction machine control device
JPS5819169A (en) Controlling method for pwm control converter
JP4079201B2 (en) Inverter test equipment
JP3751827B2 (en) Power converter
JP2637244B2 (en) Control method and device for cyclo converter
JP2585526B2 (en) Induction machine control device
JPH083199Y2 (en) Power converter
JP2024022201A (en) Inverter device and motor drive device
JPH0570396B2 (en)
JP3483769B2 (en) Cycloconverter control device
JPS63262060A (en) Power converter
JP5194886B2 (en) Variable speed drive for synchronous motor
JPH0412698A (en) Control method for voltage type pwm inverter
JP2002233159A (en) Control device for pwm power converter