JPS58218688A - Emergency shutdown system for reactor - Google Patents

Emergency shutdown system for reactor

Info

Publication number
JPS58218688A
JPS58218688A JP57102477A JP10247782A JPS58218688A JP S58218688 A JPS58218688 A JP S58218688A JP 57102477 A JP57102477 A JP 57102477A JP 10247782 A JP10247782 A JP 10247782A JP S58218688 A JPS58218688 A JP S58218688A
Authority
JP
Japan
Prior art keywords
reactor
neutron
neutron absorber
emergency shutdown
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57102477A
Other languages
Japanese (ja)
Inventor
前田 ひろみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Nippon Atomic Industry Group Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP57102477A priority Critical patent/JPS58218688A/en
Publication of JPS58218688A publication Critical patent/JPS58218688A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は制御棒挿入不能時等に中性子吸収能力の大きい
中性子吸収剤を原子炉内に注入することにより、原子炉
を安全に冷温停止する原子炉の緊急停止方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides an atomic system that safely cold-shuts down a nuclear reactor by injecting a neutron absorber with a large neutron absorption capacity into the reactor when control rods cannot be inserted. Concerning emergency shutdown method of furnace.

[発明の技術的背景] 従来より軽水炉を使用する原子力発電所では、万一制御
棒を原子炉の炉心に挿入することができない状態が生じ
た場合に、原子炉に五硼酸ナトリウム(化学式:Na 
2 B+eO+ 6 :10H20)の水溶液からなる
中性子吸収剤を注入して原子炉を定格出力運転から安全
に冷温停止させるという方法がとられている。
[Technical Background of the Invention] Conventionally, in nuclear power plants that use light water reactors, if a situation occurs where control rods cannot be inserted into the reactor core, sodium pentaborate (chemical formula: Na
A method has been adopted in which a neutron absorber consisting of an aqueous solution of 2 B+eO+ 6 :10H20) is injected to safely bring the reactor to cold shutdown from rated power operation.

この中性子吸収剤を原子炉内に注入するために、図に示
すような中性子吸収剤注入装置1が一般に用いられてい
る。この中性子吸収剤注入装置1は補助建屋2の中に収
納されており、中性子吸収剤3を貯蔵しておくステンレ
ス製の貯蔵タンク4、試験タンク5、注入ポンプ6、注
入ポンプ爆発弁7、その他系統に必要な配管8等より主
体部分が構成されている。
In order to inject this neutron absorber into a nuclear reactor, a neutron absorber injection device 1 as shown in the figure is generally used. This neutron absorber injection device 1 is housed in an auxiliary building 2, which includes a stainless steel storage tank 4 for storing the neutron absorber 3, a test tank 5, an injection pump 6, an injection pump explosion valve 7, and others. The main part is composed of piping 8 and the like necessary for the system.

このような中性子吸収剤注入装置1の運転は主制御室か
らの遠隔手動操作により行なわれ、注入ポンプ爆発弁7
を作動させることにより注入ポンプ6により中性子吸収
J3が貯蔵タンク4より原子炉9内に注入される。この
とき中性子吸収剤3は原子炉圧力容器10底部のノズル
11より原子炉9内に注入され、原子炉9の冷却材に混
入される。なお12は原子炉9の炉心である。
The operation of the neutron absorber injection device 1 is performed by remote manual operation from the main control room, and the injection pump explosion valve 7
By operating the injection pump 6, neutron absorption J3 is injected from the storage tank 4 into the reactor 9. At this time, the neutron absorber 3 is injected into the reactor 9 through the nozzle 11 at the bottom of the reactor pressure vessel 10 and mixed into the coolant of the reactor 9. Note that 12 is the core of the nuclear reactor 9.

[背景技術の問題点1 このような中性子吸収剤注入装置1の大きさは次のよう
に決定される。
[Problem 1 of Background Art The size of such a neutron absorbent injection device 1 is determined as follows.

まず、最小ボロン濃度が核計棹により締出される。この
最小ボロン濃度は原子炉9を冷温停止状態にJるIこめ
に必要なボロンの最小量を、再循環配管を含む通常水位
の原子炉圧力容器10内の水量で割った値ぐ定義するこ
とができる。次に、この最小ボロン濃度より、混入の片
寄り漏れ等を考えた余裕および原子炉残留熱除去系配管
等の希釈に対する余裕を含めて設泪ボロン濃度が決定さ
れる。設訝1ボロンm度が決まると原子炉圧力容器10
の水量から必要な五硼酸ナトリウムの炉内注入間が4算
され、さらにこの炉内注入量から貯蔵タンク4の必要容
積が計篩される。その際温度により五硼酸す1−リウム
の溶解度が異なってくるので、h1綽に用いる設計温度
は十分に保守可能な低い値としている。さらに貯蔵タン
ク4は電熱加熱により設計温度以下にならないように管
理される。このように計算された貯蔵タンク4の必要容
積に水の蒸発に対する余裕および自由空間を含めて、貯
蔵タンク4の段81容積が決定される。
First, the minimum boron concentration is excluded by the nuclear meter. This minimum boron concentration is defined as the minimum amount of boron required to bring the reactor 9 into cold shutdown divided by the amount of water in the reactor pressure vessel 10 at normal water level, including the recirculation piping. I can do it. Next, the desired boron concentration is determined from this minimum boron concentration, including allowances for uneven mixing and leakage, and allowances for dilution of reactor residual heat removal system piping, etc. Design 1 Once the m degree of boron is determined, the reactor pressure vessel 10
The required amount of sodium pentaborate to be injected into the furnace is calculated from the amount of water, and the required volume of the storage tank 4 is calculated from this injected amount into the furnace. At that time, the solubility of 1-lium pentaborate varies depending on the temperature, so the design temperature used for the h1 cage is set to a sufficiently low value that can be maintained. Furthermore, the storage tank 4 is controlled by electric heating so that the temperature does not drop below the design temperature. The volume of the stage 81 of the storage tank 4 is determined by including the necessary volume of the storage tank 4 calculated in this way and the allowance for water evaporation and free space.

一方、原子炉9内の冷却材のボロン濃度変化率が核計輝
によって算出され、このボロン濃度変化率に対応して貯
蔵タンク4の五硼酸ナトリウム水溶液を原子炉9に注入
すべき時間範囲がh1算され、これにより注入ポンプ6
の設計流量が決定される。
On the other hand, the boron concentration change rate of the coolant in the reactor 9 is calculated by the nuclear meter, and the time range in which the sodium pentaborate aqueous solution in the storage tank 4 should be injected into the reactor 9 corresponds to this boron concentration change rate h1. This allows the infusion pump 6
The design flow rate of is determined.

以上のように決定された貯蔵タンク4の設計容量や注入
ポンプ6の設計流量は相当大きな値となり、従って中性
子吸収剤として五硼酸ナトリウム水溶液を用いた中性子
吸収剤注入装置はがなり大きなものとなる。
The design capacity of the storage tank 4 and the design flow rate of the injection pump 6 determined as described above are considerably large values, and therefore, a neutron absorbent injection device using an aqueous sodium pentaborate solution as a neutron absorbent becomes bulky. .

[発明の目的] 本発明はかかる点に対処してなされたもので、原子炉の
炉心への制御棒挿入不可能時に、前記炉心を収容する圧
力容器内へ硼素より中性子吸収断面積の大きい元素化合
物、例えば硝酸ガドリニウムの水溶液からなる中性子吸
収剤を注入すること3− により、従来より少量の中性子吸収剤の注入量で原子炉
を安全に冷温停止させることができる原子炉の緊急停止
方法を提供しようとするものである。
[Object of the Invention] The present invention has been made to address the above-mentioned problems, and when it is impossible to insert a control rod into the core of a nuclear reactor, an element with a larger neutron absorption cross section than boron is introduced into a pressure vessel housing the core. Provides an emergency shutdown method for a nuclear reactor that enables safe cold shutdown of a nuclear reactor with a smaller injection amount of neutron absorber than conventional methods by injecting a neutron absorber made of an aqueous solution of a compound such as gadolinium nitrate. This is what I am trying to do.

[発明の概要1 1なわち本発明は、原子炉の炉心への制御棒挿入不能時
に、前記炉心を収容する圧力容器内へ硼素より中性子吸
収断面積の大きい元素の化合物の水溶液からなる中性子
吸収剤を注入することにより、原子炉を冷温停止させる
ことを特徴とJる原子炉の緊急停止方法である。
[Summary of the Invention 1 1 In other words, the present invention provides, when control rods cannot be inserted into the core of a nuclear reactor, a neutron absorption system consisting of an aqueous solution of a compound of an element having a larger neutron absorption cross section than boron into a pressure vessel housing the core. This is an emergency shutdown method for a nuclear reactor, characterized by bringing the reactor to cold shutdown by injecting a chemical agent.

L発明の実施例] 以下本発明の詳細を一実施例について説明する。Examples of L invention] The details of the present invention will be explained below with reference to one embodiment.

万一、制御棒が原子炉の炉心に挿入不能の状態になった
場合に、中性子吸収剤として従来の五硼酸ナトリウム水
溶液よりも中性子吸収効果の大きい硝酸がトリニウム(
化学式: Gd  (NOs ) !1・6.5H20
)水溶液が図面の構成の中性子吸収剤注入装置1より主
制御室からの遠隔操作により原子炉9内に注入され、原
子炉9の冷却材に混入され−C1原子炉9は安全に定格
出力運転から冷4− 温停止状態にされる。
In the unlikely event that a control rod becomes unable to be inserted into the reactor core, trinium (nitric acid), which has a greater neutron absorption effect than the conventional sodium pentaborate aqueous solution, is used as a neutron absorber.
Chemical formula: Gd (NOs)! 1.6.5H20
) An aqueous solution is injected into the reactor 9 from the neutron absorber injection device 1 configured as shown in the drawing by remote control from the main control room, and mixed into the coolant of the reactor 9, allowing the C1 reactor 9 to safely operate at its rated power. From Cold 4- to Warm Shutdown.

ここで、中性子吸収剤とは中性子を吸収する能力を有す
るものであるが、ある原子核が中性子を吸収する確率は
吸収断面積という数量によって定量的に表わされる。す
なわちこの吸収断面積は中性子を吸収する確率に比例す
るものであり、数値が2倍になれば、中性子を吸収する
効果は2倍になるという性格の数量である。
Here, a neutron absorber has the ability to absorb neutrons, and the probability that a certain atomic nucleus absorbs neutrons is quantitatively expressed by a quantity called absorption cross section. In other words, this absorption cross section is proportional to the probability of absorbing neutrons, and if the value is doubled, the effect of absorbing neutrons is doubled.

この吸収断面積を用いて、硝酸ガドリニウムの五WA酸
ナトリウムの1分子当たりの中性子吸収効果を表わすと
、硝酸ガドリニウムは49000バーンであり、五硼酸
ナトリウムは3800バーンである。つまり硝酸ガドリ
ニウムは1分子当たりで比べると、五Isl酸ナトリウ
ムの約13倍の中性子吸収能力を有する。その上硝酸ガ
ドリニウム水溶液中の硝酸がトリニウムの分子密度は五
(2)酸ナトリウム水溶液中の五硼酸す]ヘリウムの分
子密度と同じであるか、またはより大きいため、硝酸ガ
ドリニウム水溶液は従来使用していた五硼酸すI〜ヘリ
ウム溶液より13倍以上大きい中性子吸収能力を有する
Using this absorption cross section to express the neutron absorption effect of gadolinium nitrate per molecule of sodium pentaWAate, gadolinium nitrate has an absorption effect of 49,000 burns, and sodium pentaborate has an absorption effect of 3,800 burns. In other words, gadolinium nitrate has a neutron absorption capacity approximately 13 times that of sodium pentaIslate on a per molecule basis. Moreover, the molecular density of nitric acid in gadolinium nitrate aqueous solution is the same as or greater than that of helium (pentaboric acid) in sodium pent(2)ate aqueous solution, so gadolinium nitrate aqueous solution has not been used conventionally. It has a neutron absorption capacity more than 13 times greater than pentaboric acid solution.

なお、上記の硝酸ガドリニウム水溶液の他に、中性子吸
収剤としてザマリウム、]−ロピウムもしくはカドミウ
ムの塩素または塩基との化合物の水溶液を使用すること
もできる。しかしながらこれらの化合物の水溶液の中性
子吸収能力は従来の五硼酸ナトリウム水溶液より大きい
が、硝酸ガドリニウム水溶液よりも小さいため、硝酸ガ
ドリニウム水溶液が中性子吸収剤として最適である。
In addition to the above gadolinium nitrate aqueous solution, an aqueous solution of a compound of zamarium, ]-ropium or cadmium with chlorine or a base can also be used as a neutron absorber. However, the neutron absorption capacity of aqueous solutions of these compounds is greater than conventional sodium pentaborate aqueous solutions, but smaller than gadolinium nitrate aqueous solutions, so gadolinium nitrate aqueous solutions are optimal as neutron absorbers.

また、一般に硝酸ガドリニウムのような硝酸化合物は、
非常に腐食性が強いため、貯蔵タンク4等の内壁は、従
来のステンレスのライナーのかわりに耐蝕性の高いライ
ナーを使用するとか、貯蔵タンク4全体をセラミックス
等で形成するのが望ましい。
In addition, nitrate compounds such as gadolinium nitrate are generally
Since the storage tank 4 is highly corrosive, it is desirable to use a highly corrosion-resistant liner for the inner wall of the storage tank 4 etc. instead of the conventional stainless steel liner, or to form the entire storage tank 4 from ceramics or the like.

[発明の効果] 以−ヒの説明からも明らかなように本発明によれば、従
来よりかなり中性子吸収効果の大きい中性子吸収剤が使
用されるので、その原子炉への注入社は小石で済み、中
性子吸収剤注入装置を大幅に小型化することができる。
[Effects of the Invention] As is clear from the explanations given below, according to the present invention, a neutron absorber is used that has a much greater neutron absorbing effect than the conventional one, so it can be injected into the reactor with only small stones. , the neutron absorber injection device can be significantly downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

図は原子炉内に中性子吸収剤を注入するための中性子吸
収剤注入装置の配管系統図である。 1・・・・・・・・・・・・中性子吸収剤注入装置3・
・・・・・・・・・・・中性子吸収剤4・・・・・・・
・・・・・貯蔵タンク6・・・・・・・・・・・・注入
ポンプ7・・・・・・・・・・・・注入ポンプ爆発弁9
・・・・・・・・・・・・原子炉 10・・・・・・・・・・・・原子力圧力容器12・・
・・・・・・・・・・炉 心 代理人弁理士   須 山 佐 −
The figure is a piping system diagram of a neutron absorber injection device for injecting a neutron absorber into a nuclear reactor. 1...Neutron absorber injection device 3.
・・・・・・・・・・・・Neutron absorber 4・・・・・・・・・
...... Storage tank 6 ...... Injection pump 7 ...... Injection pump explosion valve 9
......... Nuclear reactor 10... Nuclear pressure vessel 12...
・・・・・・・・・Reactor representative patent attorney Sasu Suyama −

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉の炉心への制御棒挿入不能時に、前記炉心
を収容する圧力容器内へ硼素より中性子吸収断面積の大
きい元素の化合物の水溶液からなる中性子吸収剤を注入
することにより、原子炉を冷温停止させることを特徴と
する原子炉の緊急停止方法。
(1) When control rods cannot be inserted into the reactor core, a neutron absorber made of an aqueous solution of a compound of an element with a larger neutron absorption cross section than boron is injected into the pressure vessel housing the reactor core. A method for emergency shutdown of a nuclear reactor, characterized by cold shutdown of a nuclear reactor.
(2)化合物は硝酸ガドリニウムであることを特徴とす
る特許請求の範囲第1項記載の原子炉の緊急停止方法。
(2) The method for emergency shutdown of a nuclear reactor according to claim 1, wherein the compound is gadolinium nitrate.
JP57102477A 1982-06-15 1982-06-15 Emergency shutdown system for reactor Pending JPS58218688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57102477A JPS58218688A (en) 1982-06-15 1982-06-15 Emergency shutdown system for reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57102477A JPS58218688A (en) 1982-06-15 1982-06-15 Emergency shutdown system for reactor

Publications (1)

Publication Number Publication Date
JPS58218688A true JPS58218688A (en) 1983-12-19

Family

ID=14328531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57102477A Pending JPS58218688A (en) 1982-06-15 1982-06-15 Emergency shutdown system for reactor

Country Status (1)

Country Link
JP (1) JPS58218688A (en)

Similar Documents

Publication Publication Date Title
Engel et al. Conceptual design characteristics of a denatured molten-salt reactor with once-through fueling
US3197376A (en) Epithermal thorium power-breeder nuclear reactor
Ergen et al. The aircraft reactor experiment—physics
Rosenthal et al. Recent progress in molten-salt reactor development
JPS58218688A (en) Emergency shutdown system for reactor
US3365367A (en) Compensating for reactivity changes in liquid-moderated nuclear reactors
Ignat’ev et al. Accident resistance of molten-salt nuclear reactor
JPS6312553B2 (en)
JP2003028976A (en) Fuel for molten-salt reactor
US2991236A (en) Separating liquid moderator from a slurry type reactor
Gore et al. Factors affecting criticality for spent fuel materials in a geologic setting
US2986508A (en) Neutronic reactor structure
JPS6179194A (en) Reactor water feeder
Li et al. Safety analysis of a small modular reactor using fully ceramic micro-encapsulated fuel
Snykers et al. Prospects of the aqueous self-cooled blanket concept for NET
Matausek et al. Research reactor RA at the VINCA Institute of Nuclear Sciences. Ageing refurbishment and irradiated fuel storage
KR20130100073A (en) The method for treating of neutrons generated from spent nuclear fuel
Chmielewski et al. Selected chemical aspects of nuclear power development
JPS63293494A (en) Boiling water reactor
Ergen The Physics of the Fused-Salt Reactor Experiment
Grimes Reactor chemistry division annual progress report for period ending January 31, 1965
JPH09101396A (en) Method for annihilating treatment of unnecessary nuclide using reactor
Frank et al. Radiochemistry of Third PWR Fuel Material Test X-1 Loop NRX Reactor
Anno Jr et al. HAZARDS SUMMARY REPORT FOR 2-MEGAWATT OPERATION OF THE BATTELLE RESEARCH REACTOR. Special Report
Nakajima Applicability of simplified methods to evaluate consequences of criticality accident using past accident data