JPS58218632A - Driving controlling method of solid state image pickup element on modulation transfer function measuring device - Google Patents

Driving controlling method of solid state image pickup element on modulation transfer function measuring device

Info

Publication number
JPS58218632A
JPS58218632A JP10266382A JP10266382A JPS58218632A JP S58218632 A JPS58218632 A JP S58218632A JP 10266382 A JP10266382 A JP 10266382A JP 10266382 A JP10266382 A JP 10266382A JP S58218632 A JPS58218632 A JP S58218632A
Authority
JP
Japan
Prior art keywords
state image
image pickup
solid state
solid
pickup element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10266382A
Other languages
Japanese (ja)
Inventor
Mitsuki Sagane
砂金 光記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10266382A priority Critical patent/JPS58218632A/en
Publication of JPS58218632A publication Critical patent/JPS58218632A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0292Testing optical properties of objectives by measuring the optical modulation transfer function

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To make a transfer time shorter than an exposure time at all times, and to execute exactly an MTF measurement, by varying the exposure time and driving frequency of a solid state image pickup element in accordance with brightness of a lens to be inspected. CONSTITUTION:Irradiance is calculated by a computer 24 basing on an F-number and a projection magnification, and when a necessary storage time is set, an address signal for selecting a clock pulse phii corresponding to this storage time is sent out, and a switching circuit 27 gives phii to a phase difference pulse generating circuit 28. Also, clock pulses phiR, phiX and phiT generated in accordance with an output of the generating circuit 28 are given to a solid state image pickup element 10, and its storage time is controlled. A video signal from the element 10 is stored in an RAM36, and thereafter, is inputted to the computer 24, and MTF is calculated.

Description

【発明の詳細な説明】 本発明は自己走査型固体撮像素子を用いたMTF測定装
置盲の固体撮像素子駆動制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state imaging device drive control method that uses a self-scanning solid-state imaging device and is blind to an MTF measuring device.

MTF測定装置は光学像の元強肋分布を光電変換素子で
受光し、電気的又は光学的にフーリエ変換することによ
って像のコントラストを測定する装置である。この装置
は光電変換素子として光雷子増倍管や単一の受光面を脣
するフォトダイオード等が用いられてきたが、これらの
光電変換素子を用いる場合には機械的な走査轡構が必然
的にともなうため、−成が初雑[ヒし且つ測定時間が長
くなるという欠点があった。
The MTF measurement device is a device that measures the contrast of the image by receiving the original scleral distribution of an optical image with a photoelectric conversion element and performing Fourier transformation electrically or optically. This device has used a photovoltaic multiplier tube or a photodiode that covers a single light-receiving surface as a photoelectric conversion element, but when using these photoelectric conversion elements, a mechanical scanning mechanism is required. This has the disadvantage that the measurement is complicated and the measurement time is long.

そこでファクシミll、−%g的文字読取装置等で使用
されている電荷納会素子、フォトダイオードアレイ、パ
ケットプリゲイドテバイス等の1次元自己走査型置体搬
像素子奢光電変換素子として用いることにより、構成を
大幅に簡易[ヒし甘つ泪11定時間を従来装置、l:り
2桁程■短縮したMTF測定装置が考えられる。
Therefore, by using one-dimensional self-scanning type image carriers as high-quality photoelectric conversion elements for charge transfer elements, photodiode arrays, packet pre-gated devices, etc. used in facsimiles, -%g character reading devices, etc. An MTF measuring device with a significantly simplified configuration and shortening the fixed time by two orders of magnitude compared to the conventional device is conceivable.

固体撮像素子は簡単に説明すると、複数の受光素子が面
線状に配列されており、各受光素子に照射された介強朋
分布に対応した光電変換信号が電子Fl’llナクロヅ
クパルスにより逐次定食され時系列信号として取り出さ
れる。
To explain briefly, a solid-state image sensor has a plurality of light-receiving elements arranged in a planar line, and a photoelectric conversion signal corresponding to the optical distribution irradiated onto each light-receiving element is sequentially set by an electronic pulse. Extracted as a time series signal.

第1図は固体撮像素子を用いたMTF測定昇置装おける
光学系の構成例を示す図であり、測定点に対応して複数
の1次元自己走香型固体擾併素子1(’1t10□、]
03が配着されている。同様にナヤート枠1】に設けら
れているチャートには測定すべき空間周波数成分が含ま
れたものが測定点に対応して形成されており、ランプ】
2によりオプチカルファイバ−13を介して照射される
。このチャートの像は被検レンズ14により各固体撮像
素子10.〜103上に結像ミラー15.1.6を介し
て投影される。結像ミラー15、J6は投影倍率に応じ
て上下に移動させることができ、光軸外に設置された固
体撮像素子も投影倍率に応じて移動させることができる
。壕だ被検レンズ14を設置するマウントはυフグ1フ
で任意に回転させることができ、被検レンズの回転角に
対するMTFが測定可能となっている。
FIG. 1 is a diagram showing an example of the configuration of an optical system in an MTF measurement lifting device using a solid-state image sensor. , ]
03 is distributed. Similarly, the chart provided in the Nayat frame 1 includes the spatial frequency components to be measured and is formed corresponding to the measurement points, and the chart provided in the Nayat frame
2 through the optical fiber 13. The image of this chart is captured by each solid-state image sensor 10 by the lens 14 to be tested. .about.103 via an imaging mirror 15.1.6. The imaging mirrors 15 and J6 can be moved up and down according to the projection magnification, and the solid-state imaging device installed off the optical axis can also be moved according to the projection magnification. The mount on which the test lens 14 is installed can be arbitrarily rotated with a υ blower, and the MTF relative to the rotation angle of the test lens can be measured.

ところでこの様な光学系を有するMTF測定g置装おい
てチャート面が均一に照射されているものとしてその放
射照度をEO%被検レンズ14のFナンバをF1投影倍
墨をmとすると、固体撮像素子面の放射熱#Eは次式で
表わされる。
By the way, in the MTF measuring device having such an optical system, assuming that the chart surface is uniformly irradiated, the irradiance is EO%, the F number of the test lens 14 is F1, and the F1 projection magnification is m, then the solid state is Radiant heat #E on the surface of the image sensor is expressed by the following equation.

T:被検レンズ14の透過率 θ:測定点の半画角 AE(θ):開口効率 R:結像ミラー】5、】6の反射不 写真レンズではFナンバが12〜16、投影倍率が20
〜50(倍)でMTFを測定する必要があるため、固体
撮像素子面の放射照度が最小と最大で3桁程ザ異なった
値となってしまう。固体撮像素子を用いる場合通常は蓄
積時間(露光時間)を制御することによって、放射熱#
Eが異なっても均一な露光量が得られるが、写真レンズ
のMTF測定特定時うに放射熱17Eが最小と最大で大
幅に異なる時には蓄積時間の制御のみでは完全ではない
。つまり固体撮像素子を用いる場合転送時間が常に蓄積
時間よりも小さいことが必須の条件となるが、投影倍率
、Fナンバがともに小さい時に蓄積時間が転送時間にほ
ぼ等しくなる様に設定したとしても蓄積時間の制御のみ
では露光量が飽和してしまう場合が生じ正しいMTFが
測定できなくなってしまう。
T: Transmittance θ of the test lens 14: Half angle of view of the measurement point AE (θ): Aperture efficiency R: Imaging mirror For reflective non-photographic lenses of ]5 and ]6, the F number is 12 to 16 and the projection magnification is 20
Since it is necessary to measure the MTF at a magnification of ~50 (times), the minimum and maximum irradiance of the solid-state image sensor surface will differ by about three orders of magnitude. When using a solid-state image sensor, the radiant heat # is usually controlled by controlling the accumulation time (exposure time).
Even if E is different, a uniform exposure amount can be obtained, but when the radiant heat 17E is significantly different between the minimum and maximum, as is the case when measuring the MTF of a photographic lens, controlling the accumulation time alone is not perfect. In other words, when using a solid-state image sensor, it is essential that the transfer time is always shorter than the storage time, but even if the storage time is set to be approximately equal to the transfer time when both the projection magnification and the F-number are small, the If only the time is controlled, the exposure amount may reach saturation, making it impossible to measure the correct MTF.

これを除去するためにはランプ]2の電圧を低下させた
り光路中にNDフィルタを設置したりしなけnばならず
、操作性が悪かった。           1゜本発
明は上2のような欠点を改善し、正しいMTFの測定を
簡単な操作で行うことが可能になるMTF測定装置の固
体撮像素子駆動制御方法を提供することを目的とする。
In order to eliminate this, it is necessary to lower the voltage of the lamp 2 or install an ND filter in the optical path, resulting in poor operability. 1. An object of the present invention is to provide a method for controlling the driving of a solid-state image pickup device of an MTF measuring device, which improves the above-mentioned drawbacks and makes it possible to measure MTF correctly with simple operations.

け下園面を参照しながら本発明について実施例をあげて
説明する。
The present invention will be described with reference to examples.

第2図は固体撮像素子101〜1.03として電荷結合
素子を用いた場合のタイミングチャートを示している。
FIG. 2 shows a timing chart when charge-coupled devices are used as the solid-state image sensors 101 to 1.03.

ΦTΦRは夫々トランスポートクロック リセットクロ
ックを表わしており、トランスポートクロックΦTはフ
ォトエレメントからの電荷信号を出力アンプに転送させ
、リセットクロ、りΦRはトランスポートクロックΦr
Vcより次の電荷信号が入力される前に、出力アンプに
接続されている電荷検出器のチャージディテクタ電圧を
基珈レベルに充電させる働きをする。ここでトランスポ
ートクロックΦTは論理値1の場合にはフォトエレメン
トの偶数ビ、、トの電荷信号を転送し、論理値0の場合
にはフォトエレメントの奇数ビ、ットの電荷信号を転送
する様になっており、これらの電荷信号が出力アンプで
直列に合成されて出力される。従ってこの様な特性をも
つ固体撮像素子ではトランスボートクロックΦTttl
デー−ティ比50%のクロックパルスである必要があり
、固体撮像素子の駆動周波数はトランスポートクロック
ΦTの2倍の周波数で表わされる。
ΦTΦR represents a transport clock and a reset clock, respectively. The transport clock ΦT transfers the charge signal from the photoelement to the output amplifier, the reset clock, and ΦR represent the transport clock Φr.
It functions to charge the charge detector voltage of the charge detector connected to the output amplifier to the reference level before the next charge signal is input from Vc. Here, when the transport clock ΦT has a logical value of 1, it transfers the charge signals of the even numbered bits of the photo element, and when it has a logical value of 0, it transfers the charge signals of the odd numbered bits and bits of the photo element. These charge signals are combined in series by an output amplifier and output. Therefore, in a solid-state image sensor with such characteristics, the transport clock ΦTttl
The clock pulse needs to have a data ratio of 50%, and the driving frequency of the solid-state image sensor is expressed as twice the frequency of the transport clock ΦT.

いま固体撮像素子のフォトエレメント(7)数’i N
Now the number of photo elements (7) of the solid-state image sensor 'i N
.

駆動周期をTDとすると、転送時間TtraはTtra
 > TDX N    −・= −(21で表わされ
、トランスファクロックΦXの周期(蓄積時間) Ti
nt K対して常に となる必要がある。また固体撮像素子の出力はTint
 K比例するため、前述した様に投影倍率が小さいか又
はFナンバが小さい時にはTintを短かぐしなければ
ならず、そうするとTDも(3)式を満足する範囲で短
くする必要がある。即ちこの様な園には固体撮像素子の
駆動周波数(=−)を高くするTD 必要が生じ、投影倍率又はFナンバによってダイナミ、
ツクに固体撮像素子の駆動周波数を変化さぞなければな
らない1ことが判る。
If the drive period is TD, the transfer time Ttra is Ttra
> TDX N −・= −(represented by 21, the period (accumulation time) of the transfer clock ΦX Ti
It must always be true for nt K. Also, the output of the solid-state image sensor is Tint.
Since it is proportional to K, as mentioned above, when the projection magnification is small or the F number is small, Tint must be shortened, and then TD must also be shortened within a range that satisfies equation (3). In other words, in such a field, it is necessary to use a TD that increases the drive frequency (=-) of the solid-state image sensor, and the dynamics and
It turns out that it is necessary to change the driving frequency of the solid-state image sensor.

’4K 3崗は本発明の実施装置例を示すプロ、ンク図
であり、第4図はそのタイミングチャートである。
Figure 4 is a diagram showing an example of an apparatus for implementing the present invention, and Figure 4 is a timing chart thereof.

発振器21からのクロックパルスφ。は分周回路22に
よりn段階に分周されてクロックパルスφ1〜φnとな
る。被検レンズ14のFナンバ及び投影倍墨はあらかじ
め入出力装#23からコンピータ24に入出力ポート2
5を介して入力されており、コンピュータ24ばこのF
ナンバ及び投影倍率より蓄積時間及び〃ロ、7クパルス
φ、〜φnを選択すべき指命信号を計算して出力ポート
26に送出する。この出力ポート26からの指命信号は
スイッチング回路27に印加され、スイッチング回路2
7は分周回路22からのクロ1.クパルスφ1〜φnの
うちのいずれか】つφ1(i=]、又は2、・・・又は
n)を選択して位相差パルス発生回路28に出力する。
Clock pulse φ from oscillator 21. is divided into n stages by the frequency dividing circuit 22 to become clock pulses φ1 to φn. The F number and projection magnification of the lens to be tested 14 are sent in advance from the input/output device #23 to the computer 24 at the input/output port 2.
5, and the F of the computer 24
Based on the number and the projection magnification, an instruction signal for selecting the accumulation time and 7 pulses φ, .about.φn is calculated and sent to the output port 26. The command signal from this output port 26 is applied to the switching circuit 27, and the switching circuit 2
7 is the clock signal 1.7 from the frequency dividing circuit 22. φ1 (i=], 2, . . . , or n) is selected and outputted to the phase difference pulse generation circuit 28.

スイッチング回路は例えばn入力で2m>nを満足する
m本のアドレス線からなるマルチプレクサであり、この
アドレス線はコンピー−クー仰1の出力ポートに接続さ
れている。
The switching circuit is, for example, a multiplexer consisting of m address lines satisfying 2m>n with n inputs, and these address lines are connected to output ports of the computer.

従ってFナンバ及び投影倍率によ90式に対応した放射
照明がコンピー−クーで計算し、所要の蓄積時間が設定
されると、この蓄積時間に対応したクロックパルスφ1
を選択するアドレス信号がコンピー−ターより出力バス
を通じて送出され、上記スイッチング回路(マルチプレ
クサ)は位相差パルス回路28 VCφIを出力する。
Therefore, when the radiation illumination corresponding to formula 90 is calculated using the F number and projection magnification, and the required accumulation time is set, the clock pulse φ1 corresponding to this accumulation time is calculated.
An address signal for selecting the phase difference pulse circuit 28 is sent out from the computer through the output bus, and the switching circuit (multiplexer) outputs the phase difference pulse circuit 28 VCφI.

位相差パルス発生回路28は例えば数ビットのバイナリ
カウンタ及びデコーダによって構成される回路であり、
スイッチング回路27からのクロックパルスφiを分周
して第4図に示されるようなりロックパルスφ士、IR
を作る。このうちクロックパルスφ’rは−yリップフ
ロッフー29で分周されてトランスポートクロックφT
となり、クロックパルスTR(l−j:インバータ30
により反転されてリセットクロツクφRとなる。このト
ランスポートクロックφTとリセットクロ、ツクφRは
位相が異なったクロックパルスとして与えられ、前記電
荷結合素子よりなる1次元自己走査型置体撮像素子10
 (]0+〜103)に印加される。ま   ゛たクロ
ックパルスJRが蓄積時間設定カウンタ3】によりM個
カウントされた後にゲート回路32によりトランスファ
クロックφXが出力される。ここでMはあらかじめ出力
ポート26からレジスタ33に入力された指命信号に従
って蓄積時間設定カウンタ3】にプリセットされる。
The phase difference pulse generation circuit 28 is, for example, a circuit composed of a several-bit binary counter and a decoder,
The clock pulse φi from the switching circuit 27 is divided into lock pulses φi and IR as shown in FIG.
make. Of these, the clock pulse φ'r is frequency-divided by the -y rip-off clock 29 and the transport clock φT
Then, the clock pulse TR (l-j: inverter 30
is inverted and becomes the reset clock φR. The transport clock φT, the reset clock, and the clock φR are given as clock pulses with different phases, and the one-dimensional self-scanning body image sensor 10 made of the charge coupled device
Applied to (]0+ to 103). After the accumulation time setting counter 3 counts M clock pulses JR, the gate circuit 32 outputs the transfer clock φX. Here, M is preset in the accumulation time setting counter 3 according to a command signal input from the output port 26 to the register 33 in advance.

この様にして作られたクロックφR1φX1 φTは固
体撮像素子10に入力され、そのビデオ信号がサンプル
ホールド回路34によりサンプルホールドされた後アナ
ログ/デジタル変換器35にょクテシタルrヒされてラ
ンダムアクセスメモリ36に一時的に記憶される。ビデ
オ信号が全てメモリ36に格納されると、このメモリ3
6の内容が入力ポート37を通してコンピュータ24に
取込壕れてMTFが計算される。この結果は入出力ボー
ト25全通して入出力装置23に出力される。
The clock φR1φX1 φT generated in this manner is input to the solid-state image sensor 10, and the video signal is sampled and held by the sample-and-hold circuit 34, and then transferred to the analog/digital converter 35 and stored in the random access memory 36. Memorized temporarily. When all the video signals are stored in the memory 36, this memory 3
6 is input into the computer 24 through the input port 37 and the MTF is calculated. This result is output to the input/output device 23 through the entire input/output boat 25.

この実施例では被検レンズの明るさ及び投影倍率に従っ
て固体撮像素子の蓄積時間を制御し、しかもスイッチン
グ回路により最適な周波数のクロックパルスを選択する
ため、常に転送時間を蓄積時間よυ短くすることができ
る。従って被検レンズのFす/バが小さくても又投影倍
率が小さくても露光量が飽和することはなく、正しいM
TF測定が行える。
In this embodiment, the storage time of the solid-state image sensor is controlled according to the brightness and projection magnification of the lens under test, and the switching circuit selects the clock pulse of the optimum frequency, so the transfer time is always υ shorter than the storage time. I can do it. Therefore, even if the F/S of the lens to be tested is small or the projection magnification is small, the exposure amount will not be saturated and the correct M
TF measurement can be performed.

以上のように本発明によれば自己走査型固体撮像素子を
用いたMTF測定装置において、被検レンズの明るさに
対応させて固体撮像素子の露光時間及び駆動周波数を変
化させるので、常に転送時間を露光時間よυ短くするこ
とがでさて露光量が飽和することがなくなり、正しいM
TF測定を行うことができる。しかも光学的又は機械的
に露光量を低下させる手段を必要としないので、装置の
操作性及び信頼性が著しく向上する。
As described above, according to the present invention, in an MTF measuring device using a self-scanning solid-state image sensor, the exposure time and drive frequency of the solid-state image sensor are changed in accordance with the brightness of the test lens, so the transfer time is always By making the exposure time υ shorter, the exposure amount will not be saturated and the correct M
TF measurements can be performed. Moreover, since no means for optically or mechanically reducing the exposure amount is required, the operability and reliability of the apparatus are significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMTF測定装置における光学系の一例を示す斜
視図、第2図は電荷結合素子のタイミングチャート、第
3図は本発明の実施装置例を示すブロック図、第4図は
同実施装置例のタイミングチャートである。 10・・・固体撮像素子、21・・・発振器、22・・
・分周回路、23・・・入出力装置、24・・・コンピ
ータ、27・・・スイッチング回路、31・・・蓄積時
間設定カウンタ、33・・・レジスタ。 −1】−
Fig. 1 is a perspective view showing an example of an optical system in an MTF measuring device, Fig. 2 is a timing chart of a charge coupled device, Fig. 3 is a block diagram showing an example of an apparatus for implementing the present invention, and Fig. 4 is an apparatus for implementing the same. This is an example timing chart. 10... Solid-state image sensor, 21... Oscillator, 22...
- Frequency dividing circuit, 23... Input/output device, 24... Computer, 27... Switching circuit, 31... Accumulation time setting counter, 33... Register. -1]-

Claims (1)

【特許請求の範囲】[Claims] 自己走査型固体撮像素子を用いたMTF泪11定装置に
おいて、被検レンズの明るさに対応させて前記自己走査
型固体撮像素子の駆動周波数及び露光時間を変化させる
ことケ特徴とするMTF測定装置の固体撮像素子駆動制
御方法。
An MTF measuring device using a self-scanning solid-state image sensor, characterized in that the driving frequency and exposure time of the self-scanning solid-state image sensor are changed in accordance with the brightness of a lens to be tested. solid-state image sensor drive control method.
JP10266382A 1982-06-15 1982-06-15 Driving controlling method of solid state image pickup element on modulation transfer function measuring device Pending JPS58218632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10266382A JPS58218632A (en) 1982-06-15 1982-06-15 Driving controlling method of solid state image pickup element on modulation transfer function measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10266382A JPS58218632A (en) 1982-06-15 1982-06-15 Driving controlling method of solid state image pickup element on modulation transfer function measuring device

Publications (1)

Publication Number Publication Date
JPS58218632A true JPS58218632A (en) 1983-12-19

Family

ID=14333468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10266382A Pending JPS58218632A (en) 1982-06-15 1982-06-15 Driving controlling method of solid state image pickup element on modulation transfer function measuring device

Country Status (1)

Country Link
JP (1) JPS58218632A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146019A (en) * 1974-10-18 1976-04-20 Ricoh Kk Imeejisensaano kandochoseihoho
JPS5520402A (en) * 1978-07-18 1980-02-13 Isao Inagaki Urine dregs counter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146019A (en) * 1974-10-18 1976-04-20 Ricoh Kk Imeejisensaano kandochoseihoho
JPS5520402A (en) * 1978-07-18 1980-02-13 Isao Inagaki Urine dregs counter

Similar Documents

Publication Publication Date Title
US4881127A (en) Still video camera with electronic shutter and flash
US4643557A (en) Exposure control apparatus
USRE44499E1 (en) Focus detection apparatus, method of driving the same and camera system
US4623927A (en) Solid state image pickup apparatus
JPH04212577A (en) Focus adjuster
JPH0154908B2 (en)
JPS5836079A (en) Signal storage time control system of photoelectric converting means
JP3022166B2 (en) Solid-state imaging device
US4763154A (en) Focus detecting device and image signal amplifier circuit therefor
US5955725A (en) Digitizing CCD array system
JP2002213946A (en) Method and device for outputting image signal, range finder, and image pick-up device
JPS58218632A (en) Driving controlling method of solid state image pickup element on modulation transfer function measuring device
US5572280A (en) Photoelectric conversion apparatus and camera using the same in focus detection thereof
JP3397221B2 (en) Photometric device
JPS642922B2 (en)
JP2944674B2 (en) Image reading device
JP3397384B2 (en) Imaging device
JP3238546B2 (en) Photoelectric conversion device
JPH08292366A (en) Sensor controller for focus detection
JP2527956B2 (en) Imaging device
US4994919A (en) Camera for recording television, photographic or cinematographic images, including an automatic focus-setting device
JP2579159B2 (en) Imaging device
JPH02134986A (en) Image pickup device
JP3171662B2 (en) Image information input device for microscope
JPH1039201A (en) Focus detector