JPS58217711A - Dynamic valve device for internal-combustion engine - Google Patents

Dynamic valve device for internal-combustion engine

Info

Publication number
JPS58217711A
JPS58217711A JP9893182A JP9893182A JPS58217711A JP S58217711 A JPS58217711 A JP S58217711A JP 9893182 A JP9893182 A JP 9893182A JP 9893182 A JP9893182 A JP 9893182A JP S58217711 A JPS58217711 A JP S58217711A
Authority
JP
Japan
Prior art keywords
spring
valve
engine
load
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9893182A
Other languages
Japanese (ja)
Inventor
Kaoru Katayama
薫 片山
Yasuo Matsumoto
松本 泰郎
Seinosuke Hara
誠之助 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9893182A priority Critical patent/JPS58217711A/en
Publication of JPS58217711A publication Critical patent/JPS58217711A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/46Component parts, details, or accessories, not provided for in preceding subgroups
    • F01L1/462Valve return spring arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PURPOSE:To reduce a friction loss at a cam shaft by a method wherein a spring load of a valve spring is made variable in response to the operating condition of the internal-combustion engine. CONSTITUTION:A spring for use in biasing a valve 3 in its closing direction is composed of an inner spring 7 and an outer spring 8. At least one of the seats 6 for the springs 7 and 8 is formed with a piston 13 and the seat 6 can be moved in an extending or retracting direction under a hydraulic pressure applied in the hydraulic chamber 16. In a low speed range, the spring load is decreased lower than that found in a high speed range, thereby a lubricating condition at the cam shaft can be improved and a friction loss of the engine can be decreased.

Description

【発明の詳細な説明】 この発明は、内燃機関の動弁装置で、特に、弁スプリン
グのバネ荷重を機関の運転状態に応じて可変にしてカム
シャフト部におけるフリクションロスを低減する技術に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a valve train for an internal combustion engine, and particularly to a technique for reducing friction loss in a camshaft by varying the spring load of a valve spring depending on the operating state of the engine.

一般に、自動車用内燃機関においては、吸、排気弁を開
く動力はクランク軸からギヤかチェーンを介してカムシ
ャフトに伝へられ、このカムシャフトの回転運動をロッ
カアーム等を介して往復運動に変換することによって吸
、排気弁が開閉されるようになっている。
Generally, in an automobile internal combustion engine, the power to open the intake and exhaust valves is transmitted from the crankshaft to the camshaft via a gear or chain, and the rotational motion of this camshaft is converted into reciprocating motion via a rocker arm, etc. This opens and closes the intake and exhaust valves.

従来、との動弁装置として例えば第1図に示すよう、な
ものがある(「内燃機開講へ第413頁、(ハ)養賢堂
、1980年発行)。
Conventionally, there is a type of valve train as shown in FIG. 1, for example (Page 413, (C) Yokendo, published in 1980).

これは、まずシリンダヘッドlには、弁ガイド2を介し
て吸、排気弁3が摺動自由に保持される。
First, intake and exhaust valves 3 are slidably held in the cylinder head 1 via a valve guide 2.

この吸、リド気弁3の弁端部近傍にはコレット4を介し
て弁スプリングリテーナ5が組み付けられ、この弁スプ
リングリテーナ5とシリンダヘッド1上面の台座部6と
の間に、吸、排気弁3を常に閉弁方向に付勢するインナ
スシリング7とアウタスプリング8が介装される。
A valve spring retainer 5 is attached to the vicinity of the valve end of the suction/redo air valve 3 via a collet 4, and the suction/exhaust valve An inner cylinder 7 and an outer spring 8 are interposed to always bias the valve 3 in the valve closing direction.

また、上記吸、排気弁3の弁端部には、ロッカシャフト
9によシその中央部において揺動(回転)自由に支持さ
れたロッカアーム1oの一端が弁アジャストスクリュ1
1を介して当接し、このロッカアーム10の他端がカム
シャツ)12に当接している。
Further, at the valve end of the intake/exhaust valve 3, one end of a rocker arm 1o, which is freely supported by a rocker shaft 9 at its central portion, is connected to a valve adjust screw 1.
The other end of this rocker arm 10 is in contact with a cam shirt 12.

従って、図外のクランク軸に同期してカムシャフト12
が回転すると、カムシャフト12のリフト量に応じてp
ツカアーム10が図中上、下方向に揺動し、これによっ
て吸、排気弁3が機関の回転に同期゛して開閉作動され
るととになる。
Therefore, the camshaft 12 is synchronized with the crankshaft (not shown).
When the camshaft 12 rotates, p changes according to the lift amount of the camshaft 12.
The lever arm 10 swings upward and downward in the figure, thereby opening and closing the intake and exhaust valves 3 in synchronization with the rotation of the engine.

ところで、今上述した弁スプリング7.8のバネ力がロ
ッカアーム10を介して常時作用するカムシャフト12
0回転負荷荷重を考えると、第2図に示すように低速時
(例えば3000 rpm )では弁リフト量に応じて
圧縮される弁スプリング7゜8のバネ力(バネ荷M)に
略等しく、最大リフト時に最も大きくなる。
By the way, the spring force of the above-mentioned valve spring 7.8 is constantly applied to the camshaft 12 via the rocker arm 10.
Considering the 0-rotation load, as shown in Figure 2, at low speeds (for example, 3000 rpm), the spring force (spring load M) of the valve spring 7°8, which is compressed according to the amount of valve lift, is approximately equal to the spring force (spring load M), and the maximum It is largest during lift.

そして、カムシャフト12の回転数が高くなる(例えば
5000 rpm )と、上記バネ力に動弁部の慣性力
を加味したものがカムシャツ)12に加わる荷重になシ
、リフト開始近辺ではバネ力に慣性力を加えたものにな
って著しく大きくなシ、最大リフト近辺ではバネ力から
慣性力をマイナスしたものになって小さくなる。
When the rotational speed of the camshaft 12 becomes high (for example, 5000 rpm), the load applied to the camshaft 12 is the spring force plus the inertia of the valve train, and the spring force increases near the start of the lift. The force becomes the sum of the inertia force and becomes significantly large, but near the maximum lift it becomes the spring force minus the inertia force and becomes small.

そこで、従来例における弁スプリング7.8のバネ力及
びバネ定数の設計方法としては、まず弁閉時に吸入負圧
の作用やススのかみ込みによって吸、排気弁3にクリア
ランスが生じないよう[9付荷重が設定される。更に機
関最高回転時にカムシャフト12に加わる荷1が上述し
た慣性力によってゼロにならないように(即ち、ゼロに
なるとカムシャフト12の動きに吸、排気弁3が追従し
なくなる)、リフト時のバネ荷重が設定される。
Therefore, as a design method for the spring force and spring constant of the valve spring 7.8 in the conventional example, first, when the valve is closed, a clearance is not created in the intake and exhaust valves 3 due to the action of suction negative pressure and the entrainment of soot [9]. The applied load is set. Furthermore, in order to prevent the load 1 applied to the camshaft 12 at the maximum rotation of the engine from becoming zero due to the above-mentioned inertia force (that is, if it becomes zero, the movement of the camshaft 12 will be absorbed and the exhaust valve 3 will no longer follow). Load is set.

このようにして、最大リフト近辺のバネ力が最高回転時
の慣性力から決定されるので、低速時における最大リフ
ト近辺のバネ力が過大になってしまう。
In this way, since the spring force near the maximum lift is determined from the inertia force at the maximum rotation, the spring force near the maximum lift at low speeds becomes excessive.

一方、カムシャフト12とロッカアーム1oとの当接部
のフリクションを考えると、該当接部の潤滑状態は滑り
速度、面圧、接触面形状などから境界潤滑領域と流体潤
滑領域が混じった混合潤滑状態であると考えられる。
On the other hand, considering the friction at the contact part between the camshaft 12 and the rocker arm 1o, the lubrication state of the contact part is a mixed lubrication state in which the boundary lubrication region and the fluid lubrication region are mixed, depending on the sliding speed, surface pressure, contact surface shape, etc. It is thought that.

つtb、面圧が高く滑シ速度の小さい領域程。tb, the higher the surface pressure and the lower the sliding speed.

摺動面同士の固体接触が生じやすく境界潤滑状態となり
、逆に面圧が低く滑り速度が大きい領域程。
Solid contact between sliding surfaces is likely to occur, resulting in a state of boundary lubrication; conversely, areas where the surface pressure is low and the sliding speed is high.

摺動面間に油膜が形成され流体潤滑状態となるのである
An oil film is formed between the sliding surfaces, creating a state of fluid lubrication.

従って、カムシャツ)12の回転数が低い場合は、滑多
速度が小さく、しかも上述したように慣性力が小さいた
めに最大リフト近辺では荷重が高くかつこの時のカムシ
ャフト120曲率半径も小さいことがら面圧も高いので
、境界潤滑状態が支配的になる。一方、カムシャツ)1
20回転数が高い場合は、滑シ速度が大きく、しかも上
述したように今度は慣性力が大きいために最大リフト近
辺では荷重が低いことから面圧も低い(尚、高回転時に
おけるリフト開始位置近辺では上述したように荷重は高
いが、この時のカムシャツ)12の曲率半径は大きいた
め面圧はそれ程高くならない)ので、流体潤滑状態が支
配的になる。
Therefore, when the rotational speed of the camshaft 120 is low, the sliding speed is low, and as mentioned above, the inertial force is small, so the load is high near the maximum lift and the radius of curvature of the camshaft 120 at this time is also small. Since the surface pressure is also high, the boundary lubrication state becomes dominant. On the other hand, cam shirt) 1
20 When the rotation speed is high, the sliding speed is high, and as mentioned above, the inertial force is large, so the load is low near the maximum lift, and the surface pressure is also low (note that the lift start position at high rotation As mentioned above, the load is high in the vicinity, but since the radius of curvature of the cam shirt 12 at this time is large, the surface pressure does not become that high), so the fluid lubrication state becomes dominant.

そして、上記境界潤滑と流体潤滑では、摩擦係数は桁違
いに境界潤滑の方が大きい。
Between the boundary lubrication and fluid lubrication, the coefficient of friction is orders of magnitude larger in the boundary lubrication.

このようにして、従来の動弁装置にあっては、弁スプリ
ング7.8のバネ力が上述した取付荷重及び最高回転時
の慣性力な、どによって決定され、しかもこのバネ力は
低速域から高速域まで常に一定となっていたため、低速
域においてはバネ力が過大となってしまい、カムシャフ
ト12部の潤滑状態が滑シ速度の低下に加えて著しい面
圧の上昇によシ境界潤滑となる。
In this way, in the conventional valve train, the spring force of the valve spring 7.8 is determined by the above-mentioned mounting load, inertia force at maximum rotation, etc., and this spring force is Since the spring force was always constant up to the high speed range, the spring force became excessive in the low speed range, and the lubrication condition of the camshaft 12 decreased due to a significant increase in surface pressure in addition to the decrease in the sliding speed, resulting in boundary lubrication. Become.

この結果、第3図にも示したように低速域では摩擦トル
クが著しく大きくなシ、これが燃費を悪化させる重要な
要因になっていた。
As a result, as shown in FIG. 3, the friction torque is significantly large in the low speed range, which is an important factor in deteriorating fuel efficiency.

この発明は、このような従来の問題点に着目してなされ
たもので、上述した弁スプリングのバネ荷重を機関の運
転状態に応じて可変にし、特に低速域では上記バネ荷重
を高速域よシも減少させることによってカムシャフト部
の潤滑状態を改善し、機関のフリクションロスを低減し
て燃費の向上をはかることを目的とする。
This invention was made by focusing on such conventional problems, and it makes the spring load of the above-mentioned valve spring variable according to the operating condition of the engine, so that the spring load is made variable in the low speed range than in the high speed range. The purpose is to improve the lubrication state of the camshaft by reducing the amount of friction, thereby reducing engine friction loss and improving fuel efficiency.

そのために、この発明ではカムシャフトの動きを吸、排
気弁に伝達するだめの弁スプリングに、インナスプリン
グとアウタスプリングとの二本ヲ用いるようKした内燃
機関の動弁装置において、上記インナスプリングとアウ
タスプリングのすくなくとも一方の台座を弁スプリング
の伸縮方向に移動可能に設けると共に、該台座を機関の
運転状態に応じて移動させる手段を設けるように構成さ
れる。
To this end, the present invention provides a valve train for an internal combustion engine in which two valve springs, an inner spring and an outer spring, are used to transmit the movement of the camshaft to the intake and exhaust valves. At least one pedestal of the outer spring is provided so as to be movable in the direction of expansion and contraction of the valve spring, and means is provided for moving the pedestal in accordance with the operating state of the engine.

以下、この発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

第4図に示すように、インナスプリ/グアとアウタスプ
リング8のシリンダヘッド1側端部を担持する台座部6
が、弁ガイド2と同心円状に配設された筒状のピストン
体13と、このピストン体13を収容するようにして配
設された同じく筒状のストツノf14とから構成され、
上記ピストン体13上にインナスプリング7の端部が、
またストツノ臂14上にアウタスプリング8の端部が各
々担持される。
As shown in FIG. 4, a pedestal part 6 supports the inner spring/gua and outer spring 8 on the cylinder head 1 side.
is composed of a cylindrical piston body 13 disposed concentrically with the valve guide 2, and a similarly cylindrical stop horn f14 disposed so as to accommodate this piston body 13,
The end of the inner spring 7 is placed on the piston body 13,
Further, the end portions of the outer springs 8 are supported on the strut arms 14, respectively.

上記ストッパ14は、シリンダヘッド1の上面にネジ等
により固定される。
The stopper 14 is fixed to the upper surface of the cylinder head 1 with a screw or the like.

一方、ピストン体13は、その小径筒部13Aが弁ガイ
ド2に、また大径筒部13Bがシリンダヘッドlの上面
に穿設された円形のガイド溝15にそれぞれ摺接して、
弁軸方向(弁スプリングの伸縮方向)に移動可能に設け
られると共に、シリンダヘッドlとの間に大径筒部13
Bの内部に位置して油圧室16を画成する。
On the other hand, the piston body 13 has its small diameter cylindrical portion 13A in sliding contact with the valve guide 2, and its large diameter cylindrical portion 13B in sliding contact with the circular guide groove 15 bored in the upper surface of the cylinder head l.
The large diameter cylindrical portion 13 is provided to be movable in the valve axis direction (valve spring expansion/contraction direction), and is provided between the cylinder head l and the large diameter cylindrical portion 13.
It is located inside B and defines a hydraulic chamber 16.

また上記ピストン体13の移動量は、該ピストン体13
の大径筒部13Bと弁軸方向に係合する上述したストッ
パ14の高さと、ガイド溝15の深さによシその最大値
が設定されるようになっている。
Further, the amount of movement of the piston body 13 is
The maximum value thereof is set depending on the height of the above-mentioned stopper 14 that engages with the large diameter cylindrical portion 13B in the valve axis direction and the depth of the guide groove 15.

そして、上記ピストン体13を機関の運転状態に応じて
移動させる手段として、第5図にも示したように上述し
た油圧室16に油供給孔17が開口接続され、この油供
給孔17に連通接続される油供給通路18を介して図外
のオイルポンプから  ′l□機関潤滑油が油圧室16
に供給されるようになっている。
As a means for moving the piston body 13 according to the operating condition of the engine, an oil supply hole 17 is open and connected to the above-mentioned hydraulic chamber 16 as shown in FIG. 'l□ Engine lubricating oil is supplied to the hydraulic chamber 16 from an oil pump (not shown) via a connected oil supply passage 18.
is being supplied to.

上記油供給孔17と油供給通路18との接続部には更に
油逃し通路19が分岐され、この分岐点に機関の設定回
転数を境にして0N−OFFする回転スイッチ20に応
動する電磁切換弁21が介装される。
An oil relief passage 19 is further branched at the connection portion between the oil supply hole 17 and the oil supply passage 18, and an electromagnetic switching switch is provided at this branch point in response to a rotary switch 20 that turns 0N-OFF at the set rotation speed of the engine. A valve 21 is interposed.

そして、この電磁切換弁21は、機関回転数が設定値よ
り低く回転スイッチ20がOFFの時は、油供給通路1
8が油供給孔17とのみ連通し、逆に設定値以上で回転
スイッチ20がONされると、油供給通路18が今度は
油逃し通路19と連通ずる一方油供給孔17も油逃し通
路19側に連通ずるように切換作動するようになってい
る。
When the engine speed is lower than the set value and the rotation switch 20 is OFF, the electromagnetic switching valve 21
8 communicates only with the oil supply hole 17, and conversely, when the rotation switch 20 is turned on at a value greater than or equal to the set value, the oil supply passage 18 in turn communicates with the oil relief passage 19, while the oil supply hole 17 also communicates with the oil relief passage 19. It is designed to switch so that it communicates with the side.

その他の構成は第1図と同様なので、第1図を参照して
ここでは詳しい説明は省略する。
The rest of the configuration is the same as that in FIG. 1, so a detailed explanation will be omitted here with reference to FIG.

このような構成のため、今上述したアウタスプリング8
のバネ定数を、従来例よ)若干小さくする一方弁全閉時
において該スプリング8のみで取付荷重を受は持つよう
に設定する。尚、上記取付荷重は弁全閉時の吸入負圧等
によシ開きを防止するためのものであシ、従来例と同等
の取付荷重が必要である。
Because of this configuration, the outer spring 8 described above
The spring constant of the spring 8 is made slightly smaller (compared to the conventional example), and the support is set so that only the spring 8 carries the mounting load when the one-way valve is fully closed. The above mounting load is to prevent the valve from opening due to suction negative pressure when the valve is fully closed, and the mounting load is required to be equivalent to that of the conventional example.

一方、インナスプリング7は高速回転時の吸、排気弁3
のカムシャフト12に対する追従性を保証するだめのも
のであシ、従って最大リフ)ftでの該スプリング7の
荷重と上述したアウタスプリング8の荷重を加えた荷重
が従来例と同等の荷重になるようにそのバネ定数が設定
される。
On the other hand, the inner spring 7 is connected to the intake and exhaust valves 3 during high-speed rotation.
Therefore, the load of the spring 7 at the maximum lift) ft plus the load of the outer spring 8 described above is the same as that of the conventional example. The spring constant is set as follows.

このようにすると、機関の低速域(回転スイッチ20に
よる設定回転数に達しない領域)では、上述したように
電磁切換弁21の切換作動によジオイルポンプからの機
関潤滑油は油逃し通路19側にすべて流れるように愈る
。このため、油圧室16には油圧は作用せずピストン体
13は下降した状態にあシ、これによって上記ピストン
体13に一端力゛担持されたインナスプリング7はその
他端カ弁スノリングリテーナ5には接さす、該スプリン
グ7のバネ荷重はカムシャフト12には作用しない。
In this way, in the low speed range of the engine (the range where the set rotation speed is not reached by the rotation switch 20), the engine lubricating oil from the geo-oil pump is transferred to the oil relief passage 19 by the switching operation of the electromagnetic switching valve 21 as described above. Everything seems to flow to the side. Therefore, no hydraulic pressure is applied to the hydraulic chamber 16 and the piston body 13 is in a lowered state, so that the inner spring 7, which is supported by the piston body 13 at one end, is forced into the valve snoring retainer 5 at the other end. are in contact with each other, and the spring load of the spring 7 does not act on the camshaft 12.

この結果、当該運転域では第6図にも示したように、特
に最大リフト近辺でカムシャフト12にかかる荷重が上
記バネ力の低下により大巾に低減され、これによって面
圧も大巾に低下されるので、カムシャフト12部におい
て流体、潤滑状態が維持でき機関の7リクシヨン冒スが
著しく低減される。
As a result, as shown in Fig. 6 in the relevant operating range, the load applied to the camshaft 12, especially near the maximum lift, is significantly reduced due to the reduction in the spring force, and as a result, the surface pressure is also significantly reduced. As a result, fluid and lubrication conditions can be maintained in the camshaft 12, and the engine's 7-stroke impact can be significantly reduced.

一方、機関の高速域(回転スイッチ20による設定回転
数を起えた領域)では、今度は逆に電磁。
On the other hand, in the high speed range of the engine (the range where the rotation speed set by the rotation switch 20 has been reached), this time the electromagnetic force is reversed.

切換弁21によってオイルIンプからの機関潤滑油が油
圧室16に導入される。
Engine lubricating oil from the oil I pump is introduced into the hydraulic chamber 16 by the switching valve 21 .

これによシ、上記油圧によってピストン体13がストン
/4’14に当接するまで上昇される。この時、上記ス
トン/4’14の位置(高さ)は弁全閉時においてイン
ナスプリ/グアの他端が弁スプリングリテーナ5に当接
する位の高さに予め設定されると共に、上記油圧室16
の面積は最大リフト時のインナスプリング7のバネ荷重
を該油圧で支えられるような十分の面積に予め設定され
る。
As a result, the piston body 13 is raised by the oil pressure until it comes into contact with the stone/4'14. At this time, the position (height) of the piston/4' 14 is set in advance to such a height that the other end of the inner spring/gua comes into contact with the valve spring retainer 5 when the valve is fully closed, and the hydraulic chamber 16
The area of is set in advance to be a sufficient area such that the spring load of the inner spring 7 at maximum lift can be supported by the hydraulic pressure.

これらの結果、当該運転域ではカムシャツ)12部にイ
ンナスシリング7とアウタスプリング8との合成したバ
ネ力(バネ荷重)が作用され、しかもこのバネ力は上述
したように最大リフト近辺において従来例と同等のバネ
力が得られるように予め設定されているので、前述した
ように慣性力の増大によシカムシャフト12に加わるバ
ネ荷重がゼロとガることはなく、吸、排気弁3はカムシ
ャフト12の動きに確実に追従する。
As a result, the combined spring force (spring load) of the inner cylinder 7 and the outer spring 8 is applied to the cam shirt (cam shirt) 12 in the operating range, and as mentioned above, this spring force is greater than the conventional example near the maximum lift. Since the spring force is set in advance to obtain a spring force equivalent to that of Reliably follows the movements of 12.

尚、上記実施例においてピストン体13で制御する弁ス
プリングをアウタスプリング8とし、バネ特性をインナ
スプリング7とアウタスプリング8とを逆にすることに
よっても同様の効果が得られる。
In the above embodiment, the same effect can be obtained by using the outer spring 8 as the valve spring controlled by the piston body 13 and reversing the spring characteristics of the inner spring 7 and the outer spring 8.

また、上記実施例においてインナスシリング7のバネ特
性に第7図に示すような二段バネ定数を持たせ、一段目
のバネ定数を二段目よ)小さくして高速域(ピストン体
13が油圧によ)上昇する)における弁全閉時には密着
状態になるように設定すれば機関の低速域において上記
実施例と略同等のバネ荷重を維持できる一方、インナス
プリング7の他端を常時弁スプリングリテーナ5に当接
させることができ騒音の発生を防止できる。
In addition, in the above embodiment, the spring characteristic of the inner cylinder 7 is given a two-stage spring constant as shown in FIG. If the valve is set in a tight state when the valve is fully closed (increased by hydraulic pressure), it is possible to maintain a spring load approximately the same as in the above embodiment in the low speed range of the engine, while the other end of the inner spring 7 is always connected to the valve spring. It can be brought into contact with the retainer 5 and generation of noise can be prevented.

以上説明したようにこの発明によれば、弁スプリングの
バネ荷重を機関の運転状態に応じて可変にし、特に低速
域では上記バネ荷重を高速域よシも減少させるように構
成したので、動弁機能を損なうことなくカムシャフト部
の潤滑状態を改善でき、機関のフリクションロスを低減
して燃費の向上がはかれるという効果が得られる。
As explained above, according to the present invention, the spring load of the valve spring is made variable according to the operating condition of the engine, and the spring load is reduced particularly in the low speed range as well as in the high speed range. The lubrication condition of the camshaft can be improved without sacrificing functionality, reducing engine friction loss and improving fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の要部断面図、第2図はその荷重特性図
、第3図は摩擦トルクの比較特性図、第4図及び第5図
はこの発明の実施例の要部断面及び概略構成図、第6図
はその荷重特性図、第7図はこの発明の他の実施例のバ
ネ特性図である。 12・・・カムシャフト、3・・・吸、排気弁、7・・
・インナスプリング、8・・・アウタスプリング、6・
・・台座部、13・・・ピストン体、14・・・ストン
A?、16・・・油圧室、17・・・油供給孔、18・
・・油供給通路、21・・・電磁切換弁、20・・・回
転スイッチ。 第1図 0 1 吋 (、y++@ ]幇
Fig. 1 is a sectional view of the main part of the conventional example, Fig. 2 is a load characteristic diagram thereof, Fig. 3 is a comparative characteristic diagram of friction torque, and Figs. 4 and 5 are a sectional view of the main part of the embodiment of the present invention. A schematic configuration diagram, FIG. 6 is a load characteristic diagram thereof, and FIG. 7 is a spring characteristic diagram of another embodiment of the present invention. 12...Camshaft, 3...Suction and exhaust valves, 7...
・Inner spring, 8...Outer spring, 6・
... Pedestal part, 13... Piston body, 14... Stone A? , 16... Hydraulic chamber, 17... Oil supply hole, 18...
...Oil supply passage, 21...Solenoid switching valve, 20...Rotary switch. Figure 1 0 1 吋(,y++@ ]幇

Claims (1)

【特許請求の範囲】 L 吸、排気弁を閉弁方向に付勢する弁スプリングに、
インナスプリングとアウタスプリングとの二本を用いる
ようにした内燃機関の動弁装置において、上記インナス
プリングとアウタスプリングのすくなくとも一方の台座
を弁スプリングの伸縮方向に移動可能に設けると共に、
該台座を機関の運転状態に応じて移動させる手段を設け
たことを特徴とする内燃機関の動弁装置。 2 上記台座は、機関の低速域では弁スプリングの伸び
方向に、また高速域では縮み方向に移動する特許請求の
範囲第1項記載の内燃機関の動弁装置。
[Claims] L A valve spring that biases the intake and exhaust valves in the valve closing direction,
In a valve train for an internal combustion engine that uses two springs, an inner spring and an outer spring, at least one base of the inner spring and the outer spring is provided to be movable in the direction of expansion and contraction of the valve spring, and
A valve train for an internal combustion engine, comprising means for moving the pedestal according to the operating state of the engine. 2. The valve train for an internal combustion engine according to claim 1, wherein the pedestal moves in the direction of extension of the valve spring in a low speed range of the engine and in the direction of contraction in a high speed range of the engine.
JP9893182A 1982-06-09 1982-06-09 Dynamic valve device for internal-combustion engine Pending JPS58217711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9893182A JPS58217711A (en) 1982-06-09 1982-06-09 Dynamic valve device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9893182A JPS58217711A (en) 1982-06-09 1982-06-09 Dynamic valve device for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS58217711A true JPS58217711A (en) 1983-12-17

Family

ID=14232863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9893182A Pending JPS58217711A (en) 1982-06-09 1982-06-09 Dynamic valve device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58217711A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242228A1 (en) 1986-04-16 1987-10-21 Honda Giken Kogyo Kabushiki Kaisha Valve operating mechanism for an internal combustion engine
JPS62243904A (en) * 1986-04-16 1987-10-24 Honda Motor Co Ltd Valve system for internal combustion engine
US5044330A (en) * 1990-07-06 1991-09-03 Havens Elwood L Valve spring spacer
US5558054A (en) * 1995-06-07 1996-09-24 Southwest Research Institute Variable preload system for valve springs
US5664531A (en) * 1994-08-29 1997-09-09 Hyundai Motor Co., Ltd. Device for adjusting valve duration using external air supply
US7458356B2 (en) 2006-02-20 2008-12-02 Nhk Spring Co., Ltd. Spring apparatus and valve train of internal combustion engine using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242228A1 (en) 1986-04-16 1987-10-21 Honda Giken Kogyo Kabushiki Kaisha Valve operating mechanism for an internal combustion engine
JPS62243904A (en) * 1986-04-16 1987-10-24 Honda Motor Co Ltd Valve system for internal combustion engine
US4957076A (en) * 1986-04-16 1990-09-18 Honda Giken Kogyo Kabushiki Kaisha Valve operating mechanism for an internal combustion engine
US4970997A (en) * 1986-04-16 1990-11-20 Honda Giken Kogyo Kabushiki Kaisha Valve operating mechanism for an internal combustion engine
JPH05528B2 (en) * 1986-04-16 1993-01-06 Honda Motor Co Ltd
US5044330A (en) * 1990-07-06 1991-09-03 Havens Elwood L Valve spring spacer
US5664531A (en) * 1994-08-29 1997-09-09 Hyundai Motor Co., Ltd. Device for adjusting valve duration using external air supply
US5558054A (en) * 1995-06-07 1996-09-24 Southwest Research Institute Variable preload system for valve springs
US7458356B2 (en) 2006-02-20 2008-12-02 Nhk Spring Co., Ltd. Spring apparatus and valve train of internal combustion engine using the same

Similar Documents

Publication Publication Date Title
US4397270A (en) Valve operating mechanism for internal combustion engines
US5178105A (en) Valve gear for internal combustion engines
JP4420493B2 (en) Compression engine brake device
US4615313A (en) Automatic decompression device for internal combustion engine
JPH07301106A (en) Variable valve system for internal combustion engine
JPH09506402A (en) Variable valve lift mechanism for internal combustion engine
US5601056A (en) Device for actuating the valves in internal combustion engines by means of revolving cams
US2980089A (en) Valve operating means and control
JPS6119911A (en) Valve operation suspending device for internal-combustion engine
US4913106A (en) Variable duration valve lifter improvements
US4836155A (en) Variable duration valve opening mechanism
JPS58217711A (en) Dynamic valve device for internal-combustion engine
JPH0550565B2 (en)
JPS58220910A (en) Tappet valve apparatus of internal-combustion engine
JPS6241907A (en) Shock damping device in valve seating
JPS6034726Y2 (en) Internal combustion engine intake control device
JP3996238B2 (en) Intake / exhaust valve control device and control method for internal combustion engine
JPS60209613A (en) Valve driving apparatus for internal-combustion engine
JPS5913282Y2 (en) Valve lift control device
JP2639471B2 (en) Lift control device for valve for internal combustion engine
JPH02221612A (en) Variable valve system of internal combustion engine
JPS608084Y2 (en) Internal combustion engine valve lift control device
JP3143272B2 (en) Intake and exhaust valve drive control device for internal combustion engine
KR100427946B1 (en) Valve train having variable valve spring
JPH06101422A (en) Valve system of internal combustion engine