JPS5821710A - Lens system which permits near distance photographing - Google Patents

Lens system which permits near distance photographing

Info

Publication number
JPS5821710A
JPS5821710A JP12007681A JP12007681A JPS5821710A JP S5821710 A JPS5821710 A JP S5821710A JP 12007681 A JP12007681 A JP 12007681A JP 12007681 A JP12007681 A JP 12007681A JP S5821710 A JPS5821710 A JP S5821710A
Authority
JP
Japan
Prior art keywords
lens
group
lens system
front group
rear group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12007681A
Other languages
Japanese (ja)
Inventor
Yoshinori Hamanishi
濱西 芳徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP12007681A priority Critical patent/JPS5821710A/en
Publication of JPS5821710A publication Critical patent/JPS5821710A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain a general-purpose lens system of a large aperture ratio which consists of a front group having positive refracting power and a rear group having likewise positive refracting power, can be focused to all objects from infinite distances up to extreme near distances, and maintains high optical performance at all times. CONSTITUTION:A titled lens system consists of a front group G1 and a rear group G2; the front group G1 is constituted of three lens elements L1, L2, L3 and the rear group G2 is constituted of two lens elements L4, L5, respectively. Since the front and rear groups require the degree of freedom in achromatism, the lenses having negative refracting power are always contained therein. If the combined focal length of the entire system is defined as (f) and the focal lengths of the front and rear groups are defined as f1, f2 respectively, it is preferable to regulate these to 1.6<f1/f<3.0, 1.5<f1/f2<3.0. To focus the lens from infinite distances to a near distance, the entire part thereof is extended to an object side while the air space between the front group G1 and the rear group G2, that is, the air space between the 3rd lens L3 and the 4th lens L4 is expanded, whereby the lens is focused to the extremely near distances down to beta=-0.5 image magnification.

Description

【発明の詳細な説明】 本発明は無限遠から極めて至近距離までのあらゆる距離
の物体を撮影することのできる大口径比汎用レンズ系に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a large aperture ratio general-purpose lens system that can photograph objects at any distance from infinity to extremely close distances.

従来、光学系は特定の用途に応じて専用の光学系、か必
要とされ、轡に利用頻度の^い近距離撮影時においても
そうであった。そして近臣−撮影用として設計されたレ
ンズ系でありながら汎用レンズとして用いられるいわゆ
るマイクロレンズ或はマクロレンズでは、判るさ、量産
近臣−での光学性能も未だ不充分であったつまた明るさ
、光学性能か良好なものは一般にレンズ枚数か増し、複
雑な光学系になりがちであった。
Conventionally, a dedicated optical system has been required depending on the specific use, even for close-up photography, which is often used. Chikaomi - So-called microlenses or macro lenses, which are lens systems designed for photographic use but are used as general-purpose lenses, as you can see, still have insufficient optical performance in mass-produced Chikaomi. Those with good performance generally had more lenses and tended to have complex optical systems.

本発明の目的は、少ないレンズからなる簡単な光学系で
ありながら、無限遠から極めて近臣−までのあらゆる物
体に合焦でき、しかも常に優れた光学性能を維持する大
口径比の汎用レンズ系を提供するととKある。
The purpose of the present invention is to provide a general-purpose lens system with a large aperture ratio that can focus on any object from infinity to extremely close objects, while maintaining a simple optical system with a small number of lenses, and that always maintains excellent optical performance. Then there is K.

本発明の近距離撮影可能なレンズ系は、少なくと41つ
の負のレンズ成分を含み、正の屈折夕な有する1111
−01と、同じく少な−くと−1つの負のレンン成分を
含む正の屈折力を 有する後群G2とから成り、′両群
の空気間隔を、無限遠物体から近距離物体への合焦に際
して、この両群の空気間隔を増大させつつ両群を共に物
体側へ移動させるごとく構成されている。しかも、開口
絞りは後群中の最も物体側のレンズより像側に設けられ
ている。
The lens system capable of close-range photography of the present invention includes at least 41 negative lens components and has 1111 positive refracting components.
-01 and a rear group G2, which also has positive refractive power and includes at least -1 negative lens component, and the air gap between the two groups is adjusted to allow focusing from an object at infinity to a close object. At this time, the structure is such that both groups are moved toward the object side while increasing the air gap between the two groups. Moreover, the aperture stop is provided closer to the image side than the lens closest to the object in the rear group.

絞りを後群の中、あるいは後に設定することにより射出
瞳を儂匈へ近づけることかできる。これ罠より、このよ
うなレンズ系の後方に、リヤコンバージョンレンズ等の
別の光学系を連結するとき、その光学系の有効径か小さ
くとも、あまり光束をけられることかな(、周辺光量の
低下を紡ぐことかできる。また、絞りをレンズの後方へ
近づけることによって、後群のレンズの有効径を比較的
小さくすることか可能であり、後群の後方に設けられる
他の光学系の口径も比較的小さくでき、レンズ全体とし
ての小皺化に有利である。
By setting the aperture in or after the rear group, the exit pupil can be brought closer to the lens. The problem with this is that when connecting another optical system such as a rear conversion lens behind such a lens system, even if the effective diameter of that optical system is small, the luminous flux may be cut off too much (reduction in peripheral light intensity). In addition, by moving the aperture closer to the rear of the lens, it is possible to make the effective diameter of the lens in the rear group relatively small, and the aperture of other optical systems installed behind the rear group can also be made relatively small. It can be made relatively small, which is advantageous in reducing wrinkles in the lens as a whole.

1また、本発明では、近距離撮影時に11t1後一群G
l 、G2の空気間隔か大きくなるために、入射−か物
体からより遠くへ移動してレンズ系に入射する光束の光
軸に対する角度が小さくなるので収差補正か容易となる
。またこれらを考慮し、各前後群の屈折力配分、すなわ
ちみかけの明るさの配分を適当にバランスさせるととに
より、単純なレンズ系で至近距離撮影時の収差の発生を
少くすることかでする。
1 In addition, in the present invention, the first group G after 11t1 during close-range photography
Since the air spacing between L and G2 becomes larger, the angle of the incident light beam moving farther from the object and entering the lens system with respect to the optical axis becomes smaller, making it easier to correct aberrations. Also, taking these into account, it is possible to reduce the occurrence of aberrations during close-up photography with a simple lens system by appropriately balancing the distribution of refractive power between the front and rear groups, that is, the distribution of apparent brightness. .

本発明によるこのようなタイプのレンズ系を大口径比化
すると共に、十分長いバンクフォーカスを得ようとする
場合には、前群の屈折力か後群の屈折力より著しく弱く
なる傾向かある。大口径比化するとまたレンズ枚数か増
えたり、レンズの厚内化か著しくなり、バックフォーカ
スか短くなる傾向かある。このため、無限遠物体の撮影
状態で十分なバックフォーカスを得るためには、前群の
屈折力な−めなければならない。このことは物体から出
た光束か#J#であまり収束されないことを意味し、物
体か近臣−にあるほど前群からの射出光は発散すること
になる。この光束は後群で受け―かれることになり、後
群の屈折力及び明るさの増大か螢求されるか、諸収差を
良好に補正し得るごとく構成することは非常に難しい。
When increasing the aperture ratio of this type of lens system according to the present invention and attempting to obtain a sufficiently long bank focus, the refractive power of the front group tends to be significantly weaker than the refractive power of the rear group. When increasing the aperture ratio, the number of lenses increases, the thickness of the lens becomes noticeably thicker, and the back focus tends to become shorter. Therefore, in order to obtain sufficient back focus when photographing an object at infinity, the refractive power of the front group must be adjusted. This means that the light flux emitted from the object is not converged very much, and the closer the object is to the object, the more the light emitted from the front group will diverge. This light beam is received by the rear group, and it is extremely difficult to configure the rear group to increase its refractive power and brightness or to correct various aberrations well.

このため、従来のこの種の大口径比レンズよりも前群の
屈折力を強め、可能な限り前群の負担を大きくしておく
ことか必畳である。このようにすれば至近距離において
後群での収差補正の負担が軽減されることとなり、至近
距離の場合でも物体から出た光束を前群で収束光束にな
る状態で使用することができる。しかし、前群の屈折力
が強くなり過ぎると前群での収差補正が困難になるので
、最至近距離で物体からの光束がわずかながら発散光束
となって前群を射出する程度Klめることが望ましい。
For this reason, it is necessary to strengthen the refractive power of the front group compared to conventional large aperture ratio lenses of this type, and to increase the load on the front group as much as possible. In this way, the burden of aberration correction on the rear group is reduced at close range, and even at close range, the light beam emitted from the object can be used as a convergent light beam in the front group. However, if the refractive power of the front group becomes too strong, it becomes difficult to correct aberrations in the front group, so it is necessary to reduce the amount of light from the object at the closest distance so that it becomes a slightly divergent beam and exits the front group. is desirable.

以上のごとき本発明によるレンズ系の骨性からして以下
のような条件を満すことが望ましい。
Considering the bone quality of the lens system according to the present invention as described above, it is desirable that the following conditions be satisfied.

1.6(f、/f(3,0・・・・・・(1)1、5 
(f、/ f、(3,0・・・・・・(2)ここでfは
全系の合成焦距−e、fj+flはそれぞれ前群と後群
の焦点距離を表わす。(1)式の条件はst1騨に対す
る屈折力の適切な配分な規定するもの、である。この条
件の下、@を超えると、前群の屈折力が強くなりすぎて
無限遠撮影状部においてバックフォーカス、を十分兼く
することが難しくなるとともに、無限遠物体の撮影状態
と至近距離物体の撮影状態での球面収差の変動が著しく
なる。この−正のためにを工前群のレンズ枚数、を増し
た複雑な構成とせざるを得ない、他方、上限を超えると
後群への屈折力の負荷が相対的に強くなりすぎるため、
至近距離での球面収差が著しく発生し、補正が難しくな
る。後群の屈折力を強めることは帥述したごとく有効で
・ヱあるが、至近距離物体に対しては不利であり、本発
明のごとき高い撮影倍率を得るレンズ系としては上記の
範囲に定めるどとが″望ましい。
1.6(f, /f(3,0...(1)1,5
(f, / f, (3,0... (2) where f is the composite focal length of the entire system - e, and fj + fl represent the focal lengths of the front group and rear group, respectively. In equation (1), The condition stipulates the appropriate distribution of refractive power to the st1 axis.Under this condition, if it exceeds @, the refractive power of the front group becomes too strong and the back focus is insufficient at infinity photography. At the same time, the variation in spherical aberration between the shooting conditions of an object at infinity and the shooting condition of a close-up object becomes significant. On the other hand, if the upper limit is exceeded, the refractive power load on the rear group becomes relatively too strong.
Significant spherical aberration occurs at close range, making correction difficult. Increasing the refractive power of the rear group is effective as mentioned above, but it is disadvantageous for objects at close range, and for a lens system that achieves a high imaging magnification like the one of the present invention, it is necessary to is desirable.

(2)式の条件は前群と後群それぞれの焦点距−の比、
即ち屈折力の配分を定めるもので、(1)式の条件とと
もに明るくしかも至近距離な蛎(し、高い撮影倍率を得
る起めのものであ′る。またこの条件は(1)式の条件
とによ゛つて、前後両群の間隔を規′定するものである
。下限を超えると、前群の屈折力が強くなりすぎて前群
でのwa差量が増大する。この補正のために、前群のレ
ンズ枚数を増加し厚レンズ化するこ′と力〈できるが、
前群の儂貴主点がレンズ内部へくい込むため、前後両群
が最4m近する無限遠物体の撮影時に両群のレンズが干
渉することとなり、一般撮影用のレンズ□と□して用い
ることが―しくなる。また上限を超えると、無限遠の撮
影状態ではかなり明るくしても良好な収差補正が可能で
あるが、至近゛距−〇撮影状態では諸収差の発生が著し
く、良好な補正を維持できなくなる。゛ このような本発明のレンズ単においては、近臣−補正で
拡がる前群と後群との空気間隔の変化−をΔd とし□
、無限遠から量産近臣−に合焦したときのバックフォー
カス゛の変化量をΔBfとするとき、α=4d/ノ1t
とするαはフローティング量を定める係数であるが、以
下ましい。
The conditions for equation (2) are the ratio of the focal lengths of the front group and the rear group,
In other words, it determines the distribution of refractive power, and together with the condition of equation (1), it is necessary to obtain a bright and close-range image (and a high photographic magnification).This condition also meets the condition of equation (1). This determines the distance between the front and rear groups.If the lower limit is exceeded, the refractive power of the front group becomes too strong and the wa difference between the front groups increases.To correct this, However, it is possible to increase the number of lenses in the front group and make the lenses thicker.
Since the principal point of the front group goes into the lens, the lenses of both groups will interfere when photographing an object as close as 4 meters to infinity, so it is used as a lens □ and □ for general photography. Things become strange. If the upper limit is exceeded, good aberration correction is possible in infinity shooting conditions even if the brightness is quite high, but in close-up shooting conditions, various aberrations occur significantly and good correction cannot be maintained.゛In such a lens unit of the present invention, the change in the air distance between the front group and the rear group that is expanded by correction is defined as Δd□
, when the amount of change in back focus when focusing on a mass-produced relative from infinity is ΔBf, α=4d/no1t
α is a coefficient that determines the floating amount, but the following is preferable.

o、2〈α’< 0.35・・・・・・(3)(3)式
の下限を超えると、近距離撮影状−では外力向性コマ収
差の補正が困難であり、フローティングの効果があまり
望め゛ない。また(3)式の上限を起えると、近距離撮
影状態では内向性コマ収差が発生し、フローティング過
剰であると具に子′午的倫面が過度に正になり、−欠的
像゛面は過度に負になり、非点収差が発生し望ましくな
い。
o, 2〈α'< 0.35... (3) If the lower limit of equation (3) is exceeded, it is difficult to correct external force tropic coma in close-range photography, and the floating effect I don't have much hope. In addition, when the upper limit of equation (3) is raised, introverted comatic aberration occurs in close-range shooting conditions, and if there is excessive floating, the meridional plane becomes excessively positive, resulting in a negative image. The surface becomes too negative, creating astigmatism, which is undesirable.

本発#4によるレンズ系を構成する前群及び後群は、具
体的′には次のごとく構成されることが望ましい□。す
なわち足前群偽は物体側から順に、物体側により強い曲
率の面を向けた正レンズの第3レンズL、物体側に凸面
を向けた正メニスカスレンズの第2レンズ−1物体側に
凸面を向けた負メニスカスレンズの第3レンズ−から成
り、後#偽は物体側から順に、侭@に凸面を向けたメニ
スカスレンズの第4レンズ−1−正レンズのIs5レン
ズ−から成っており、全系としてはいわゆる変形ガウス
タイプをなすことが望ましい。但し、本発明では前述の
ごとく開口′紋りが後□述−中特゛に第4レンズ−と第
5レンズ−との関に設けられる点で従来の変形ガウスタ
イプのレンズ系とは全く異なり【いる。
Specifically, it is desirable that the front group and rear group constituting the lens system according to #4 of the present invention be constructed as follows. In other words, the front group false is, in order from the object side, the third lens L, which is a positive lens with a surface with a stronger curvature facing the object side, and the second lens L, which is a positive meniscus lens with a convex surface facing the object side. The third lens is a negative meniscus lens with the convex surface facing toward the rear, and the fourth lens is a positive meniscus lens with the convex surface facing the rear. It is desirable that the system be of a so-called modified Gaussian type. However, as mentioned above, the present invention is completely different from the conventional deformed Gauss type lens system in that the aperture pattern is provided between the fourth lens and the fifth lens as described below. [There is.

さらに本発@においては、前群、後群を大幅に移動させ
てもあまり色収差による′性能劣化があってはいけない
。比較的単純な構成で合焦による倍率及び軸上の色収差
の補正をするためKは、前群中の歳先の正レンズである
菓lレンズL1を低分−数、*絖の正レンズとしての絽
2レンズ−を高分散、負レンズであるmsレンズ−を高
分散にして構成することが望ましい。レンズ系を大口径
比化してゆくと、〜般に球面収差の補正のため正レンズ
成分は高屈折率、負レンズは非一点収差の補正のため低
屈折率のガラスを採用するととKなる。本発明゛におけ
葛ようなガウスタイプではMlレンズ−が高屈折率低分
散のものを必要とするが実際にはあまり存在しないので
貼り合せレンズとなってしまう。また第3レンズL、も
同様に低屈折率、高分散のガラスがあまり存在しないの
で必然的に貼り合゛せレンズとなってしまう。このよう
な−釆―詳に各レンズの屈折率の平均をN、とすると 1.70(N、(1,82・・・・・・(4)−の範囲
が望ましい。
Furthermore, in this development, even if the front and rear groups are moved significantly, there should not be too much performance deterioration due to chromatic aberration. In order to correct magnification and axial chromatic aberration due to focusing with a relatively simple configuration, K uses the lens L1, which is the older positive lens in the front group, as a low fractional positive lens. It is desirable to configure the lens with high dispersion and the ms lens, which is a negative lens, with high dispersion. When a lens system is made to have a large aperture ratio, the positive lens component generally has a high refractive index to correct spherical aberration, and the negative lens component has a low refractive index to correct non-single point aberration. In the present invention, the Gaussian type lens requires a high refractive index and low dispersion Ml lens, but in practice this rarely exists, so a bonded lens is used. Similarly, since the third lens L does not have much glass with low refractive index and high dispersion, it is inevitably a bonded lens. Specifically, if the average refractive index of each lens is N, then a range of 1.70 (N, (1,82...(4)-) is desirable.

(4)式の上限を超えると色収差の補正が困峻となる。If the upper limit of equation (4) is exceeded, correction of chromatic aberration becomes difficult.

また(4式の下限を超ると非点収差、′球面収差、コマ
収差の゛補正が困−とhる。
Furthermore, if the lower limit of equation 4 is exceeded, it becomes difficult to correct astigmatism, spherical aberration, and coma aberration.

このよ5KHるいレンズにおいては、#俵各評に含まれ
る正レンズ成分の屈折率の平均NptX、負レンズ成分
の平均NIIK対して、Np)Nn なる力が望ましい
。これは両平均屈折率Np、Nn  が共に低くなりす
ぎると輪帯球面収差が発生して履ましくないし、一方N
p、 Nu が共に高くなりすぎて1球欠的像面が過度
に負にわん曲して望ましくないからである。
In such a 5KH lens, it is desirable to have a force of Np)Nn, where NptX is the average refractive index of the positive lens component included in each evaluation, and NIIK is the average NIIK of the negative lens component. This is because if both the average refractive indexes Np and Nn become too low, zonal spherical aberration will occur and the lens will not wear well.
This is because both p and Nu become too high, and the one-sphere image plane becomes excessively negatively curved, which is not desirable.

以下に、本発明の実施例について詳述する。Examples of the present invention will be described in detail below.

亀1から第4実施例のいずれも焦点距@1=100腸、
rナンバー2.5、そして基本的には5つのレンズ成分
からなる変形ガウスタイプである。いずれも全系は前述
したごとく前群G、と、後#偽との2群からなり、前群
G、は3つのレンズ成分Ls −に−I4、後群偽は2
つのレンズ成分−、I4でそれぞれ構成されている0前
後の各IIIPKは色消しの自由度が必要なので、負の
屈折力を有したレンズが必ず含まれている。実施例では
いずれ%#I4レンズーと第5レンスーの間に絞りが設
けられている。
In all of Examples 1 to 4, the focal length @1=100,
It has an r number of 2.5 and is basically a modified Gaussian type consisting of five lens components. As mentioned above, the entire system consists of two groups, the front group G and the rear #false. The front group G has three lens components Ls - and -I4, and the rear group false has two lens components.
Since each IIIPK around 0, which is composed of two lens components - and I4, requires a degree of freedom in achromatization, a lens with negative refractive power is always included. In the embodiment, an aperture is provided between the #I4 lens and the fifth lens.

無限遠から至近距jIIK合焦する際、前群G、と後群
もとの間隔すなわち1s3レンズ−と第4レンズ−との
空気間隔を広げつつ全体を物体側へくり出すことによっ
て、撮影倍率βニー〇、5に違する極めて近距離までの
合焦がなされる。
When focusing from infinity to close range jIIK, the photographing magnification β is increased by increasing the air gap between the front group G and the rear group, that is, the air gap between the 1s3 lens and the 4th lens, and moving the entire lens toward the object side. Focusing is done at extremely short distances, unlike knees 0 and 5.

$11%施例は最至近距離がR=−4s8J426 a
m最大倍率が−0,51482である、絞りは後群偽中
の第4レンズ−の後方0.8 sのWIK設けられてい
る。この実施例は前述のとおり全系で6つの成分からな
り、籐4レンズ−が負・正の貼り合せで構成され、会計
6個のレンズという最も簡単な構成である。側1実施例
の諸元をfs1表に示し、レンズ配置は菖1図のとおり
である。収差図は無@遠撮影状態な籐2図に、最至近距
離撮影状II(β=−0,52)を第3図にそれぞれ示
した。尚各収差1においては、#面収差(Spk) 、
非点収差(Ant、) 。
In the $11% example, the closest distance is R=-4s8J426 a
The maximum magnification is -0.51482, and the aperture is located 0.8 s behind the fourth lens in the rear group. As described above, this embodiment has the simplest structure, consisting of six lenses in total, consisting of four rattan lenses bonded together with negative and positive lenses. The specifications of the side 1 embodiment are shown in the fs1 table, and the lens arrangement is as shown in the irises 1 diagram. The aberration diagrams are shown in Figure 2 for the non-distant shooting condition and in Figure 3 for the closest shooting condition II (β=-0, 52). For each aberration 1, # plane aberration (Spk),
Astigmatism (Ant,).

歪曲収差(Dis、) 、倍率色収差(LL Chr、
)  を示した。
Distortion aberration (Dis, ), lateral chromatic aberration (LL Chr,
) showed that.

第2夾施例は欺至近臣層がR= 4712917 m最
大倍率が−0,5である。絞りは後群偽中の第4レンズ
−の後方1.0−のところにある。
In the second impeachment example, the deceitful and close vassal class is R=4712917 m and the maximum magnification is -0.5. The aperture is located 1.0 mm behind the fourth lens in the middle of the rear group.

この実施例は5群7枚からなる光学系であり、v4施例
IK対して無3レンズL、を正レンズ−1と負レンズL
ll との2枚貼り合せにしたもので、ここで色収差を
発生させて前#P偽での色消をバランスさせ、合焦にお
ける色収差の変動をおさえている。また1s4レンズ−
を単一のメニスカスレンズで構成し、第5レンズ−を負
レンズI41  と正レンズL1 の貼り合せKしたも
のである。#I2実施例の諸元は第2表のとおりであり
、レンズ配置図を第4図に示した。収差図は無限遠撮影
状態を第5図に、最至近距離撮影状1!l(β=−0,
5)を第6図にそれぞれ示した。
This example is an optical system consisting of 7 elements in 5 groups, and in contrast to the v4 example IK, there are 3 lenses L, a positive lens -1 and a negative lens L.
This is made by laminating two lenses together with ll and chromatic aberration, which balances out the achromatism caused by the front #P false image and suppresses fluctuations in chromatic aberration during focusing. Also 1s4 lens-
is composed of a single meniscus lens, and the fifth lens is a negative lens I41 and a positive lens L1 bonded together. The specifications of Example #I2 are as shown in Table 2, and a lens arrangement diagram is shown in FIG. The aberration diagrams are shown in Figure 5 for infinity photography and 1! for closest distance photography! l(β=-0,
5) are shown in FIG.

第3夾施例は最至近距離がR= 4694675 m最
大倍率は一〇、5である。絞り以後#偽中の[4レンズ
−の後方1.0−のところにある。
In the third example, the closest distance is R=4694675 m and the maximum magnification is 10.5. It is located 1.0- behind the #4 lens in the false middle after the aperture.

この実施例は全体で7個のレンズからなる光学系であり
、第2実施例の第3レンズ−の貼り合せレンズの負及び
正の貼合せを逆にして、正及び負の貼り合せレンズにし
た−のであるー。
This embodiment is an optical system consisting of seven lenses in total, and the negative and positive bonding of the third lens in the second embodiment is reversed to form a positive and negative bonding lens. I did it.

第3実施例の諸元は諏3表のとおりであり、レンズ配置
−を第7図に示した。収差図は無限遠では第8図、歳至
近臣#w(、β=−0,5)では1g9図のこと(なる
The specifications of the third embodiment are as shown in Table 3, and the lens arrangement is shown in FIG. The aberration diagram is Figure 8 at infinity, and Figure 1g9 at close distance #w (, β = -0, 5).

第4実施例は最至近距離がR= 4614913 m最
大倍率が−051482である。絞りが後紳偽中の第4
レンズ−の後方0.8−のところにある。この実施例は
全体で7個のレンズからなる光学系でありts1実施例
に対して第ルンズ一を正レンズと負レンズL−s−Lq
*  の貼り合せレンズにすることにより、合焦にさい
しての軸上の色収差0倍率の色収差の変動を小さくした
ものである。第4実施例の諸元は鶏4表のとおりであり
、レンズ配置は第1O図のごとくである。収差図は無限
遠では第11図、最全近臣Im&(β=−0,52)で
は第12図にそれぞれ示すとおりである。
In the fourth embodiment, the closest distance is R=4614913 m and the maximum magnification is -051482. The diaphragm is the fourth in the second generation
It is located 0.8- behind the lens. This embodiment is an optical system consisting of seven lenses in total, and unlike the ts1 embodiment, the first lens is a positive lens and a negative lens L-s-Lq.
* By using a bonded lens, fluctuations in chromatic aberration at zero magnification of axial chromatic aberration during focusing are reduced. The specifications of the fourth embodiment are as shown in Table 4, and the lens arrangement is as shown in Figure 1O. The aberration diagrams are shown in FIG. 11 at infinity and in FIG. 12 at the closest distance Im&(β=-0, 52).

$11゜ 第1実施例 f=100Fナンバー:2.5r*=  
 27.630 ds=可変r0冨−287,811d
lI;可変 f、=258.9802 f、=100.42 α =Qjj 782 表1 第2実施例 f−100Fナンバー二2.5rv=  
 26347 dv=可変 ru=   81.616 dl、= 可変fl=20
4 f、=107.6923 α =0.2811 表3゜ 第3実施例 f=100Fナンバー=2.57、== 
  27f5834.−Kl変r、、=  −79b0
8 al、−518f、 =204 f富=107.6923 α =0.2811 表4゜ 第411施例 f=100Fナン/(−:26rt” 
26981  d、=可変 f1=258.9802 f、−100,4200 α =0.2782 各収差図の比較から、本発明によるレンズ系がFナンバ
ー2.5という大口径比でありながら、無限遠は勿論、
撮影倍率/ニー0.5という極めて近距離においても優
れた結俸性能を維持していることが分る。
$11゜First example f=100F number: 2.5r*=
27.630 ds=variable r0-287,811d
lI; Variable f, = 258.9802 f, = 100.42 α = Qjj 782 Table 1 Second Example f-100F Number 2 2.5rv=
26347 dv=variable ru=81.616 dl,=variable fl=20
4 f, = 107.6923 α = 0.2811 Table 3゜Third Example f = 100F number = 2.57, ==
27f5834. −Kl variable r,,= −79b0
8 al, -518f, =204 f wealth = 107.6923 α = 0.2811 Table 4゜411th example f = 100F Nan/(-:26rt”
26981 d, = variable f1 = 258.9802 f, -100,4200 α = 0.2782 From the comparison of each aberration diagram, it can be seen that although the lens system according to the present invention has a large aperture ratio of F number 2.5, it is difficult to reach infinity. Of course,
It can be seen that the lens maintains excellent yield performance even at extremely close distances with a photographic magnification/knee of 0.5.

以上述べたごとく、本発明によれば、簡単な構成のレン
ズ系であって無限遠から極めて近距離までの撮影が可能
な優れた大口径比汎用レンズ系が達成される。
As described above, according to the present invention, it is possible to achieve a general-purpose lens system with a simple construction and an excellent large aperture ratio capable of photographing from infinity to extremely close distances.

【図面の簡単な説明】[Brief explanation of drawings]

第i11.馬4図、第7図及び第10図はそれぞれ各実
施例の無限状態の配置図であり、第2図、第S図、第8
図及び第11図はそれぞれ無限遠状態の収差図であり、
第3図、第6図、第9図及び籐12WJはそれぞれ量産
近臣−での収差図である。 〔主要部分の符号の説明〕 at・・・・・・前群 0、・・・・・・後群 L%へ、・・・・・・レンズ 第2図 3rk、        Ast。 F・2,5        W・12.2゜−2,50
2,50−11,lQ        O,10第3図 6Pに       ASt DrS        Lt、 Chr第5図 SPh       A5t。 第6図 δph、      ’A5t/ DtS        L′t/、 (Ar。 オ8図 3Ph、        AS+。 Di、S          IJ、 Chr−250
!bu    −uy+u       u1uオq図 61’h        ASt/ D;5         Lt/、 CFLr。 −i、su          7.bLl     
−Diυ          01a矛11囚 δrll          A6−b。 F=2.5                 (t/
=I2.f’Dis          lt、CFt
r−13u             2.QU   
    −0,100,10、;)t−12図
No. i11. Figure 4, Figure 7, and Figure 10 are layout diagrams of the infinite state of each embodiment, respectively, and Figure 2, Figure S, and Figure 8
The figure and FIG. 11 are aberration diagrams in an infinite state, respectively.
FIGS. 3, 6, and 9 and Rattan 12WJ are aberration diagrams of mass-produced models. [Explanation of symbols of main parts] at...front group 0,...to rear group L%,...lens Fig. 2 3rk, Ast. F・2,5 W・12.2°-2,50
2,50-11,lQ O,10 Figure 3 6P ASt DrS Lt, Chr Figure 5 SPh A5t. Fig. 6 δph, 'A5t/ DtS L't/, (Ar. O Fig. 8 3Ph, AS+. Di, S IJ, Chr-250
! bu -uy+u u1uoqFigure 61'h ASt/D;5 Lt/, CFLr. -i, su 7. bLl
-Diυ 01a 11 prisoners δrll A6-b. F=2.5 (t/
=I2. f'Dis lt, CFt
r-13u 2. QU
-0,100,10, ;) t-12 diagram

Claims (1)

【特許請求の範囲】 1、正の屈折力を有する前群と、同じく正の屈折力を有
する後群とからなり、各群はそれぞれ少くとも1個の負
レンズ成分を含み、しかも開口絞りは後群中の最も物体
側のレンズよりも儂儒に投けられ、無限遠物体から近臣
■物体への合焦に際して、帥記両群の空気間隔を増大さ
せつつ、両群を共に物体側へ移動させることを特徴とす
る眩、a・−撮影可能なレンズ系。 2、特許請求の範囲第1積記載のレンズ系において、全
系の合成焦点距離なf、前、記前評及び後群の焦点距離
をそれぞれf、 、 f。 とするとき、 1−6<ft/f<3−0・・・・・・(1)1、b<
t、71w<s、o・・・・・・(2)なる条件を満足
することを特徴とする近臣−撮影可能なレンズ系。
[Claims] 1. It consists of a front group having a positive refractive power and a rear group also having a positive refractive power, each group including at least one negative lens component, and an aperture stop. It is more focused than the lens closest to the object in the rear group, and when focusing from an object at infinity to a nearby object, the air distance between both groups is increased, and both groups are moved toward the object side. A lens system capable of photographing glare, a.-, characterized by being moved. 2. In the lens system according to claim 1, f is the composite focal length of the entire system, and f is the focal length of the front, front, and rear groups, respectively. When 1-6<ft/f<3-0...(1) 1, b<
t, 71w<s, o... (2) A lens system capable of photographing close relatives, characterized by satisfying the following condition.
JP12007681A 1981-07-31 1981-07-31 Lens system which permits near distance photographing Pending JPS5821710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12007681A JPS5821710A (en) 1981-07-31 1981-07-31 Lens system which permits near distance photographing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12007681A JPS5821710A (en) 1981-07-31 1981-07-31 Lens system which permits near distance photographing

Publications (1)

Publication Number Publication Date
JPS5821710A true JPS5821710A (en) 1983-02-08

Family

ID=14777301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12007681A Pending JPS5821710A (en) 1981-07-31 1981-07-31 Lens system which permits near distance photographing

Country Status (1)

Country Link
JP (1) JPS5821710A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708445A (en) * 1983-11-07 1987-11-24 Olympus Optical Co., Ltd. Large aperture ratio photographic lens system
US4923292A (en) * 1988-02-23 1990-05-08 Asahi Kogaku Kogyo Kabushiki Kaisha Macro lens system
JP2009244699A (en) * 2008-03-31 2009-10-22 Nikon Corp Optical system, method for focusing the optical system, and imaging apparatus equipped therewith
JP2009244696A (en) * 2008-03-31 2009-10-22 Nikon Corp Optical system, method for focusing the optical system, and imaging apparatus equipped therewith
JP2018072739A (en) * 2016-11-02 2018-05-10 株式会社栃木ニコン Image forming lens, optical instrument, and method of manufacturing plate-like member
JP2018106141A (en) * 2016-12-27 2018-07-05 キヤノン株式会社 Image pickup optical system and image pickup apparatus having the same
CN110361837A (en) * 2019-06-29 2019-10-22 瑞声科技(新加坡)有限公司 Camera optical camera lens

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138823A (en) * 1974-04-06 1975-11-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138823A (en) * 1974-04-06 1975-11-06

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708445A (en) * 1983-11-07 1987-11-24 Olympus Optical Co., Ltd. Large aperture ratio photographic lens system
US4923292A (en) * 1988-02-23 1990-05-08 Asahi Kogaku Kogyo Kabushiki Kaisha Macro lens system
JP2009244699A (en) * 2008-03-31 2009-10-22 Nikon Corp Optical system, method for focusing the optical system, and imaging apparatus equipped therewith
JP2009244696A (en) * 2008-03-31 2009-10-22 Nikon Corp Optical system, method for focusing the optical system, and imaging apparatus equipped therewith
JP2018072739A (en) * 2016-11-02 2018-05-10 株式会社栃木ニコン Image forming lens, optical instrument, and method of manufacturing plate-like member
JP2018106141A (en) * 2016-12-27 2018-07-05 キヤノン株式会社 Image pickup optical system and image pickup apparatus having the same
CN110361837A (en) * 2019-06-29 2019-10-22 瑞声科技(新加坡)有限公司 Camera optical camera lens
JP2021009283A (en) * 2019-06-29 2021-01-28 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
CN110361837B (en) * 2019-06-29 2021-09-21 瑞声光学解决方案私人有限公司 Image pickup optical lens

Similar Documents

Publication Publication Date Title
US3736049A (en) Wide angle photographing lens
JP2558138B2 (en) Zoom lens
JPH0432365B2 (en)
CN115951484B (en) Optical lens
US3990785A (en) Anamorphic zoom lens
CN212379645U (en) Optical imaging system
JPH045168B2 (en)
JPH06130291A (en) Standard lens
JPS5821710A (en) Lens system which permits near distance photographing
US2388869A (en) Photographic objective
JP2978283B2 (en) Telephoto objective lens
US3944339A (en) Large aperture photographic objective
JP2503520B2 (en) Underwater camera lens
US5790324A (en) Wide-angle photographic lens system
JP3005905B2 (en) Shooting lens
US4759619A (en) Inverted telephoto type wide angle lens system with a rear focusing unit
JPH0713704B2 (en) Wide-angle lens
US5729392A (en) Compact zoom lens system
JPS6042452B2 (en) zoom lens
JP2787457B2 (en) Front aperture telecentric projection lens
US4550987A (en) Small size telephoto lens
US5546228A (en) Re-imaging optical system
JPS6119013B2 (en)
JPS6048014B2 (en) wide field eyepiece
JPS60136712A (en) Rear conversion lens