JPS58216924A - Rail stress detecting system - Google Patents

Rail stress detecting system

Info

Publication number
JPS58216924A
JPS58216924A JP9917082A JP9917082A JPS58216924A JP S58216924 A JPS58216924 A JP S58216924A JP 9917082 A JP9917082 A JP 9917082A JP 9917082 A JP9917082 A JP 9917082A JP S58216924 A JPS58216924 A JP S58216924A
Authority
JP
Japan
Prior art keywords
rail
value
magnetic
sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9917082A
Other languages
Japanese (ja)
Other versions
JPS6260012B2 (en
Inventor
Makio Kamiya
神谷 牧夫
Osao Saegusa
三枝 長生
Yoshiro Fukazawa
深沢 義朗
Yoichi Yamamoto
陽一 山本
Fukuo Iwatani
岩谷 福雄
Kensaku Takahashi
高橋 健策
Yoshikatsu Ueno
上野 善且
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Hitachi Ltd
Japan National Railways
Nippon Kokuyu Tetsudo
Hitachi High Tech Corp
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Hitachi Ltd
Japan National Railways
Nippon Kokuyu Tetsudo
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Hitachi Ltd, Japan National Railways, Nippon Kokuyu Tetsudo, Hitachi Electronics Engineering Co Ltd filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP9917082A priority Critical patent/JPS58216924A/en
Publication of JPS58216924A publication Critical patent/JPS58216924A/en
Publication of JPS6260012B2 publication Critical patent/JPS6260012B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses

Abstract

PURPOSE:To measure the axial tension of a rail by a magnetic anisotropic detection sensor, by averaging four peak output values accompanied by magnetic anisotropy yielded by stress, based on the output of the magnetic anisotropic sensor, and performing correction based on the temperature. CONSTITUTION:A rail axial tension detecting sensor 17 is attached to a rail. When an anisotropic sensor 8 is rotated, signals are obtained for 0 deg.-360 deg.. Four peak values are detected by a peak value detecting circuit 26. Said peak value data are sequentially added, and an average value is computed by an average value circuit 30. The corresponding rail axial tension is read from said average value by a converter 31 and displayed on a display device 32. The value of the rail axial tension is corrected by the temperature data from a thermometer 18 in a temperature correcting circuit 33 so as to obtain the value of the standard temperature. The value is compared with upper and lower limit values in a comparator 34. When the value exceeds the limit value, a signal is outputted and displayed on the display circuit 32.

Description

【発明の詳細な説明】 この発明は気温の変化により生じるレールの・内部応力
を測定することにより、軌道応力の安5定状態をチェッ
クする軌道応力検測方式に関す・るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a track stress measuring method for checking the stable state of track stress by measuring the internal stress of a rail caused by changes in temperature.

鉄道線路の軌道構造には種々の形式がある力\・代表的
なものを第1図(al、(1))に示す。図におい・て
路盤1の上に砂利を主体とする道床2を盛り1゜上げ、
この道床2の上に枕木3を配列し、さら。
There are various types of force in the track structure of railway tracks. Representative ones are shown in Figure 1 (al, (1)). In the figure, the roadbed 2, mainly made of gravel, is raised 1° on top of the roadbed 1.
Arrange sleepers 3 on top of this trackbed 2, and then.

にこの枕木3の上に左右のレール4at4bを大針。Place the left and right rails 4at4b on top of sleeper 3.

5で固定したものである。レール4は通常25M。It is fixed at 5. Rail 4 is usually 25M.

長のものが用いられ、各レール4の端部は継目。A long one is used, and the end of each rail 4 is a seam.

板6を用いてボルトにより締結され、相互に接1−。They are fastened with bolts using plates 6 and are in contact with each other 1-.

続されている。Tjお、ロングレールと称するものは、
200M長の単位レールを現地において溶接により接続
して1KMあるいはそれ以上の1本物として使用される
ものである。
It is continued. Tj Oh, what is called a long rail,
Unit rails of 200M length are connected by welding on site and used as one piece of 1KM or more.

ここで、軌道の判事荷重に対する力学状態についてみる
と、単なる枕木3とレール4にヨル梯子構造物としとで
なく、これに路盤1と道床2の問および道床2と枕木3
の間に存在する摩擦抵抗。
Here, looking at the mechanical state of the track against the judge load, we can see that not only are the sleepers 3 and the rails 4 connected to a ladder structure, but also the roadbed 1 and the trackbed 2 are connected to each other, and the trackbed 2 and the sleepers 3 are connected to each other.
the frictional resistance that exists between

ないし慣性抵抗(これらを1括して道床抵抗とい。or inertial resistance (these are collectively referred to as track bed resistance).

う)が1体として合成された構造体として、走行5する
列車が与える強大でかつ変動の大きい動荷重゛に劃えて
力学的平衡を保持しているものである。。
(b) is a structure that is synthesized as a single unit and maintains mechanical balance in spite of the strong and highly variable dynamic loads applied by a running train. .

以上述べた軌道の力学的平衡に及ぼす外気温。The effect of external temperature on the mechanical equilibrium of the orbit described above.

度とその変動の影響には太きいものがある。ま゛ず、軌
道自身の温度変化は外気温度に比べてall・かに太き
い。夏期においては太陽輻射熱を直接・吸収し、周囲条
件によるが60°Cに達することは・珍しくない。また
冬期厳寒時においては、軌道・は大気と同温度またはそ
れ以下の低温度に低下。
The effects of degrees and their fluctuations are profound. First of all, the temperature change in the orbit itself is much larger than the outside temperature. In the summer, it directly absorbs solar radiant heat, and it is not uncommon for temperatures to reach 60°C, depending on ambient conditions. In addition, during the harsh winter months, the orbital temperature drops to the same temperature as the atmosphere or lower.

する。要するに、外気温の変化幅を50°Cとすれいぼ
、レールは優に80°Cの変動幅を示すものとみ。
do. In short, if the range of change in outside temperature is 50°C, the rails and rails can be assumed to have a range of fluctuation of well over 80°C.

て差支えない。このような軌道の温度変化によ。There is no problem. Due to such orbital temperature changes.

す、当然レール4には伸縮力が生じるが、レー。Naturally, an expansion and contraction force occurs in the rail 4, but...

ル4は両端が自由な伸縮をなしえず、該伸縮力。Le 4 cannot freely expand and contract at both ends, and the expansion and contraction force is high.

は圧縮力または引張力として内部に潜在する。2゜これ
が内部応力であり、内部応力のうちレール゛4の長手方
向の成分をレール軸力と呼ぶ。なお・内部応力には、レ
ールの製造過程の外力の一部・が残留する残留応力もあ
る。
is latent inside as compressive or tensile force. 2. This is the internal stress, and the component of the internal stress in the longitudinal direction of the rail 4 is called the rail axial force. Note that internal stress also includes residual stress, which is a part of the external force that remains during the rail manufacturing process.

いま仮に上記のレール軸力が安全限界を超え5て異常に
大きい値となるときは事態は危険であ・る。すなわち、
低温度のため異常に大きい引張・力が生ずるときは、継
目板乙の締結ボルトの破・断ないしはレール自身の切断
か発生しうる。ま・た夏期高温時に異常に大きい圧縮力
が生じ、そlflの軌道直角成分が軌道抵抗に打勝った
場合は、。
If the rail axial force mentioned above exceeds the safety limit and becomes an abnormally large value, the situation is dangerous. That is,
If an abnormally large tension or force is generated due to low temperature, the fastening bolts of the joint plate B may break or break, or the rail itself may break. Also, if an abnormally large compressive force occurs during high temperatures in the summer, and the orthogonal component of the orbit overcomes the orbital resistance.

レールと枕木の梯子構造物は横すべり現象を惹。Ladder structures made of rails and sleepers are prone to skidding.

起する。これがいわゆる座屈現象であり、極め。wake up This is the so-called buckling phenomenon, and it is extremely important.

て重大な列沖事故の原因となるものでル)る。 。This can lead to serious offshore accidents. .

軌道の力学的坪衡状態を温度に対して最適と1゜するた
めに、軌道の建設時あるいはレール交換時などにおいて
温度25°Cを標準とする軌道整備設定が行なわれる。
In order to maintain the mechanical equilibrium state of the track at an optimum temperature of 1°, track maintenance is performed with a temperature of 25°C as the standard during track construction or rail replacement.

すなわち、この温度においてレール4を所定の位需に置
き、レール継目の空隙7を規定値として、継目板6が締
結されレール4が固定される。この場合、気温が低くて
That is, at this temperature, the rail 4 is placed in a predetermined position, the gap 7 of the rail joint is set to a specified value, and the joint plate 6 is fastened to fix the rail 4. In this case, the temperature is low.

レールの温度が25°Cに満たないときは、レール・を
加熱して25°Cとした上で上記設定をなしてい・る。
If the rail temperature is less than 25°C, the above settings are made after heating the rail to 25°C.

しかしながら、最適に調整設定された軌道に5おいても
、路盤または道床の変化により軌道の・力学状態に変動
を来すことはありうるもので、・これに前記した温度変
化が重なるとき、レール・軸力の異常状態が発生するわ
けである。
However, even on a track that has been optimally adjusted, changes in the roadbed or roadbed can cause changes in the mechanical state of the track.・When this is combined with the temperature changes mentioned above, the rail・An abnormal state of axial force occurs.

列沖の安全運転の基礎である軌道の安定を維1゜持する
ために、レール軸力を測定し軌道の力学。
In order to maintain the stability of the track, which is the basis of safe operation on the offshore coastline, we measure the rail axial force and study the mechanics of the track.

的平衡状態を把握することが望まれる所以であ。This is why it is desirable to understand the equilibrium state.

る。しかしながら、運転使用状態のままの軌道。Ru. However, the track remains in operational use.

について、レールの軸力を測定する方式ないし。Regarding the method of measuring the axial force of the rail.

測定センサは未だ実用されていない。     1゜こ
の発明は最近開発されつつある、磁気異方。
Measurement sensors have not yet been put into practical use. 1゜This invention is based on magnetic anisotropy, which has been recently developed.

性検出センザを軌道に適用して、レール軸力を測定しそ
の際のレール温度を参照してレール軸力が管理限界を逸
脱しているときはその旨の表示を行なうことのできる軌
道応力検定方式を提、。
A track stress test that measures the rail axial force by applying a stress detection sensor to the track, refers to the rail temperature at that time, and displays an indication when the rail axial force exceeds the control limit. We propose a method.

供することを目的とする。The purpose is to provide

この発明の第1の要点は磁気異方性検出セン。The first point of this invention is a magnetic anisotropy detection sensor.

す(以下単に異方性センサという)を利用して゛レール
軸力を測定することにある。そこで、異。
The purpose of this method is to measure the rail axial force using an anisotropic sensor (hereinafter simply referred to as an anisotropic sensor). So, there's something different.

方性センサについて簡単に述べる。一般に内部5に応力
が存在するときの磁性体の磁気現象にお。
Let's briefly talk about the directional sensor. In general, magnetic phenomena of magnetic materials when stress exists inside 5.

いては、方向によって磁化の程度に差異があり、・これ
を磁気異方性という。別の見方として、応・力の方向に
より磁気抵抗が異なるものといえる。・この磁化の程度
が高い方向は磁気抵抗が低い方1+・向であって、この
方向を磁化容易軸と呼ぶ。  。
There is a difference in the degree of magnetization depending on the direction, and this is called magnetic anisotropy. Another way of looking at it is that magnetic resistance differs depending on the direction of stress/force. - The direction in which the degree of magnetization is high is the 1+ direction in which magnetic resistance is low, and this direction is called the axis of easy magnetization. .

いま第2図(a)に示すように、両脚にそれぞれ・巻線
E、、 E2およびり、、 D、を有する2個のコア9
a。
As shown in FIG. 2(a), there are two cores 9 having windings E, E2 and D, respectively, on both legs.
a.

9bを互に直交関係をなすように配置し、第2図。9b are arranged in a mutually orthogonal relationship, FIG.

(b)に示すようにコイルE、、 E、およびり、、 
D、をそ1゜れぞれ直列し、前者を励振コイル後者を検
出コ。
As shown in (b), coils E, E, and coils,
D and D are connected in series, and the former is an excitation coil and the latter is a detection coil.

イルとする。このような異方性センサ8を図示。Illu. Such an anisotropic sensor 8 is illustrated.

のように磁性体10の上におくときは、異方性センサ8
と磁性体10で一種のトランスが形成される。すなわち
励振コイルE、、 E2に適当な周波数の電流ieを通
ずるときは検出コイルD、、 I)2に電。
When placed on the magnetic material 10 as shown in FIG.
A kind of transformer is formed by the magnetic material 10. That is, when a current ie of an appropriate frequency is passed through the excitation coils E, E2, the current is applied to the detection coil D, I)2.

圧Vdが誘起される。この場合磁性体10に磁気異・方
性が存在するときは、磁化容易軸の方向と励・振コイル
E、、 B、の方向のなす角に(iFってコア ・9a
、 9bと磁性体10により構成される磁気回路の5磁
気抵抗はバランスとアンバランスの間を変化。
A pressure Vd is induced. In this case, when magnetic anisotropy/tropism exists in the magnetic body 10, the angle formed by the direction of the axis of easy magnetization and the direction of the excitation/vibration coils E, B (iF is the core ・9a
, 5 magnetic resistance of the magnetic circuit composed of 9b and the magnetic body 10 changes between balanced and unbalanced.

する。ここで、検出コイルD、とB2は和動捲きで、あ
るが、バランスのときは磁束が打消されて 。
do. Here, the detection coils D and B2 are wave-wound, but when they are balanced, the magnetic flux is canceled out.

Vd = 0であり、アンバランスの程度が犬きくな。Vd = 0, and the degree of imbalance is significant.

る。したがって電圧Vdは大きくなる。なお応力1゜が
引張力と圧縮ではVdの特性は逆である。
Ru. Therefore, voltage Vd increases. Note that the characteristics of Vd are opposite when the stress is 1° in tension and compression.

第3図は電圧Vdの角度θに対する変化のバタ。Figure 3 shows the variation of voltage Vd with respect to angle θ.

ンを示すもので、角θは磁化容易軸Aと励振コ。The angle θ is the axis of easy magnetization A and the excitation angle.

イルE、、 B2を含む面とのなす角で、θ;45°、
 。
The angle formed with the plane containing Ile E, B2, θ; 45°,
.

135°、225°および315°で極大値をもつ四葉
クロ15−バ状を描く。
A four-lobed black 15-bar shape is drawn with maximum values at 135°, 225° and 315°.

さて、当初述べたように磁気異方性は内部応力に起因す
る現象であるから、ある内部応力の状態で第3図の実線
で示す磁気異方性を示しているとき、さらに外力を加え
た場合、あるいは温度変化によって内部応力が変化した
場合には、。
Now, as I mentioned earlier, magnetic anisotropy is a phenomenon caused by internal stress, so when a certain internal stress state shows magnetic anisotropy as shown by the solid line in Figure 3, if an external force is further applied. or if the internal stress changes due to temperature changes.

第6図のパタンは点線のように元のバタン(実。The pattern in Figure 6 is the original batan (fruit) as shown by the dotted line.

線)と相似的に大きさが変化するものである。・レール
は強磁性体であり、かつ製造当初から・第4図例示する
ように内部応力が存在することコが知られている。図中
、曲線は等圧線を示し、・力の方向はレール軸方向すな
わち軸力であり、・数値の正符号は引張力、負符号は圧
縮力を意味・する。
The size changes similarly to the line). - The rail is a ferromagnetic material, and it has been known since the beginning of its manufacture that internal stress exists, as illustrated in Figure 4. In the figure, the curves indicate isobar lines; - The direction of the force is the rail axis direction, that is, axial force; - The positive sign of the numerical value means tensile force, and the negative sign of the numerical value means compressive force.

そこで発明者等はレールの磁気異方性につぃ11゜て実
験を行なった。すなわち第5図(a)に示すよ。
Therefore, the inventors conducted an experiment regarding the magnetic anisotropy of the rail at 11 degrees. That is, as shown in FIG. 5(a).

うに、荷重試験機11によりレール4の軸方向に。, in the axial direction of the rail 4 by the load testing machine 11.

圧縮力Pを加える。異方性センサ8を第5図(b)。Apply compressive force P. The anisotropic sensor 8 is shown in FIG. 5(b).

のようにレール4の底面上部においた場合第5゜図(C
1のデータかえられている。まずP−oで電、。
If it is placed on the top of the bottom of the rail 4 as shown in Figure 5 (C
1 data has been changed. First, call P-o.

圧Vdに初期値があり、Pが増加すると電圧Vdは明ら
かに増加する。ここでPを減少するときは、電圧Vdは
減少するが、この場合ヒステリシス現象を示している。
The voltage Vd has an initial value, and as P increases, the voltage Vd clearly increases. Here, when P is decreased, the voltage Vd is decreased, but in this case, a hysteresis phenomenon is exhibited.

次に、レール表面上の種々の点について同様のテストを
行ない、初期値(P−〇)とP−40)ンにおける各点
の電圧の変化。
Next, similar tests were performed at various points on the rail surface, and the changes in voltage at each point between the initial value (P-○) and P-40) were measured.

量△Vdを計算した。これと第4図に示したレー・ル4
の断面上における残留応力σとの関係を第・5図(d)
に示す。すなわち、横軸にσを縦軸に電・圧の変化量△
Vdをとるとこれらの関係は明快で5ある。すなわち応
力σが大きいときは、磁気異・方性(恐らく残留磁気そ
のもの)が飽和してい・るため、Pを変化しても電圧V
dが変化しない。。
The quantity ΔVd was calculated. This and the rail 4 shown in Figure 4.
The relationship between residual stress σ on the cross section of is shown in Figure 5(d).
Shown below. In other words, the horizontal axis is σ, and the vertical axis is the amount of change in voltage/voltage △
When Vd is taken, the relationship between these is clear and is 5. In other words, when the stress σ is large, the magnetic anisotropy (probably the residual magnetism itself) is saturated, so even if P is changed, the voltage V
d does not change. .

以上事実にもとづき、予めレール種別毎にし6一ル表面
上の特定点における外力Pと電圧Vdの1゜関係を求め
ておく。また標準状態(25°C)で股。
Based on the above facts, the 1° relationship between the external force P and the voltage Vd at a specific point on the rail surface is determined in advance for each rail type. Also, crotch under standard conditions (25°C).

定された軌道について、レール温度と検出電圧。rail temperature and sensed voltage for a given track.

Vdを測定すれば第6図の標準曲線Sを描くこと。When measuring Vd, draw the standard curve S in Figure 6.

ができる。このような標準曲線Sに対して、任。Can be done. For such a standard curve S, Ren.

意の軌道の異方性検測によりえられる電圧Vdを、−レ
ール軸力に換算しこれを温度換算を行なっ一七の当、否
を判定する。第6図におけるUは管理限界線(上限)、
Lは同じく(下限)である。
The voltage Vd obtained by measuring the anisotropy of the desired track is converted into a -rail axial force, which is then converted into temperature to determine whether 17 is correct or not. U in Figure 6 is the control limit line (upper limit);
L is the same (lower limit).

この発明においては磁気異方性による電圧を測定し、こ
れよりレール軸力を推定し、温度を参照してレール軸力
の尚、不当を判定すること。
In this invention, the voltage due to magnetic anisotropy is measured, the rail axial force is estimated from this, and the rail axial force is determined to be inappropriate by referring to the temperature.

のできる検測システムを構成するもので、これ。This constitutes an inspection system that can do this.

がこの発明の第2の要点である。This is the second point of this invention.

第7図(al、(b)、fc)はこの発明による軌道検
測。
Fig. 7 (al, (b), fc) shows trajectory inspection according to the present invention.

方式に使用するレール軸力検出センサ17の一実)流側
の構造の外観を示す。異方性センサ8は、。
This figure shows the appearance of the structure on the downstream side of the rail axial force detection sensor 17 used in the system. The anisotropic sensor 8 is.

磁性材料による円板12に磁性材料による4個の。There are four discs made of magnetic material on disk 12 made of magnetic material.

丸棒16を対称的にねじ止めしたコアとし各丸忰。Each round rod has a core with round rods 16 screwed symmetrically.

にコイル14を巻く。その接続は既述した第2図。Wind the coil 14 around. The connection is shown in FIG. 2 already mentioned.

(b)による。次に該異方性センサ8は非磁性体の1.
According to (b). Next, the anisotropic sensor 8 is made of a non-magnetic material.
.

ケース15に入れ、蓋16で85゜該蓋16は異方性。It is placed in a case 15 and the lid 16 is 85°.The lid 16 is anisotropic.

センサ8と固着されており、ケース15に対して。It is fixed to the sensor 8 and to the case 15.

360°回転が可能な構造である。すなわち、ケー。The structure allows for 360° rotation. In other words, K.

ス15を同定し蓋16を矢印Cのように回転可能であり
、同転角o0と3600でそれぞれの電気接点Sa、 
Soが閉ぢるものとする。
The lid 16 can be rotated as shown by the arrow C, and the electrical contacts Sa,
Assume that So is closed.

第8図(a)、 (b)は上記した軸力検出センサ17
をレール底面上部に取付けるための取付具19の実施例
で、取付具19は非磁性材料により図示の形状でレール
底面に外力より挿入し蝶わぢ2oで締め付はレール4に
固定できるものである。該取付具19には円孔を設けて
軸力検出センサ17のケース8が押込まれ固着される。
FIGS. 8(a) and 8(b) show the above-mentioned axial force detection sensor 17.
This is an embodiment of the fixture 19 for attaching the rail to the upper part of the bottom of the rail.The fixture 19 is made of a non-magnetic material and has the shape shown in the figure, and can be inserted into the bottom of the rail by external force and fixed to the rail 4 by tightening with a butterfly. be. A circular hole is provided in the fixture 19, into which the case 8 of the axial force detection sensor 17 is pushed and fixed.

ここで、異方性。Here, anisotropy.

センサ8の丸棒13の先端は、レール40表面と。The tip of the round bar 13 of the sensor 8 is connected to the surface of the rail 40.

一定間隔を以て隔てられた状態で、円滑に回転5ができ
るものである。また、レール4の温度側。
It is possible to rotate 5 smoothly while being separated at a constant interval. Also, the temperature side of rail 4.

定のため温度計18が取付具19に埋込まれている。。A thermometer 18 is embedded in the fixture 19 for temperature control. .

温度計としては測定値が電気信号として出力さ。As a thermometer, the measured value is output as an electrical signal.

れる表面温度計を用いる。Use a surface thermometer.

第9図(a)はこの発明による軌道応力測定シス10テ
ムのブロック構成の実施例で、第9図(b)は主。
FIG. 9(a) shows an embodiment of the block configuration of the orbital stress measurement system 10 according to the present invention, and FIG. 9(b) shows the main structure.

要点の信号波形のタイムチャートである。   。It is a time chart of important signal waveforms.   .

異方性センサ8には発振器22より適当な周波。The anisotropic sensor 8 receives a more suitable frequency than the oscillator 22.

数の励磁電流が与えられる。−力検出電圧・Vd・は増
11@器16によりレベル調整され、励振電流と15等
しい周波数の電流により同期検波器23で同期。
A number of excitation currents are given. - The force detection voltage Vd is level-adjusted by the amplifier 11@device 16, and synchronized by the synchronous detector 23 using a current with a frequency equal to the excitation current.

検波される。これにより検出電圧・Vdの雑音は。Detected. This reduces the noise of the detection voltage/Vd.

除去され、ついてNΦ変換器24によりデジタル。It is removed and then digitalized by the NΦ converter 24.

信号に変換される。さていまここで、異方性セ。converted into a signal. Now, here and now, anisotropic se.

ンサ8を回転すると、θ−0°〜660°に対して信、
0号(イ)かえられる。信号(イ)は絶対値回路25に
より信号(ロ)となり、ピーク検出回路26には信号(
イ)と。
When the sensor 8 is rotated, the rotation angle of θ-0° to 660° is
No. 0 (a) can be changed. The signal (A) becomes the signal (B) by the absolute value circuit 25, and the signal (B) is sent to the peak detection circuit 26.
b) and.

信号(ロ)が入力する。ここで信号(イ)の4個のビー
゛り値が保持されて信号e→としてゲート28に入力゛
する。同時にピーク検出回路ではピーク値をホ5−ルド
中であることを示すタイミング信号に)が。
Signal (b) is input. Here, the four beam values of the signal (a) are held and input to the gate 28 as the signal e→. At the same time, the peak detection circuit generates a timing signal indicating that the peak value is being held.

作成されて、カウンタ27に与えられる。カラン゛り2
7では信号に)よりゲート信号(ホ)が作成され、。
is created and given to the counter 27. Kalanri 2
In 7, the gate signal (E) is created by the signal ().

ゲート28に与えられる。ゲート信号(ホ)はパルス。is applied to gate 28. The gate signal (E) is a pulse.

数を4個とし、4個のピーク値に対応するもの10で、
これによりゲート28を通ったピーク値のデ・−タは加
算器29で逐次加算され、次の平均値回・路30で平均
値が計算される。このように4個の・ピーク値の平均を
とる理由は磁気異方性が必ず・しも対称的で、4個のピ
ーク値が相等しいもの、)ではないためと、雑音の影響
を排除するためで。
The number is 4, and 10 corresponds to the 4 peak values,
As a result, the peak value data that has passed through the gate 28 is successively added by the adder 29, and the average value is calculated by the next average value circuit 30. The reason for taking the average of the four peak values in this way is because magnetic anisotropy is not always symmetrical and the four peak values are not equal (), and to eliminate the influence of noise. For a reason.

ある。この平均値Vdより変換回路31により対応。be. The conversion circuit 31 handles this based on the average value Vd.

するレール軸力が読み出され表示器ろ2に表示さ。The rail axial force is read out and displayed on display 2.

れる。一方、温度計18よりの温度情報により温。It will be done. On the other hand, the temperature is determined by the temperature information from the thermometer 18.

度補正回路33において、上記レール軸力の値は、。In the degree correction circuit 33, the value of the rail axial force is:

標準温度25°Cの値に補正され、比較回路34で上、
It is corrected to the value of the standard temperature of 25°C, and the comparator circuit 34
.

下限値と比較されて限界を越えるときは信号を・出力し
て表示回路32に表示するものである。  6以上述べ
たようにこの発明の軌道応力検測シ。
It is compared with the lower limit value, and if the limit is exceeded, a signal is output and displayed on the display circuit 32. 6. As described above, the track stress measurement system of the present invention.

ステムを実稼動中の軌道に適用すれば、レール。If the stem is applied to a track in production, it becomes a rail.

軸力が直読されレール温度を参照して軌道安定。The axial force is directly read and the track is stabilized by referring to the rail temperature.

性の重要な鍵である力学的平衡の当否を判断す。Judging the validity of mechanical equilibrium, which is an important key to stability.

ることか可能となるものでその効果は著しいも。It is possible to do this, and the effects are remarkable.

のかある。There is.

4、図面の簡単な説明            1゜第
1図(a)、 (b)は軌道構造説明図、第2図(al
、。
4. Brief explanation of the drawings 1゜Figures 1 (a) and (b) are explanatory diagrams of the track structure, Figure 2 (al.
,.

(b)は磁気異方性センサ構造と結線を示す図、第。(b) is a diagram showing the magnetic anisotropy sensor structure and connections.

3図は磁気異方性センサによりえられる検出電。Figure 3 shows the detected voltage obtained by the magnetic anisotropy sensor.

圧バタン(θ特性)図、第4図レールの残留応。Pressure baton (θ characteristics) diagram, Figure 4 Residual response of rail.

力分布図、第5図(a)、 (b)、 (C)および(
d)はレール、。
Force distribution diagram, Figure 5 (a), (b), (C) and (
d) is a rail.

に圧縮力を加えた実験方式とそのデータ図、第6図は軌
道のレール軸力管理限界曲線の考え方の説明図、第7図
(a)、(b)、 (clはこの発明による軌道応力検
測システムに用いるレール軸力検出センサの実施例にお
ける構造図、第8図(a)、(b)は第7図に示したレ
ール軸力検出センサをレールに取付けるための取付具の
一実施例を示す図、゛第9図(aL (blはこの発明
による軌道応力検定シ。
An experimental method in which compressive force was applied to A structural diagram of an embodiment of the rail axial force detection sensor used in the inspection system, FIGS. 8(a) and 8(b) are an implementation of the mounting tool for attaching the rail axial force detection sensor shown in FIG. 7 to the rail. A diagram showing an example, ``Figure 9 (aL) (bl is the track stress test system according to the present invention.

ステムの総合ブロック系統図である。FIG. 2 is a comprehensive block system diagram of the stem.

1・・・路盤      2・・・道床3・・・枕木 
     4・・・レール5・・・大針      6
・・・継目板     。
1...Road bed 2...Road bed 3...Sleepers
4...Rail 5...Large needle 6
...joint plate.

7・・・空隙      8・・・磁気異方性センサ。7... Air gap 8... Magnetic anisotropy sensor.

9・・・コア      1o川用性体11・・・荷重
試験機   12・・・円板      1(13・・
・丸J       14・・・コイル15・・・ケー
ス     16・・・蓋17・・・レール軸力検出セ
ンサ 18・・・温度計     19川取付具20・・・蝶
ぬぢ     21・・・増幅器     1522・
・・発振器     26・・・同期検波器24・・・
1変換器   25・・・絶対値回路26・・・ピーク
検出回路 27・・・カウンタ28・・・ゲート29・
・・加算器 30・・・平均値回路   31・・・変換回路   
 2゜32・・・表示器     33・・・温度補正
回路34・・・比較回路 0 215゜ オ 1 虐 (0−2 ((L)     ;tZ囚 第3膿     第4の (あ           オ 2 国オ 7 日 (ごLン 4      (、都7・) Sq3とし 7 ノー 〆一 くt2) /!? 9邑 (久) 7 (・丁−)−一11]L□−W二m1□□□□□□□−
1]□−□□−−−−−□−−−神奈川用足柄上郡中井
町入所30 0番地日立電子エンジニアリン グ株式会社内 ■出 願 人 株式会社日立製作所 東京都千代田区丸の内−丁目5 番1号 ■出 願 人 日立電子エンジニアリング株式%式%
9...Core 1o River material 11...Load tester 12...Disc plate 1 (13...
・Round J 14... Coil 15... Case 16... Lid 17... Rail axial force detection sensor 18... Thermometer 19 River fitting 20... Butterfly nut 21... Amplifier 1522・
...Oscillator 26...Synchronized detector 24...
1 converter 25... Absolute value circuit 26... Peak detection circuit 27... Counter 28... Gate 29...
... Adder 30 ... Average value circuit 31 ... Conversion circuit
2゜32...Display 33...Temperature correction circuit 34...Comparison circuit 0 215゜O 1 O 7th (GoLn 4 (,To 7・) Sq3 and Toshi 7 No〆ichikut2) /!? 9-o (ku) 7 (・cho-)-111] L□-W2m1□□□□ □□□−
1] □−□□−−−−−□−−−30-0 Nakai-cho, Ashigarakami-gun, Kanagawa Inside Hitachi Electronics Engineering Co., Ltd.Applicant Hitachi Ltd. 5-1 Marunouchi-chome, Chiyoda-ku, Tokyo■ Applicant: Hitachi Electronics Engineering Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)軌道を構成しているレールの表面に接着し、゛か
つ0°〜360°の範囲に回転できる磁気異方性5セン
サの出力に基づいて、レールの内部応力・によって生じ
たレールの磁気異方性に伴う4・個の尖頭値(角度45
°、135°、225°および315°・に対する尖頭
値)出力の平均値をもって軌道・応力を測定し、この測
定値に測定時の温度に基lOづく補正を行なうことを4
iVi3とする軌道応力。 検測方式。
(1) Based on the output of 5 magnetic anisotropy sensors that are attached to the surface of the rail that makes up the track and can be rotated in the range of 0° to 360°, 4 peaks associated with magnetic anisotropy (angle 45
The trajectory and stress are measured using the average value of the output (peak value for 135°, 225°, and 315°), and the measured value is corrected based on the temperature at the time of measurement.
Orbital stress taken as iVi3. Inspection method.
(2)磁性体よりなる円板上に、磁性体よりなる。 4個の丸棒を中心対象でかつ正方形の頂点に。 配置し、該4個の丸棒のそれぞれにコイルを1゜巻線し
た磁気異方性センサを非磁性ケースに。 収納し、かつ該ケースに対して該磁気異方性。 センサが0°〜660°の範囲で回転自在であり、。 さらに該磁気異方性センサの回転位置が0°お。 よび360°で閉路する電気接点を有する磁気異91、
方性センサを用いることを特徴とする特許請。 求の範囲第1項記軟の軌道応力検出方式。  。
(2) Made of magnetic material on a disk made of magnetic material. Center-symmetric the four round bars and make them the vertices of a square. A magnetic anisotropic sensor with a 1° coil wound around each of the four round bars is placed in a non-magnetic case. and the magnetic anisotropy with respect to the case. The sensor is rotatable in the range of 0° to 660°. Furthermore, the rotational position of the magnetic anisotropy sensor is 0°. and a magnetic insulator 91 having electrical contacts that close at 360°;
A patent application characterized by using a directional sensor. Required range Item 1: Soft track stress detection method. .
JP9917082A 1982-06-11 1982-06-11 Rail stress detecting system Granted JPS58216924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9917082A JPS58216924A (en) 1982-06-11 1982-06-11 Rail stress detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9917082A JPS58216924A (en) 1982-06-11 1982-06-11 Rail stress detecting system

Publications (2)

Publication Number Publication Date
JPS58216924A true JPS58216924A (en) 1983-12-16
JPS6260012B2 JPS6260012B2 (en) 1987-12-14

Family

ID=14240171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9917082A Granted JPS58216924A (en) 1982-06-11 1982-06-11 Rail stress detecting system

Country Status (1)

Country Link
JP (1) JPS58216924A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965740A (en) * 1982-10-07 1984-04-14 Nitsukooshi Kk Retrieving device for direction of main stress
JPS5989231U (en) * 1982-12-07 1984-06-16 日産自動車株式会社 Torque detection device
WO2004077003A1 (en) * 2003-02-25 2004-09-10 Aea Technology Plc Measurement of residual and thermally-induced stress in a rail
NL1028698C2 (en) * 2005-01-26 2006-07-31 Grontmij Nederland B V System and method for at least detecting a mechanical stress in at least a part of a rail.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965740A (en) * 1982-10-07 1984-04-14 Nitsukooshi Kk Retrieving device for direction of main stress
JPS5989231U (en) * 1982-12-07 1984-06-16 日産自動車株式会社 Torque detection device
WO2004077003A1 (en) * 2003-02-25 2004-09-10 Aea Technology Plc Measurement of residual and thermally-induced stress in a rail
US7053606B2 (en) 2003-02-25 2006-05-30 Aea Technology Plc Measurement of residual and thermally-induced stress in a rail
JP2006518848A (en) * 2003-02-25 2006-08-17 エイイーエイ テクノロジー パブリック リミテッド カンパニー Measurement of residual and thermally induced stresses in rails.
NL1028698C2 (en) * 2005-01-26 2006-07-31 Grontmij Nederland B V System and method for at least detecting a mechanical stress in at least a part of a rail.
WO2006080838A1 (en) * 2005-01-26 2006-08-03 Grontmij Nederland B.V. System and method for at least detecting a mechanical stress in at least a part of a rail

Also Published As

Publication number Publication date
JPS6260012B2 (en) 1987-12-14

Similar Documents

Publication Publication Date Title
US9593990B2 (en) Stress monitoring device of elasto-magneto-electric (EME) effect type
Coffin Jr et al. Apparatus for study of effects of cyclic thermal stresses on ductile metals
Beth et al. Magnetic measurement of torque in a rotating shaft
CN109211153A (en) A kind of measurement method of body structure surface strain
JPS58216924A (en) Rail stress detecting system
US20130221950A1 (en) Method and measurement arrangement for measuring mechanical stresses in ferromagnetic workpieces
DK2250475T3 (en) BIAXIAL TENSION MEASUREMENT
US3183708A (en) Method and apparatus for metering pressure phenomena in internal combustion engines
CA1296387C (en) Method for determining biaxial stresses in ferromagnetic materials
US3380167A (en) Borehole extensometer
JPH04210B2 (en)
Sharpe Strain gages for long-term high-temperature strain measurement: Resistance and capacitance strain gages for measuring strains in the temperature range 1100–1400° F for durations up to 10,000 hours are reviewed
Schabtach et al. Measurement of the damping of engineering materials during flexural vibration at elevated temperatures
JPS58213903A (en) Apparatus for detecting rail axis strength
Marin et al. On the validity of assumptions made in theories of plastic flow for metals
Zeng et al. Non-invasive pressure measurement based on magneto-mechanical effects
JPS6017330A (en) Measuring device of stress of rail shaft
Langer An instrument for measuring small displacements
JP3159132B2 (en) Method for measuring stress in steel pipes
Würde et al. Transformer Core-Vibration Analysis: Coupling Paths
Weng et al. Stress testing of steel suspender of arch bridge model based on induced magnetic flux method
McDonald et al. Use of a LVDT displacement transducer in measurements at low temperatures
Yishu et al. Design of by-pass excitation cable force sensor
Schiff et al. Issues and guidance for IEEE 693 equipment qualification tests
Hofstoetter Calibration of high-temperature strain gages with the aid of a clamping device: The purpose of the method described is to use high-temperature strain gages for precise measurements on nuclear-power-plant components during start-up and in service