JPS58216740A - Manufacture of gamma-alumina catalyst carrier - Google Patents

Manufacture of gamma-alumina catalyst carrier

Info

Publication number
JPS58216740A
JPS58216740A JP9905682A JP9905682A JPS58216740A JP S58216740 A JPS58216740 A JP S58216740A JP 9905682 A JP9905682 A JP 9905682A JP 9905682 A JP9905682 A JP 9905682A JP S58216740 A JPS58216740 A JP S58216740A
Authority
JP
Japan
Prior art keywords
boehmite sol
pore diameter
pore
boehmite
catalyst carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9905682A
Other languages
Japanese (ja)
Inventor
Shigeo Yokoyama
横山 成男
Kikuji Tsuneyoshi
紀久士 常吉
Kazutaka Mori
一剛 森
Masato Suwa
諏訪 征人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9905682A priority Critical patent/JPS58216740A/en
Publication of JPS58216740A publication Critical patent/JPS58216740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To enable control of pore diameter in the carrier of a catalyst, by treating Boehmite sol obtd. by treating aluminum salt or aluminate, by addition of acid or alkali. CONSTITUTION:Boehmite sol is obtained by neutralyzing aluminum salt or aluminate or double decomposing it or hydrolyzing aluminum amalgam or aluminum alcoxide with water or steam. This Boehmite sol is subjected to hydrothermal treatment at 100-300 deg.C in raised pressure by adding acid or alkali to the sol to control pH to 8-11. At least 2 kinds of Boehmite sol thus obtd. are mixed and freed from water in a dryer and molded.

Description

【発明の詳細な説明】 本発明はアルミナ触媒担体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing an alumina catalyst carrier.

従来、原油を蒸留した後の残渣やタールサンド油などの
重質油は水素化処理して軽質化をはかると同時に重質油
中に含まれる硫黄化合物。
Conventionally, heavy oil such as the residue after distilling crude oil or tar sand oil is hydrotreated to make it lighter, and at the same time, the sulfur compounds contained in the heavy oil are removed.

窒素化合物、有機金属化合物などの低減がはかられてい
る。
Efforts are being made to reduce nitrogen compounds, organometallic compounds, etc.

このような水素化処理には一般に触媒が使用されるが、
その担体としてはアルミナ担体がよ(知られており、こ
れに活性金属を担持させることにより水素化触媒が調製
されている。水素化処理においては前述のように触媒の
存在下で水素化分解、脱硫、脱金属、脱窒素、脱酸素な
どの反応を行わしめる訳で触媒の活性1選択性。
Catalysts are generally used in such hydrotreating, but
An alumina support is well known as a support for this, and a hydrogenation catalyst is prepared by supporting an active metal on this support.As mentioned above, in the hydrogenation process, hydrogen cracking, The activity of the catalyst is selective because it carries out reactions such as desulfurization, demetallization, denitrification, and deoxygenation.

寿命2強度などが重要な鍵を握っていることは言うまで
もない。このような触媒の特性には触媒の持つ細孔の大
きさや細孔分布が主要な役割をはたしていると一般には
考えられている。
Needless to say, lifespan 2 strength etc. are important keys. It is generally believed that the size and pore distribution of the pores of the catalyst play a major role in the characteristics of the catalyst.

このような観点からアルミナ担体の細孔径や細孔容積を
制御する方法が種々提案されているが、その代表的な方
法は有機物を添加する方法。
From this point of view, various methods have been proposed to control the pore diameter and pore volume of alumina carriers, and the representative method is the addition of organic substances.

アルコール処理する方法及び酸処理する方法である。以
下、その概要を述べる。
These are an alcohol treatment method and an acid treatment method. An overview is given below.

r−アルミナの製法はアルミニウム塩、アルミノ酸塩を
中和又は交換分解するかアルミニウムアマルガムやアル
ミニウムアルコキシドヲ水又は水蒸気で加水分解するこ
とによってベーマイト(A100H)ジノrを生成させ
、これを500℃〜900℃(一般には600℃)で焼
成するものであ2゜ 有機物を添加する方法とはポリエチレングリコール、ポ
リビニルアルコール、ポリアクリルアミド等の水溶性有
機ポリマーを添加し、細孔径の制御を行なう方法である
。これらを添加したときの細孔分布、細孔容積に及ぼす
効果は添加物の種類によって異なり、また、ベーマイト
ゾルの生成直後に添加するか乾燥後に添加するかで効果
は異ってくる。しかし、細孔容積の制御に対しては有効
であるが細孔径の制御に対しては有効ではないという欠
点が存在する。
The method for producing r-alumina is to generate boehmite (A100H) dino r by neutralizing or exchange decomposition of aluminum salts or aluminates, or by hydrolyzing aluminum amalgam or aluminum alkoxide with water or steam, and then heat it at 500°C to The method involves baking at 900°C (generally 600°C).The method of adding organic substances is a method of adding water-soluble organic polymers such as polyethylene glycol, polyvinyl alcohol, and polyacrylamide to control the pore size. . The effects on pore distribution and pore volume when these are added vary depending on the type of additive, and the effects also vary depending on whether they are added immediately after the boehmite sol is formed or after drying. However, there is a drawback that although it is effective for controlling pore volume, it is not effective for controlling pore diameter.

アルコール処理する方法とは生成直後のベーマイトゾル
を各種のアルコールで洗浄し細孔径の制御を行なう方法
である。この場合、エチルアルコール、イソプロピルア
ルコール、n−ブチルアルコールの場合に効果は大であ
るがヘキシルアルコールより分子量が大キいアルコ−t
Ltを使用した場合には効果が認められなくなってしま
う。この方法は細孔径を制御すると0う点においては制
御可能な幅が狭く、直径150Å以上の細孔を作ること
はできない。
The alcohol treatment method is a method in which the boehmite sol immediately after generation is washed with various alcohols to control the pore diameter. In this case, ethyl alcohol, isopropyl alcohol, and n-butyl alcohol are highly effective, but alcohols with a larger molecular weight than hexyl alcohol
If Lt is used, no effect will be recognized. This method has a narrow controllable width when controlling the pore diameter, and it is not possible to create pores with a diameter of 150 Å or more.

酸処理する方法とは生成したベーマイトゾルに酸類な加
え、脱水、成形、乾燥、焼成して細孔径の制御を行う方
法であり、この方法では細孔分布は小さい方に移動する
The acid treatment method is a method in which the pore size is controlled by adding an acid to the generated boehmite sol, dehydrating it, molding it, drying it, and firing it, and in this method, the pore size shifts to the smaller side.

以上のように従来法は細孔径の制御範囲が狭く、達成可
能な細孔径(直径)は150〜200人程度が限度であ
った。また細孔分布はある大きさを中心に1つの分布を
していた。
As described above, in the conventional method, the control range of the pore diameter is narrow, and the achievable pore diameter (diameter) is limited to about 150 to 200. Moreover, the pore distribution was centered around a certain size.

本発明者等は2つ以上の細孔径に分布を有するr−アル
ミナの調製法につい。て鋭意研究を進めた結果、前記ベ
ーマイトゾルのphiを8〜11に調製し、更に温度1
00〜800℃、加圧下で水熱処理した2種類以−ヒの
ベーマイトゾルを混合することによって目的が達せられ
ることを見い出し、この知見にもとづき本発明を完成す
るに到った。
The present inventors have described a method for preparing r-alumina having a distribution of pore sizes of two or more. As a result of intensive research, the phi of the boehmite sol was adjusted to 8 to 11, and the temperature was further increased to 1.
It has been discovered that the object can be achieved by mixing two or more types of boehmite sols that have been hydrothermally treated at 00 to 800 DEG C. under pressure, and based on this knowledge, the present invention has been completed.

すなわち0本発明はアルミニウム塩、アルミン酸塩を中
和又は交換分解するかアルミニウムアマルガムやアルミ
ニウムアルコキシドを水又は水蒸気で加水分解すること
により得られるベーマイトゾルに酸又はアルカリを加え
てpttを8〜11とし、温度100〜SOO℃、加圧
下で水熱処理した2種類以上のベーマイトゾルを混合し
In other words, the present invention is a boehmite sol obtained by neutralizing or exchange decomposing aluminum salts or aluminates, or by hydrolyzing aluminum amalgam or aluminum alkoxide with water or steam, and adding an acid or alkali to the boehmite sol to give a PTT of 8 to 11. Two or more types of boehmite sols that have been hydrothermally treated under pressure at a temperature of 100 to SOO°C are mixed.

脱水、成形、乾燥及び焼成することを特徴とするアルミ
ナ担体の製造方法を提案するものである。
The present invention proposes a method for producing an alumina carrier, which is characterized by dehydration, molding, drying, and sintering.

以下本発明の方法について詳細に説明する。The method of the present invention will be explained in detail below.

本発明においてベーマイトゲルを調製するための出発原
料と調製法は前述の従来法が採用される。
In the present invention, the above-mentioned conventional methods are used as starting materials and preparation methods for preparing boehmite gel.

ベーマイトゲルのpH調整は酸又はアルカリな添加して
行うが、その種類につシフ1ての制限は特には無い。
The pH of boehmite gel is adjusted by adding acid or alkali, but there are no particular restrictions on the type.

水熱処理温度は100℃以上好ましくは120℃以上が
採用される。また、アルミナ−水系状態や温度と水蒸気
圧の関連からベーマイトが安定に生成可能な上限の温度
は800℃程度と考えられるが、実用的には250℃が
上限である。
The hydrothermal treatment temperature is 100°C or higher, preferably 120°C or higher. Further, from the state of the alumina-water system and the relation between temperature and water vapor pressure, the upper limit temperature at which boehmite can be stably produced is considered to be about 800°C, but the practical upper limit is 250°C.

更に、水熱処理時間は長いほど細孔径の大なものが得ら
れろ。
Furthermore, the longer the hydrothermal treatment time, the larger the pore size can be obtained.

このようにしてベーマイトゾルを水熱処理した後、2種
以上の条件により水熱処理したベーマイトゾルを混合し
、脱水、成形し、乾燥及び焼成することにより2つ以−
Eの細孔径に分布の極大を有するアルミナ担体得られる
。脱水操作は2種以上の条件により水熱処理したベーマ
イトゾルを混合した後のベーマイトゾルを乾燥器やエバ
ポレーター内において水分を蒸発させ。
After hydrothermally treating the boehmite sol in this way, the boehmite sol hydrothermally treated under two or more conditions is mixed, dehydrated, molded, dried and fired to form two or more
An alumina support having a maximum distribution at a pore size of E is obtained. In the dehydration operation, the boehmite sol that has been hydrothermally treated under two or more conditions is mixed, and then the water is evaporated from the boehmite sol in a dryer or an evaporator.

成形に適した水分量まで(固形分に対する水の割合は2
0〜80 wt%)低減させることが好便である。
Up to the moisture content suitable for molding (the ratio of water to solid content is 2
0-80 wt%).

本発明の方法によれ+(、r−アルミナ触媒担体の細孔
直径、細孔容積を増加させることができ、また細孔径の
制御を行うことができ、更に2つの細孔径の位置に分布
の極大を有するr−アルミナ触媒担体な得ることができ
る。
By the method of the present invention, it is possible to increase the pore diameter and pore volume of the r-alumina catalyst carrier, it is also possible to control the pore diameter, and it is also possible to control the pore diameter at two pore diameter positions. An r-alumina catalyst support having a maximum can be obtained.

次に実施例により本発明の作用効果を更に詳細に説明す
る。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

実施例1 アルミニウムイソプロポキシドA I (QC!sH?
 ) B200gを80℃に保持したtooOn+jの
蒸留水に溶解して加水分解を行った。その後、水熱処理
を行う時のpH条件を検討するためIN塩酸又はIN水
酸化カリウム水溶液を添加してpHを6゜7、 8. 
9.10.11.12.18の8種に調製し、。
Example 1 Aluminum isopropoxide A I (QC!sH?
) 200g of B was dissolved in tooOn+j distilled water kept at 80°C to perform hydrolysis. After that, in order to examine the pH conditions for hydrothermal treatment, IN hydrochloric acid or IN potassium hydroxide aqueous solution was added to adjust the pH to 6.7, 8.
9.10.11.12.18 prepared in 8 types.

150℃において24時間の水熱処理を行った。Hydrothermal treatment was performed at 150°C for 24 hours.

その後、このようにして得られたベーマイトゾルを16
IIIfflOに押し出し造粒を行い乾燥後。
Thereafter, the boehmite sol obtained in this way was
After extrusion granulation into IIIfflO and drying.

600℃において2時間焼成しrアルミナ触媒担体を試
作し、細孔直径分布及び細孔容積を測定した。結果を第
1図、第2図に示す。
A prototype r-alumina catalyst carrier was produced by firing at 600° C. for 2 hours, and the pore diameter distribution and pore volume were measured. The results are shown in Figures 1 and 2.

第1図はpHと細孔直径の関係を示すグラフであり、横
軸はpH,縦軸は細孔直径を示す。
FIG. 1 is a graph showing the relationship between pH and pore diameter, where the horizontal axis shows pH and the vertical axis shows pore diameter.

第2図はpHと細孔容積の関係を示すグラフであ・す、
横軸はpH,縦軸は細孔容積を示す。
Figure 2 is a graph showing the relationship between pH and pore volume.
The horizontal axis shows pH and the vertical axis shows pore volume.

第1図、第2図から明らかなようにpHが8〜11の間
がγ−アルミナ触媒担体の細孔直径。
As is clear from FIGS. 1 and 2, the pore diameter of the γ-alumina catalyst carrier is the same when the pH is between 8 and 11.

細孔容積を増加させるために効果があることが判明した
It was found to be effective in increasing pore volume.

実施P+ 2゜ 硫酸アルミニウム(AI2(SO4)a) 100 g
を蒸留水tooo gに溶解し、 IN水酸化すl−’
Jウム水溶液を添加してpHを10となるように調製し
て得られたベーマイトゾルな水熱反応の温度を変えて細
孔径の変化に注目し試験を行った。
Implementation P+ 2゜Aluminum sulfate (AI2(SO4)a) 100 g
Dissolve in too much distilled water and add IN hydroxide l-'
A test was conducted by changing the temperature of the hydrothermal reaction of the boehmite sol obtained by adjusting the pH to 10 by adding a Jium aqueous solution and paying attention to the change in pore diameter.

この場合の水熱処理温度は12o’c、  150℃。The hydrothermal treatment temperature in this case was 12 o'c, 150°C.

180℃、21O℃、240℃の5通りとし水熱処理時
間は全て24時間とした。このように水熱処理したベー
マイトゾルを実施例1と同様な方法で造粒した後、乾燥
焼成し細孔径を求めた。得られたr−アルミナ触媒担体
の細孔径の測定結果を第8図に示す。
Hydrothermal treatment was carried out in five ways: 180°C, 210°C, and 240°C, and the hydrothermal treatment time was all 24 hours. The hydrothermally treated boehmite sol was granulated in the same manner as in Example 1, then dried and fired to determine the pore diameter. The measurement results of the pore diameter of the obtained r-alumina catalyst carrier are shown in FIG.

第8図において横軸は水熱処理温度、縦軸は細孔直径を
示す。第8図からも明らかなように水熱処理温度を変化
させることによりr−アルミナ触媒担体の細孔径の制御
が可能であることがわかる。
In FIG. 8, the horizontal axis shows the hydrothermal treatment temperature, and the vertical axis shows the pore diameter. As is clear from FIG. 8, it is possible to control the pore diameter of the r-alumina catalyst carrier by changing the hydrothermal treatment temperature.

実施例8゜ アルミニウムイソプロポキシド(AI (008H7)
a )200gを80℃に保持した1000m/の蒸留
水に溶解して加水分解を行った。その後、0.IN水酸
化カリウム水溶液を添加してpHを9に調整した後15
0℃において10.20.40.60.80,100時
間水抹処理を行ない、実施例1と同様にしてγ−アルミ
ナ触媒担体を調製し細孔直径を測定した。細孔直径測定
結果を第4図に示す。
Example 8 Aluminum isopropoxide (AI (008H7)
a) Hydrolysis was carried out by dissolving 200 g in 1000 m/m of distilled water maintained at 80°C. Then 0. After adjusting the pH to 9 by adding IN potassium hydroxide aqueous solution, 15
Water treatment was carried out at 0°C for 10,20,40,60,80,100 hours, a γ-alumina catalyst carrier was prepared in the same manner as in Example 1, and the pore diameter was measured. Figure 4 shows the pore diameter measurement results.

第4図において横軸は水熱処理時間、縦軸は細孔直径で
ある。第4図から水熱処理時間を変化させることによっ
てもr−アルミナ触媒担体の細孔径の制御をすることが
可能であることがわかる。
In FIG. 4, the horizontal axis is the hydrothermal treatment time, and the vertical axis is the pore diameter. It can be seen from FIG. 4 that the pore diameter of the r-alumina catalyst carrier can also be controlled by changing the hydrothermal treatment time.

実施例4゜ 実施例8において水熱処理を行って得たベーマイトゾル
を使用し、2種のゾルを等量混合しこ後、実施例1と同
様にしてr−アルミナ触媒担体のペレットを調製し水銀
圧入法により細孔分布を測定した。
Example 4 Using the boehmite sol obtained by the hydrothermal treatment in Example 8, equal amounts of the two types of sols were mixed, and pellets of r-alumina catalyst carrier were prepared in the same manner as in Example 1. Pore distribution was measured by mercury intrusion method.

第5図は水熱処理無しのベーマイトゾルと60時間水熱
処理を行ったベーマイトノルを混合して得たr−アルミ
ナ触媒担体の細孔分布を示すグラフである。第5図にお
いて縦軸は累積細孔容積、横軸は細孔直径である。60
人と400人の2つの細孔径の位置に分布の極大を有す
るγ−アルミナ担体が得られた。
FIG. 5 is a graph showing the pore distribution of an r-alumina catalyst carrier obtained by mixing boehmite sol without hydrothermal treatment and boehmite nol subjected to hydrothermal treatment for 60 hours. In FIG. 5, the vertical axis is the cumulative pore volume, and the horizontal axis is the pore diameter. 60
A γ-alumina support with distribution maxima at two pore size positions of 1 and 400 was obtained.

次に第6図は10時間水熱処理を行った・ベーマイトゾ
ルと60時間水熱処理を行−9たベーマイトゾルを混合
して得たアルミナ担体の細孔分布を示すグラフである。
Next, FIG. 6 is a graph showing the pore distribution of an alumina carrier obtained by mixing a boehmite sol subjected to a 10-hour hydrothermal treatment and a boehmite sol subjected to a 60-hour hydrothermal treatment.

第6図において縦軸は累積細孔容積、横軸は細孔直径で
ある。
In FIG. 6, the vertical axis is the cumulative pore volume, and the horizontal axis is the pore diameter.

200人と400人の2つの細孔直径の位置に分布の極
大を有するr−アルミナ触媒担体が得られた。
An r-alumina catalyst support was obtained with distribution maxima at two pore diameters of 200 and 400.

実施例6゜ アルミン酸ソーダ(NaAlO2) 1000 gを1
07の蒸留水に溶解した後INの硫酸を添加してpHが
4の硫酸酸性としベーマイトゾルを得た。
Example 6 1000 g of sodium aluminate (NaAlO2)
After dissolving in distilled water of No. 07, IN sulfuric acid was added to make the boehmite acidic to a pH of 4 to obtain a boehmite sol.

次にINの水酸化ナトリウム水溶液を加えpHを9とす
る。このようにして得られたベーマイトゾルを180℃
飽和水蒸気圧下において攪拌式オートクレーブで5 、
10.20.40.80時間水熱処理を行った後、水分
を25%まで取り除き、1.61Illaのペレットに
押し出し造粒を行い、乾燥した後600℃において2時
間焼成しrアルミナ触媒担体を得た。
Next, an aqueous IN sodium hydroxide solution is added to adjust the pH to 9. The boehmite sol thus obtained was heated to 180°C.
5 in a stirred autoclave under saturated steam pressure,
10.20.40.After hydrothermal treatment for 80 hours, water was removed to 25%, extruded into 1.61Illa pellets, granulated, dried and then calcined at 600°C for 2 hours to obtain an alumina catalyst carrier. Ta.

これらのr−アルミナ触媒担体について水銀圧入法によ
る細孔直径分布を測定した。結果を第7図に示す。この
場合にも実施例8における第4図とよく似た結果が得ら
れた。ここでは造粒前のベーマイトゾルを水熱処理する
ことによりアルミナ担体の細孔径は大きくすることがで
きることを再確認した。
The pore diameter distribution of these r-alumina catalyst carriers was measured by mercury porosimetry. The results are shown in FIG. In this case as well, results very similar to those shown in FIG. 4 in Example 8 were obtained. Here, we reconfirmed that the pore size of the alumina carrier can be increased by hydrothermally treating the boehmite sol before granulation.

次に実施例4と同様に水熱処理をしていないベーマイト
ゾルと20時間水熱処理を行ったベーマイトゾルを等量
混合して得たr−アルミナ触媒担体の細孔直径分布を第
8図に示す。
Next, as in Example 4, the pore diameter distribution of the r-alumina catalyst carrier obtained by mixing equal amounts of boehmite sol that has not been hydrothermally treated and boehmite sol that has been hydrothermally treated for 20 hours is shown in Figure 8. .

第8図において縦軸は累積細孔容積、横軸は細孔直径で
ある。50人と850人の2つの細孔径の位置に分布の
極大を有するγ−アルミナ担体が得られた。
In FIG. 8, the vertical axis is the cumulative pore volume, and the horizontal axis is the pore diameter. A γ-alumina support was obtained with distribution maxima at two pore size positions of 50 and 850.

更に、5時間、 10時間、20時間水熱処理を行った
ベーマイトゾルを8等分量ずつ混合して得たr−アルミ
ナ触媒担体の細孔直径分布を第9図に示す。第9図にお
いて縦軸は累積細孔容積、横軸は細孔直径である。二の
図から明らかなよう(こ170人、  25OA、  
850 Aと8つの細孔径の位置に分布の極大を有する
γ−アルミナ触媒担体が得られた。
Furthermore, FIG. 9 shows the pore diameter distribution of an r-alumina catalyst carrier obtained by mixing 8 equal amounts of boehmite sol that had been hydrothermally treated for 5 hours, 10 hours, and 20 hours. In FIG. 9, the vertical axis is the cumulative pore volume, and the horizontal axis is the pore diameter. As is clear from the second figure (170 people, 25OA,
A γ-alumina catalyst support having a distribution maximum at 850 A and 8 pore diameters was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はベーマイトゾルのpHとr−アルミナ触媒担体
の細孔直径との関係を示すグラフ、第2図はベーマイト
ゾルのpHとr−アルミナ触媒担体の細孔容積との関係
を示すグラフ、第8図はベーマイトゾルの水熱処理温度
と1−7 Jl/ jす触媒担体の細孔直径との関係を
示すグラフ。 第4図及び第7図はベーマイトゾルの水熱処理時間とr
−アルミナ触媒担体の細孔直径との関係を示すグラフ、
第5図、第6図、第8図及び第9図はr−アルミナ触媒
担体の細孔直径と累積細孔容積との関係を示すグラフで
ある。 第1図 M 第2図 βli− 第3日 第4図 水執九牒吟朋(鰐藺) 第58 第1S口 6田y4直径(バ) 第a圓 第9図 δ田SL道【内5(オノ
FIG. 1 is a graph showing the relationship between the pH of boehmite sol and the pore diameter of the r-alumina catalyst carrier, and FIG. 2 is a graph showing the relationship between the pH of the boehmite sol and the pore volume of the r-alumina catalyst carrier. FIG. 8 is a graph showing the relationship between the hydrothermal treatment temperature of boehmite sol and the pore diameter of the catalyst carrier of 1-7 Jl/j. Figures 4 and 7 show the hydrothermal treatment time and r of boehmite sol.
- a graph showing the relationship with the pore diameter of the alumina catalyst carrier;
FIG. 5, FIG. 6, FIG. 8, and FIG. 9 are graphs showing the relationship between the pore diameter and cumulative pore volume of the r-alumina catalyst carrier. Fig. 1 M Fig. 2 βli- Day 3 Fig. 4 Suitsuki 9 Ginho (Wanii) 58 1S Exit 6 Field Y4 Diameter (B) Fig. a Circle Fig. 9 δ Field SL road (Ono

Claims (1)

【特許請求の範囲】[Claims] アルミニウム塩、アルミン酸塩を中和又は交換分解する
かアルミニウムアマルガムやアルミニウムアルコキシド
を水又は水蒸気で加水分解することにより得られるベー
マイトゾルに酸又はアルカリを加えてpHを8〜11と
し温度100〜800℃加圧下で水熱処理した2種類以
上のベーマイトゾルを混合し、脱水、成形、乾燥及び焼
成することを特徴とするアルミナ担体の製造方法。
Add acid or alkali to boehmite sol obtained by neutralizing or exchange decomposition of aluminum salts and aluminates or hydrolyzing aluminum amalgam or aluminum alkoxide with water or steam to adjust the pH to 8 to 11 at a temperature of 100 to 800. A method for producing an alumina carrier, which comprises mixing two or more types of boehmite sol that have been hydrothermally treated under pressure at °C, followed by dehydration, molding, drying, and firing.
JP9905682A 1982-06-09 1982-06-09 Manufacture of gamma-alumina catalyst carrier Pending JPS58216740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9905682A JPS58216740A (en) 1982-06-09 1982-06-09 Manufacture of gamma-alumina catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9905682A JPS58216740A (en) 1982-06-09 1982-06-09 Manufacture of gamma-alumina catalyst carrier

Publications (1)

Publication Number Publication Date
JPS58216740A true JPS58216740A (en) 1983-12-16

Family

ID=14236994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9905682A Pending JPS58216740A (en) 1982-06-09 1982-06-09 Manufacture of gamma-alumina catalyst carrier

Country Status (1)

Country Link
JP (1) JPS58216740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346594A (en) * 2005-06-16 2006-12-28 Kashima Chemical Kk Catalyst for synthesizing isopropylchloride and method for synthesizing isopropylchride using the catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346594A (en) * 2005-06-16 2006-12-28 Kashima Chemical Kk Catalyst for synthesizing isopropylchloride and method for synthesizing isopropylchride using the catalyst

Similar Documents

Publication Publication Date Title
US4248852A (en) Process for the production of alumina suitable for use as a catalyst carrier
US4624938A (en) Process for producing wide-pore catalyst supports
US4166100A (en) Method of preparing granulated activated alumina
US3520654A (en) Process for the preparation of low density alumina gel
US4260524A (en) Hollow catalyst carrier and hollow catalyst made of transition-alumina and process for production thereof
JPH0580256B2 (en)
JPS6049135B2 (en) Spheroid with double porosity and method for producing the same
CN103011192B (en) Silicon-aluminium carrier comprising molecular sieve and preparation method thereof
RU2683778C2 (en) Amorphous mesoporous alumina with high connectivity and production method thereof
US4016108A (en) Preparation of catalysts of predetermined pore size distribution and pore volume
KR100294192B1 (en) Pseudo-boehmite powder for catalyst carrier and method for manufacturing same
CN108671934B (en) Preparation method of hydrofining catalyst with high mechanical strength
CN1194593A (en) Direct oxidation method for converting sulphur compounds into sulphur with a copper catalyst
JPS58216740A (en) Manufacture of gamma-alumina catalyst carrier
CN108201884B (en) γ-Al2O3Method for preparing carrier and method for preparing alkane isomerization catalyst
JPS6316168B2 (en)
US4558031A (en) High porosity catalyst
JP2556349B2 (en) Method for producing catalyst carrier
CA1123173A (en) Controlling the pore diameter of precipitated alumina
JP2020506043A (en) Chromium catalyst material and methods of making and using it
GB2038298A (en) Manufacture of high surface area spheroidal alumina particles having a high average bulk density
JPH0938494A (en) Catalyst compacting method using alumina as binder
EP0019674A1 (en) Process for the production of a hollow catalyst carrier made of transition-alumina
JPH05317706A (en) Preparation of alumina carrier
SU865792A1 (en) Method of producing spherical silicagel