JPH0938494A - Catalyst compacting method using alumina as binder - Google Patents

Catalyst compacting method using alumina as binder

Info

Publication number
JPH0938494A
JPH0938494A JP21251295A JP21251295A JPH0938494A JP H0938494 A JPH0938494 A JP H0938494A JP 21251295 A JP21251295 A JP 21251295A JP 21251295 A JP21251295 A JP 21251295A JP H0938494 A JPH0938494 A JP H0938494A
Authority
JP
Japan
Prior art keywords
catalyst
sulfate
sulfuric acid
metal
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21251295A
Other languages
Japanese (ja)
Inventor
Yasutsugu Hashimoto
康嗣 橋本
Manabu Watanabe
学 渡邊
Fumio Kumada
文雄 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Mitsubishi Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Mitsubishi Oil Co Ltd filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP21251295A priority Critical patent/JPH0938494A/en
Publication of JPH0938494A publication Critical patent/JPH0938494A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To compact oxide catalyst powder treated with sulfuric acid and useful as a solid acid catalyst used in various acidic catalytic reactions without reducing the activity of the catalyst. SOLUTION: When an oxide catalyst compact treated with sulfuric acid radicals is produced, a metal hydroxide and boehmite are compacted and the resultant compact is fired at 300-500 deg.C, treated with sulfuric acid radicals and fired at 400-700 deg.C. By this firing, the resultant catalyst is activated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルミナを結合材
とする触媒成型方法に関し、詳しくは、固体酸触媒とし
て用いられる硫酸根処理金属酸化物の工業的使用のため
の成型方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst molding method using alumina as a binder, and more particularly to a molding method for industrial use of a sulfate group-treated metal oxide used as a solid acid catalyst.

【0002】[0002]

【従来の技術】一般に粉末状の触媒は、工業的使用に際
しては、適当な結合材を用いて、柱状、球状、粒状等の
成型体としてから、実装置に充填して用いられることが
多い。その成型には、本来の触媒活性に影響を与えない
ように比較的不活性で、加熱により脱水縮合して強固な
結合を形成し、反応物との接触効率が高いように多孔性
で表面積が大きい等の特徴を有する物質が結合材として
用いられてきた。そのような特長を持つ代表的結合材と
しては、アルミナ、シリカ等が挙げられる。成型方法に
は、古くから実施され当業者によく知られた、押し出し
成型法、転動造粒法、油中滴下法等がある。
2. Description of the Related Art Generally, in industrial use, a powdery catalyst is often used by filling it into an actual apparatus after forming a columnar, spherical, granular, or the like molded body with an appropriate binder. The molding is relatively inert so as not to affect the original catalytic activity, and dehydrates and condenses by heating to form a strong bond, and is porous and has a large surface area so that the contact efficiency with the reactant is high. Materials having characteristics such as large size have been used as a binder. Typical binders having such characteristics include alumina and silica. Examples of the molding method include an extrusion molding method, a tumbling granulation method, and an oil dropping method, which have been used for a long time and are well known to those skilled in the art.

【0003】[0003]

【発明が解決しようとする課題】金属水酸化物の硫酸根
処理触媒は、固体酸触媒として、各種の酸性触媒反応に
適用できることが分かり、盛んにその反応が研究されて
いる。しかし従来は、これらの反応は粉末状態で検討さ
れてきた。触媒を通常の工業的実装置、例えば固定床流
通式の反応器に充填して使用する場合、粉末では流動化
や差圧の問題が生じるので、適当な大きさに成型する必
要がある。
It has been found that a sulfate treatment catalyst for metal hydroxide can be applied to various acidic catalytic reactions as a solid acid catalyst, and the reaction is being actively studied. However, conventionally, these reactions have been studied in the powder state. When the catalyst is used by filling it in a usual industrial actual equipment, for example, a fixed bed flow type reactor, the powder causes problems of fluidization and differential pressure, and therefore it is necessary to mold the catalyst into an appropriate size.

【0004】ところが金属水酸化物の硫酸根処理粉末触
媒を、アルミナを結合材として用い、従来から当業者に
よく知られた定法に従って成型すると、著しく活性が低
いという問題が認められた。これは金属水酸化物の硫酸
根処理触媒は大変不安定であり、成型操作中に活性構造
が破壊されたものと考えられた。
However, it has been found that when the powdered metal hydroxide sulfate group catalyst is molded using alumina as a binder according to a conventional method well known to those skilled in the art, the activity is extremely low. It was considered that the sulfate-treated catalyst of metal hydroxide was very unstable and the active structure was destroyed during the molding operation.

【0005】[0005]

【課題を解決するための手段】本発明者等は、金属水酸
化物の硫酸根処理触媒は成型操作中に活性を失うという
問題を解決するために鋭意研究をした結果、金属水酸化
物のアルミナを結合材とする成型において、原料のベー
マイト粉末と金属水酸化物粉末を用いて成型し、成型体
を300℃以上〜500℃以下の温度で前焼成した後、
硫酸根処理を行うことにより、活性を失うことなく、良
好な成型触媒が得られることを見出したものである。以
下、本発明を詳細に説明する。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the problem that the sulfate-treated catalyst of metal hydroxide loses its activity during the molding operation, and as a result, In the molding using alumina as a binder, after molding using a boehmite powder and a metal hydroxide powder as raw materials and pre-baking the molded body at a temperature of 300 ° C to 500 ° C,
The inventors have found that a good molded catalyst can be obtained without loss of activity by performing the sulfuric acid radical treatment. Hereinafter, the present invention will be described in detail.

【0006】[0006]

【発明の実施の形態】硫酸根処理金属水酸化物を焼成し
た硫酸根処理金属酸化物触媒は、最初荒田、日野らによ
り、水酸化チタン、水酸化ジルコニウム、水酸化ハフニ
ウム、水酸化すず、水酸化鉛、水酸化鉄等の各種金属水
酸化物を硫酸処理することにより、強い酸点が発現する
ことから見出された(特公昭59−6181号、特公昭
59−40056号)ものである。また必要により金属
担持を行い、触媒活性の安定性を改良することができる
(特開昭61−68137号、特開昭61−68138
号)と述べられている。
BEST MODE FOR CARRYING OUT THE INVENTION A sulfate group-treated metal oxide catalyst obtained by firing a sulfate group-treated metal hydroxide was first prepared by Arata and Hino et al. In terms of titanium hydroxide, zirconium hydroxide, hafnium hydroxide, tin hydroxide and water. It was discovered from the fact that strong acid points are developed by treating various metal hydroxides such as lead oxide and iron hydroxide with sulfuric acid (Japanese Patent Publication Nos. 59-6181 and 59-40056). . If necessary, a metal may be supported to improve the stability of catalytic activity (Japanese Patent Laid-Open Nos. 61-68137 and 61-68138).
No.).

【0007】その後これらの硫酸根処理金属酸化物触媒
は固体酸触媒として、異性化反応、アルキル化反応、不
均化反応、分解反応、重合反応、エステル化反応等各種
の酸性触媒反応に適用できることが分かり、盛んにその
応用が研究されている。
Thereafter, these sulfate-treated metal oxide catalysts can be applied as solid acid catalysts to various acidic catalytic reactions such as isomerization reaction, alkylation reaction, disproportionation reaction, decomposition reaction, polymerization reaction and esterification reaction. And its applications are being actively studied.

【0008】金属水酸化物の硫酸根処理方法の従来技術
の概要は、水溶性金属塩を原料として、加水分解により
金属水酸化物を得、その金属水酸化物を硫酸処理して硫
酸根を担持させてから、最後に適切な温度で焼成するこ
とにより、活性な硫酸根処理金属酸化物触媒を得るとい
うものである。以下さらに詳細に述べる。
The outline of the prior art of the method for treating a metal hydroxide with a sulfate group is as follows. A water-soluble metal salt is used as a raw material to obtain a metal hydroxide by hydrolysis, and the metal hydroxide is treated with sulfuric acid to obtain a sulfate group. After being supported, it is finally calcined at an appropriate temperature to obtain an active sulfate group-treated metal oxide catalyst. This will be described in more detail below.

【0009】金属水酸化物の調整は次の通りである。目
的とする金属塩を溶解した水溶液に、アルカリ性水溶液
を添加してpHを上昇させると、不溶性の金属水酸化物
が生成し、沈澱が生じる。生成した沈澱は濾過後、陰イ
オンがなくなるまで蒸留水でよく洗浄し、乾燥する。
The preparation of the metal hydroxide is as follows. When an alkaline aqueous solution is added to an aqueous solution in which a target metal salt is dissolved to raise the pH, insoluble metal hydroxide is produced and precipitation occurs. The precipitate formed is filtered, washed thoroughly with distilled water until free of anions, and dried.

【0010】アルカリ性水溶液としては、乾燥及び焼成
の処理を経て最終的に触媒上に残存しないものが好まし
く、アルカリ金属及びアルカリ土類金属水酸化物の水溶
液は好ましくない。乾燥及び及び焼成により分解し、触
媒上に残らないアンモニア水溶液は最も好ましいもので
ある。また加熱により分解し、アンモニアを生成する尿
素やヘキサメチレンテトラミンのようなアンモニア前駆
体を含有する水溶液を使用することもできる。
The alkaline aqueous solution is preferably one that does not finally remain on the catalyst after being dried and calcined, and an aqueous solution of an alkali metal or alkaline earth metal hydroxide is not preferred. Most preferred is an aqueous ammonia solution that decomposes by drying and / or calcination and does not remain on the catalyst. It is also possible to use an aqueous solution containing an ammonia precursor such as urea or hexamethylenetetramine, which decomposes by heating to produce ammonia.

【0011】金属塩としては水溶性金属塩であればいか
なるものでも使用できるが、例えば水酸化チタニウムの
場合、チタニウム塩としては、塩化チタニウム、硝酸チ
タニウム、テトライソプロポキシチタニウム等がある。
水酸化ジルコニウムの場合、オキシ塩化ジルコニウム、
オキシ硫酸ジルコニウム、オキシ硝酸ジルコニウム、塩
化ジルコニウム、硝酸ジルコニウム等がある。水酸化ハ
フニウムの場合、塩化ハフニウム、硝酸ハフニウム等が
ある。水酸化すずの場合、塩化すず、硝酸すず等があ
る。
As the metal salt, any water-soluble metal salt can be used. For example, in the case of titanium hydroxide, the titanium salt includes titanium chloride, titanium nitrate, tetraisopropoxytitanium and the like.
In the case of zirconium hydroxide, zirconium oxychloride,
Examples include zirconium oxysulfate, zirconium oxynitrate, zirconium chloride, zirconium nitrate and the like. In the case of hafnium hydroxide, there are hafnium chloride, hafnium nitrate and the like. In the case of tin hydroxide, there are tin chloride, tin nitrate and the like.

【0012】生成した沈澱は約1日静置して熟成させた
後、濾過する。濾過した沈澱物は、濾液に使用した塩の
塩素イオン、硝酸イオン等の陰イオンが流出してこなく
なるまで蒸留水で洗浄する。
The precipitate formed is left to stand for about 1 day to be aged and then filtered. The filtered precipitate is washed with distilled water until anions such as chloride ion and nitrate ion of the salt used in the filtrate do not flow out.

【0013】洗浄後100〜150℃の温度で、1〜2
0時間乾燥すると金属水酸化物を得る。
After washing, at a temperature of 100 to 150 ° C. for 1 to 2
A metal hydroxide is obtained after drying for 0 hours.

【0014】乾燥後、さらに必要に応じ、金属担持を行
うこともできる。担持される金属は水素活性化能の高い
第VIII族金属が好ましい。第VIII族金属として
は、Fe,Co,Ni,Ru,Rh,Pd,Ir,Pt
等が挙げられる。金属は、金属表面上で水素分子を活性
化し、水素原子に解離して、触媒表面に活性水素原子を
供給するスピルオーバーの役割を担う。スピルオーバー
水素は、酸性点における異性化反応にも関係して、分解
反応を抑制し、触媒上のコーク前駆体を除去する作用を
持つと言われる。
After drying, if necessary, metal loading can be carried out. The supported metal is preferably a Group VIII metal having high hydrogen activation ability. Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt as the Group VIII metal
And the like. The metal plays a role of spillover in which hydrogen molecules are activated on the metal surface and dissociated into hydrogen atoms to supply active hydrogen atoms to the catalyst surface. It is said that the spillover hydrogen has a function of suppressing the decomposition reaction and removing the coke precursor on the catalyst in relation to the isomerization reaction at the acidic point.

【0015】第VIII族金属の中でも、スピルオーバ
ー能力も高いのはPdとPtである。他の金属はやや活
性が低いので、担持量を多く必要とし、担持量が多いと
酸性活性を低下させる等の悪影響がある。金属担持量は
0.01〜5%、より好ましくは、0.05〜3%であ
る。
Among the Group VIII metals, Pd and Pt have the highest spillover ability. Since other metals have a slightly low activity, they require a large supported amount, and a large supported amount has an adverse effect such as a decrease in acidic activity. The amount of supported metal is 0.01 to 5%, more preferably 0.05 to 3%.

【0016】金属の担持方法は、当業者に周知の水溶液
中における含浸法、イオン交換法が代表的な方法である
が、触媒上に高分散かつ均一に担持できる方法であれば
いかなる方法でもよい。
The method of supporting the metal is typically a method known to those skilled in the art such as an impregnation method in an aqueous solution and an ion exchange method, but any method can be used as long as it can be highly dispersed and uniformly supported on the catalyst. .

【0017】また担持に際しては使用する金属化合物
は、塩化物、臭化物、ヨウ化物、硫酸塩、硝酸塩、アン
ミン錯体塩等各種の水溶性塩のいずれも使用できる。な
おこの水素化金属担持は、次の硫酸根処理を行ってから
でもよい。即ち、硫酸根処理と水素化金属担持の順番
は、どちらを先に行っても活性はほぼ同じある。
The metal compound used for supporting may be any of various water-soluble salts such as chloride, bromide, iodide, sulfate, nitrate and ammine complex salt. The metal hydride supported may be subjected to the following sulfate group treatment. That is, the activity is almost the same no matter which of the order of the sulfate radical treatment and the metal hydride loading is performed first.

【0018】次に硫酸根処理を行う。硫酸根処理は上記
操作で得た粉末に、水に溶かした硫酸塩を添加して静置
し、濾過ないし蒸発乾固することで行われる。硫酸根溶
液の濃度は必要な活性により、0.1〜10Nの濃度範
囲のものを用いる。硫酸根溶液の濃度は、用いる金属水
酸化物の種類によっても変わる。例えば水酸化ジルコニ
ウムは1N程度が最も酸性度が高いと言われ、水酸化ハ
フニウムでは2N程度が最も酸性度が高いとも言われ
る。オレフィンの異性化は低酸性度が好ましく、パラフ
ィンの異性化は高酸性度が必要等反応の種類により好ま
しい酸性度は異なるので、反応に合わせて適当な硫酸根
濃度範囲が選ばれる。
Next, a sulfate group treatment is performed. The sulfate group treatment is carried out by adding a sulfate salt dissolved in water to the powder obtained by the above operation, allowing to stand, and filtering or evaporating to dryness. Depending on the required activity, the concentration of the sulfate solution used is in the range of 0.1 to 10N. The concentration of the sulfate solution also depends on the type of metal hydroxide used. For example, zirconium hydroxide is said to have the highest acidity of about 1N, and hafnium hydroxide is said to have the highest acidity of about 2N. The olefin isomerization preferably has a low acidity, and the paraffin isomerization requires a high acidity. Since the preferable acidity varies depending on the type of reaction, an appropriate sulfate group concentration range is selected according to the reaction.

【0019】硫酸根を持つ化合物としては、硫酸、硫酸
アンモニウム、硫酸ナトリウム、硫酸カリウム等、各種
の水溶性の硫酸塩を用いることができる。特に好ましい
のは、焼成処理後、触媒上に金属の残らない硫酸、硫酸
アンモニウムである。
As the compound having a sulfate group, various water-soluble sulfates such as sulfuric acid, ammonium sulfate, sodium sulfate and potassium sulfate can be used. Particularly preferred are sulfuric acid and ammonium sulfate, which leave no metal on the catalyst after the calcination treatment.

【0020】しばらく静置後、濾過ないし蒸発乾固す
る。濾過した場合は、吸着しなかった硫酸根を流失し、
硫酸根の含有量がやや少なくなる。蒸発乾固は常温〜9
0℃程度の温度で、水分を揮発させるもので、溶液中の
硫酸根はほとんど成型体に担持される。濾過ないし蒸発
乾固後、乾燥する。乾燥は例えば110℃で、1〜20
時間行う。
After standing for a while, the mixture is filtered or evaporated to dryness. When filtered, the unadsorbed sulfate radicals are washed away,
Sulfate content is slightly reduced. Evaporation to dryness is from room temperature to 9
It evaporates water at a temperature of about 0 ° C, and most of the sulfate radicals in the solution are carried by the molded body. After filtration or evaporation to dryness, it is dried. For example, the drying is 110 ° C. for 1 to 20
Do time.

【0021】最後に、触媒は焼成工程を経て活性化され
る。焼成温度は金属水酸化物によって異なるが、400
〜700℃の温度範囲である。焼成により金属水酸化物
が脱水縮合して金属酸化物になる過程の中で、硫酸根は
金属酸化物中に取り込まれ、強い電子吸引性を発揮して
金属酸化物上にある水酸基のプロントを活性化し、その
酸強度を高めているものと推測される。
Finally, the catalyst is activated through a calcination process. Although the firing temperature varies depending on the metal hydroxide, 400
The temperature range is up to 700 ° C. During the process of dehydration condensation of the metal hydroxide to form the metal oxide by firing, the sulfate radicals are incorporated into the metal oxide, exhibiting strong electron-withdrawing property and removing the hydroxyl group pront on the metal oxide. It is presumed that it is activated and its acid strength is increased.

【0022】以上のようにして調整した粉末状触媒の成
型操作を、当業者によく知られる通常の押し出し成型法
により行った。即ち代表的な硫酸根処理金属酸化物触媒
である硫酸処理ジルコニア触媒粉末をベーマイト粉末と
混合し、水を加えて、流動性を持たせ、1mm程度の穴
から押し出して円柱状とし、120℃の温度で、2時間
乾燥後、600℃の温度で、3時間焼成して柱状の成型
触媒を得た。後記比較例に示すようにこの触媒の異性化
反応の活性を測定すると、活性は元の触媒粉末の約20
分の1の活性しか示さなかった。これは金属水酸化物の
硫酸根処理触媒は、硫酸根を含む特殊な構造が触媒活性
の発現に重要な役割を果たしていると考えられるが、成
型操作中に用いる水がその構造を壊していると推定し
た。
The powdery catalyst thus prepared was molded by a conventional extrusion molding method well known to those skilled in the art. That is, a sulfuric acid-treated zirconia catalyst powder, which is a typical sulfate group-treated metal oxide catalyst, is mixed with boehmite powder and made to have fluidity so as to have fluidity, and extruded from a hole of about 1 mm to form a columnar shape. After drying at a temperature for 2 hours, it was baked at a temperature of 600 ° C. for 3 hours to obtain a columnar molded catalyst. When the activity of the isomerization reaction of this catalyst was measured as shown in Comparative Examples below, the activity was about 20% of that of the original catalyst powder.
It showed only a fraction of the activity. It is considered that, in the sulfate group treatment catalyst of metal hydroxide, the special structure containing sulfate group plays an important role in the expression of the catalytic activity, but the water used during the molding operation destroys the structure. I presume.

【0023】本発明の成型方法は、原料のベーマイト粉
末と金属水酸化物を用いて先に成型し、成型体を300
℃以上〜500℃以下の温度で前焼成した後、硫酸根処
理を行う点に特徴がある。本方法においては、成型操作
の最後に硫酸根処理を行うことにより、硫酸根を含む特
殊な構造の破壊を避けているため、活性を失うことな
く、良好な成型触媒が得られると考えられる。
According to the molding method of the present invention, boehmite powder as a raw material and a metal hydroxide are used for molding, and a molded body is molded into 300
It is characterized in that the sulfate group treatment is carried out after pre-baking at a temperature of from ℃ to 500 ℃. In this method, the sulfate group treatment is carried out at the end of the molding operation to avoid the destruction of the special structure containing the sulfate group, so that it is considered that a good molded catalyst can be obtained without losing the activity.

【0024】アルミナ原料は、通常は粉末でアルミナパ
ウダーないし溶液でアルミナゾルとして市販されてお
り、その構造はAlO(OH)(AlOOH)Al
(OH)(nは1〜100)の化学式で示される水酸
化アルミニウムが低重合したベーマイトと呼ばれる構造
である。ベーマイトは酢酸や塩酸等の酸で安定化され、
それ以上重合して高分子化することを抑制した状態で市
販されている。
Alumina raw materials are usually in the form of powder and are commercially available as alumina powder or solution in the form of alumina sol, and the structure thereof is AlO (OH) 2 (AlOOH) n Al.
It has a structure called boehmite in which aluminum hydroxide represented by a chemical formula of (OH) 2 (n is 1 to 100) is low-polymerized. Boehmite is stabilized with acids such as acetic acid and hydrochloric acid,
It is marketed in a state in which it is prevented from polymerizing and polymerizing further.

【0025】金属水酸化物粉末と結合材であるベーマイ
トを用いて成型する方法は、当業者に周知であり、例え
ば造粒ハンドブック(オーム社、平成3年発行)657
〜671ページに詳述されている。方法としては押し出
し成型法、転動造粒法、油中滴下法等があり、これらの
方法で、柱状、球状、粒状等の成型体を製造することが
できる。
A method of molding using metal hydroxide powder and boehmite as a binder is well known to those skilled in the art, and for example, Granulation Handbook (Ohm Co., 1991) 657.
~ Page 671. Examples of the method include an extrusion molding method, a tumbling granulation method, an oil dropping method, and the like, and a columnar, spherical, granular, or other molded body can be manufactured by these methods.

【0026】成型体は乾燥され、次に強度を保つために
焼成される。ベーマイトは、加熱により、脱水縮合し、
結晶化していくと共にその結晶形態を変える。従来の焼
成温度300℃〜700℃では、高表面積を持つγ−ア
ルミナないしη−アルミナとなり、高表面積かつ多孔質
で、強度も高く、結合材として良好な性能を示す。70
0℃を超える温度では、低表面積のα−アルミナとなっ
て不活性化する。この点、300〜500℃の温度範囲
では一部脱水縮合し、結晶化していくので強度が高ま
り、水に溶解しないようになるが、まだ水酸基を有し、
完全なアルミナにはなっていないと考えられる。300
℃未満の温度では、水分の乾燥のみで脱水縮合はあまり
起こらないため、水を加えると粉化して壊れてしまうと
考えられる。
The shaped body is dried and then fired to maintain its strength. Boehmite is dehydrated and condensed by heating,
As it crystallizes, its crystal form changes. At the conventional calcination temperature of 300 ° C. to 700 ° C., γ-alumina or η-alumina having a high surface area is obtained, which has a high surface area and is porous, has high strength, and shows good performance as a binder. 70
At a temperature higher than 0 ° C., it becomes inactive as low surface area α-alumina. In this respect, in the temperature range of 300 to 500 ° C., it partially dehydrates and condenses and crystallizes, so that the strength increases and it becomes insoluble in water, but it still has a hydroxyl group,
It is considered that it is not completely alumina. 300
At a temperature of lower than 0 ° C, dehydration condensation does not occur only by drying water, and it is considered that addition of water causes powdering and breakage.

【0027】一方、金属水酸化物も、ベーマイトと同じ
く加熱により、脱水縮合し、結晶化していくと共にその
結晶形態を変える。金属水酸化物は、500℃を超える
温度では酸化物となり、後の硫酸根処理で硫酸根が結合
の間に入らないため高活性化せず、500℃以下の低温
では金属水酸化物が多く残り、硫酸根処理による高活性
化の効果が大きいと考えられる。以上のことから本発明
における成型体の焼成温度は300℃以上〜500℃以
下が好ましい。本焼成操作を本明細書において前焼成と
呼ぶ。
On the other hand, the metal hydroxide, like boehmite, is dehydrated and condensed by heating and crystallized, and its crystal form is changed. The metal hydroxide becomes an oxide at a temperature higher than 500 ° C, and is not highly activated because the sulfuric acid radical does not enter between the bonds in the subsequent sulfuric acid treatment, and the metal hydroxide is often present at a low temperature of 500 ° C or lower. Remainingly, it is considered that the effect of high activation by the treatment with sulfate group is large. From the above, the firing temperature of the molded body in the present invention is preferably 300 ° C or higher and 500 ° C or lower. The main firing operation is referred to as pre-firing in this specification.

【0028】この焼成時間については、時間の長い方が
強度も高いが、長すぎると金属水酸化物もその一部が酸
化物となり活性が低下する。短すぎると十分な強度がで
ないためやはり、次の操作で粉化してしまう。そこで焼
成時間は1〜10時間が適当である。
Regarding the firing time, the longer the time, the higher the strength. However, if the firing time is too long, a part of the metal hydroxide becomes an oxide and the activity is lowered. If it is too short, it does not have sufficient strength, so it will be pulverized in the next operation. Therefore, a firing time of 1 to 10 hours is appropriate.

【0029】前焼成により水を加えても粉化しない程度
の適度な強度の成型体にした後、硫酸根処理を行う。硫
酸根処理の方法は、前記粉末に対する操作と全く同じで
ある。さらに硫酸根処理後の乾燥、焼成工程も粉末に対
する操作と全く同じである。なお金属担持操作は、成型
前の金属水酸化物粉末を用いても、硫酸根処理前の成型
体を用いても、どちらでもほぼ近い活性が得られるが、
硫酸根処理前の成型体に対して行った方が少し活性は高
いのでより好ましい。
After pre-firing, a molded body having an appropriate strength that does not powder even when water is added is subjected to sulfate treatment. The method of treating the sulfate radical is exactly the same as the procedure for the powder. Further, the drying and firing steps after the treatment with sulfuric acid radical are exactly the same as those for the powder. Incidentally, the metal loading operation, even if using the metal hydroxide powder before molding, or using the molded body before sulfate radical treatment, almost similar activity can be obtained,
It is more preferable to perform the treatment on the molded body before the treatment with sulfuric acid radical, since the activity is slightly higher.

【0030】[0030]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明の要旨を逸脱しない限り本発明はこれ
らの実施例に限定されるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples without departing from the gist of the present invention.

【0031】実施例 (1)触媒Aの調製 水酸化ジルコニウムを次のようにして合成した。オキシ
塩化ジルコニウム100gをイオン交換水760mlに
溶解し、攪拌しながら、28%アンモニア水を添加し、
pH10にする。生成した沈澱を濾別し、濾液を塩素イ
オンが検出されなくなるまでイオン交換水で洗浄する。
洗浄後110℃で20時間乾燥し、水酸化ジルコニウム
を得る。
Example (1) Preparation of catalyst A Zirconium hydroxide was synthesized as follows. Dissolve 100 g of zirconium oxychloride in 760 ml of ion-exchanged water, add 28% ammonia water while stirring,
Adjust to pH 10. The precipitate formed is filtered off, and the filtrate is washed with ion-exchanged water until no chloride ion is detected.
After washing, it is dried at 110 ° C. for 20 hours to obtain zirconium hydroxide.

【0032】水酸化ジルコニウム26.4gとバーマイ
ト20gを混合し、水40gを添加してよく練り、直径
1mmの穴から押し出し、120℃で2時間乾燥し、柱
状の成型体を得た。これを成型体aとする。次に成型体
aを400℃で3時間焼成した。これを成型体Aとす
る。成型体A30gをビーカーに入れ、これに、白金
0.2%を含有するヘキサクロロ白金酸水溶液75ml
を添加する。成型体Aは固体状態を保ち、変化しなかっ
た。蒸発乾固後、110℃で20時間乾燥し、0.5%
白金担持成型触媒を得た。
26.4 g of zirconium hydroxide and 20 g of vermite were mixed, kneaded well with 40 g of water, extruded through a hole having a diameter of 1 mm, and dried at 120 ° C. for 2 hours to obtain a columnar molded body. This is referred to as a molded body a. Next, the molded body a was baked at 400 ° C. for 3 hours. This is referred to as a molded body A. 30 g of the molded product A was placed in a beaker, and 75 ml of an aqueous hexachloroplatinic acid solution containing 0.2% of platinum was added to the beaker.
Is added. Molded product A maintained a solid state and did not change. After evaporating to dryness, it is dried at 110 ° C for 20 hours, and 0.5%
A platinum-supported molded catalyst was obtained.

【0033】次に硫酸根処理を行った。0.5%白金担
持成型触媒10gに対し、IN硫酸25mlを添加し、
室温で乾燥させる。
Next, sulfate radical treatment was performed. 25 ml of IN sulfuric acid was added to 10 g of 0.5% platinum-supported molded catalyst,
Dry at room temperature.

【0034】さらに110℃で2〜3時間乾燥させた
後、600℃で3時間焼成する。これを触媒Aとする。 (2)触媒Bの調製 触媒Aの調製において、白金担持と硫酸根処理の操作の
順番を入れ替え、白金担持の前に硫酸根処理を行い他の
操作はまったく同様に実施する。これを触媒Bとする。 (3)触媒Cの調製 触媒Aの調製において、IN硫酸の代わりにIN硫酸ア
ンモニウムを用いただけで他の操作はまったく同様に実
施する。これを触媒Cとする。 (4)触媒Dの調製 触媒Aの調製の際に得た水酸化ジルコニウム10gをビ
ーカーに入れ、これに、白金0.2%を含有するヘキサ
クロロ白金酸水溶液25mlを添加する。蒸発乾固後、
110℃で20時間乾燥し、0.5%白金担持水酸化ジ
ルコニウムを得た。0.5%白金担持水酸化ジルコニウ
ム5.3gとバーマイト4gを混合し、水8gを添加し
てよく練り、直径1mmの穴から押し出し、120℃で
2時間乾燥し、柱状の成型体を得、次に400℃で3時
間焼成した。これを成型体bとする。
After further drying at 110 ° C. for 2 to 3 hours, it is baked at 600 ° C. for 3 hours. This is designated as catalyst A. (2) Preparation of catalyst B In the preparation of catalyst A, the order of operations of platinum loading and sulfate radical treatment is exchanged, the sulfate radical treatment is carried out before platinum loading, and other operations are performed in exactly the same manner. This is designated as catalyst B. (3) Preparation of catalyst C In the preparation of catalyst A, only IN ammonium sulfate was used instead of IN sulfuric acid, and other operations were performed in exactly the same manner. This is designated as catalyst C. (4) Preparation of catalyst D 10 g of zirconium hydroxide obtained in the preparation of catalyst A is placed in a beaker, and 25 ml of hexachloroplatinic acid aqueous solution containing 0.2% of platinum is added thereto. After evaporation to dryness,
After drying at 110 ° C. for 20 hours, 0.5% platinum-supported zirconium hydroxide was obtained. 5.3 g of 0.5% zirconium hydroxide supporting platinum and 4 g of vermite were mixed, kneaded well with 8 g of water, extruded through a hole having a diameter of 1 mm, and dried at 120 ° C. for 2 hours to obtain a columnar molded body. Then, it was baked at 400 ° C. for 3 hours. This is referred to as a molded body b.

【0035】成型体b5gにIN硫酸12.5mlを添
加し、室温で乾燥させる。さらに110℃で2時間乾燥
させた後、600℃で3時間焼成する。これを触媒Dと
する。
12.5 ml of IN sulfuric acid is added to 5 g of the molded body b and dried at room temperature. After further drying at 110 ° C. for 2 hours, baking is performed at 600 ° C. for 3 hours. This is designated as catalyst D.

【0036】比較例 (1)触媒Eの調製 触媒Dの調製の項で得た0.5%白金担持水酸化ジルコ
ニウム4gに対し、IN硫酸10mlを添加し、室温で
乾燥させる。乾燥後600℃で3時間焼成する。これを
(粉末)触媒eとする。(粉末)触媒e2.64gとバ
ーマイト2gを混合し、水4gを添加してよく練り、直
径1mmの穴から押し出し、120℃で2時間乾燥し、
柱状の成型体を得た。これを成型体eとする。乾燥後6
00℃で3時間焼成する。これを触媒Eとする。 (2)触媒Fの調製 触媒Dの調製の際に得た0.5%白金担持水酸化ジルコ
ニウム4gに対し、IN硫酸10mlを添加し、室温で
乾燥させる。これを触媒fとする。触媒f2.64gと
ベーマイト2gを混合し、水4gを添加してよく練り、
直径1mmの穴から押し出し、120℃で2時間乾燥
し、柱状の成型体を得た。乾燥後600℃で3時間焼成
する。これを触媒Fとする。 (3)触媒Gの調製 触媒Aの調製において、成型体aの前焼成を400℃の
代わりに550℃で行い他の操作はまったく同様に実施
する。これを触媒Gとする。 (4)触媒Hの調製 触媒Aの調製において、成型体aの前焼成を400℃の
代わりに250℃で行った。これは水を加えると粉化し
て、次の操作ができなかった。
Comparative Example (1) Preparation of Catalyst E 10 ml of IN sulfuric acid was added to 4 g of 0.5% platinum-supported zirconium hydroxide obtained in the section of preparation of catalyst D, and the mixture was dried at room temperature. After drying, it is baked at 600 ° C. for 3 hours. This is designated as (powder) catalyst e. (Powder) 2.64 g of catalyst e and 2 g of vermite were mixed, kneaded well with 4 g of water, extruded through a hole having a diameter of 1 mm, and dried at 120 ° C. for 2 hours,
A columnar molded body was obtained. This is referred to as a molded body e. After drying 6
Bake at 00 ° C for 3 hours. This is designated as catalyst E. (2) Preparation of catalyst F 10 ml of IN sulfuric acid was added to 4 g of 0.5% platinum-supported zirconium hydroxide obtained in the preparation of catalyst D, and the mixture was dried at room temperature. This is designated as catalyst f. 2.64 g of catalyst f and 2 g of boehmite were mixed, 4 g of water was added and kneaded well,
It was extruded from a hole having a diameter of 1 mm and dried at 120 ° C. for 2 hours to obtain a columnar molded body. After drying, it is baked at 600 ° C. for 3 hours. This is designated as catalyst F. (3) Preparation of catalyst G In preparation of catalyst A, pre-baking of the molded body a is performed at 550 ° C. instead of 400 ° C., and other operations are performed in exactly the same manner. This is designated as catalyst G. (4) Preparation of catalyst H In preparation of the catalyst A, pre-baking of the molded body a was performed at 250 ° C instead of 400 ° C. This was powdered when water was added, and the next operation could not be performed.

【0037】実験例 触媒A、B、C、Dを用い、n−ヘキサンの純品を原料
にして異性化反応させた結果を表1に示す。反応条件
は、温度200℃、圧力10Kg/cm、液空間速度
10g/h・g−cat(アルミナを除く)、水素比5
mol/molである。
Experimental Example Table 1 shows the results of the isomerization reaction using catalysts A, B, C and D using pure n-hexane as a raw material. The reaction conditions are a temperature of 200 ° C., a pressure of 10 Kg / cm 2 , a liquid space velocity of 10 g / h · g-cat (excluding alumina), and a hydrogen ratio of 5
It is mol / mol.

【0038】[0038]

【表1】 [Table 1]

【0039】比較例 触媒E、F、Gを用い、n−ヘキサンを原料油として異
性化反応させた結果を表2に示す。また参考のため(粉
末)触媒eの結果も表2に示す。反応条件は、温度20
0℃、圧力10Kg/cm、液空間速度10g/h・
g−cat、水素比5mol/molである。
Comparative Example Table 2 shows the results of the isomerization reaction using catalysts E, F and G using n-hexane as a feed oil. For reference, the results of (powder) catalyst e are also shown in Table 2. The reaction condition is a temperature of 20.
0 ° C., pressure 10 kg / cm 2 , liquid space velocity 10 g / h.
g-cat, hydrogen ratio 5 mol / mol.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】本発明のアルミナを結合材とする触媒成
型方法によれば、従来粉末状で使用された硫酸処理酸化
物触媒を、成型体として工業的装置に充填して使用でき
るようになった。
EFFECTS OF THE INVENTION According to the method for molding a catalyst using alumina as a binder of the present invention, the sulfuric acid-treated oxide catalyst, which has been conventionally used in powder form, can be used as a molded body by filling it in an industrial apparatus. It was

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊田 文雄 神奈川県横浜市港南区大久保三丁目21番19 号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumio Kumada 3-21-19 Okubo, Konan-ku, Yokohama-shi, Kanagawa

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】硫酸根処理金属酸化物触媒成型体の製造方
法において、金属水酸化物とベーマイトを用いて成型
し、成型体を300℃以上〜500℃以下の温度で前焼
成した後、硫酸根処理を行うことを特徴とするアルミナ
を結合材とする触媒成型方法
1. A method for producing a sulfate group-treated metal oxide catalyst molded body, which comprises molding using a metal hydroxide and boehmite, pre-baking the molded body at a temperature of 300 ° C. to 500 ° C., and then sulfuric acid. Catalyst molding method using alumina as a binder characterized by performing root treatment
【請求項2】硫酸根原料が硫酸または、硫酸アンモニウ
ムである請求項1記載の触媒成型方法
2. The catalyst molding method according to claim 1, wherein the raw material of sulfate is sulfuric acid or ammonium sulfate.
JP21251295A 1995-07-28 1995-07-28 Catalyst compacting method using alumina as binder Pending JPH0938494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21251295A JPH0938494A (en) 1995-07-28 1995-07-28 Catalyst compacting method using alumina as binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21251295A JPH0938494A (en) 1995-07-28 1995-07-28 Catalyst compacting method using alumina as binder

Publications (1)

Publication Number Publication Date
JPH0938494A true JPH0938494A (en) 1997-02-10

Family

ID=16623906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21251295A Pending JPH0938494A (en) 1995-07-28 1995-07-28 Catalyst compacting method using alumina as binder

Country Status (1)

Country Link
JP (1) JPH0938494A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044738A1 (en) * 1998-03-04 1999-09-10 Japan Energy Corporation Solid acid catalyst, method for preparing the same and reaction using the same
US6107235A (en) * 1996-09-05 2000-08-22 Japan Energy Corporation Solid acid catalyst and process for preparing the same
WO2000056447A1 (en) * 1999-03-23 2000-09-28 Japan Energy Corporation Solid acid catalyst, method for preparing the same and reaction using the same
WO2003080768A1 (en) * 2002-03-27 2003-10-02 Japan Energy Corporation Method of isomerizing hydrocarbon
JP2005501697A (en) * 2001-08-29 2005-01-20 ユーオーピー エルエルシー Highly active isomerization catalyst, its preparation method, and its utilization method
US7026268B2 (en) 2001-03-02 2006-04-11 Japan Energy Corporation Solid acid catalyst containing platinum group metal component and method for preparation thereof
JP2006199560A (en) * 2005-01-24 2006-08-03 Tosoh Corp New structure containing sulfated zirconia and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107235A (en) * 1996-09-05 2000-08-22 Japan Energy Corporation Solid acid catalyst and process for preparing the same
WO1999044738A1 (en) * 1998-03-04 1999-09-10 Japan Energy Corporation Solid acid catalyst, method for preparing the same and reaction using the same
US6420305B1 (en) 1998-03-04 2002-07-16 Japan Energy Corporation Solid acid catalyst, method for producing the same and reaction method using the same
WO2000056447A1 (en) * 1999-03-23 2000-09-28 Japan Energy Corporation Solid acid catalyst, method for preparing the same and reaction using the same
US7026268B2 (en) 2001-03-02 2006-04-11 Japan Energy Corporation Solid acid catalyst containing platinum group metal component and method for preparation thereof
JP2005501697A (en) * 2001-08-29 2005-01-20 ユーオーピー エルエルシー Highly active isomerization catalyst, its preparation method, and its utilization method
WO2003080768A1 (en) * 2002-03-27 2003-10-02 Japan Energy Corporation Method of isomerizing hydrocarbon
US7368626B2 (en) 2002-03-27 2008-05-06 Japan Energy Corporation Method of isomerizing hydrocarbon
JP2006199560A (en) * 2005-01-24 2006-08-03 Tosoh Corp New structure containing sulfated zirconia and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4153067B2 (en) Method for producing monoclinic zirconium dioxide having a large surface area
US6165934A (en) Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process
TWI229661B (en) Low surface acidity PGM catalysts
CN103097296B (en) Silica-based material, manufacturing process therefor, noble metal carrying material, and carboxylic acid manufacturing process using same as catalyst
DE2905292A1 (en) CATALYST COMPOSITION
JPH06211517A (en) Method for extrusion of crystalline aluminosilicate
WO2001030494A1 (en) Hydrotreating catalyst for hydrocarbon oil, carrier for the same and method for hydrotreating of hydrocarbon oil
JPH0634920B2 (en) Process for producing catalyst composition containing nickel, aluminum oxide and zirconium dioxide for hydrogenating nitrile, aromatic hydrocarbon, nitro compound, catalyst composition and hydrogenating nitrile, aromatic hydrocarbon, nitro compound Method
JPH0575695B2 (en)
WO2020135714A1 (en) Pseudoboehmite, and manufacturing method therefor and application thereof
JPH0938494A (en) Catalyst compacting method using alumina as binder
TW201608013A (en) Naphtha Reforming Catalyst and Preparation Method Thereof
KR100830726B1 (en) Catalyst for cycloolefin production and process for production
JPH06104568B2 (en) Method for producing alumina having large pores
WO1997012670A1 (en) Process for preparing alumina support
KR102470620B1 (en) Coated composites of al2o3-ceo2/zro2 and a method for their production
NL8800251A (en) CARRIER FOR A CATALYST AND PROCESS FOR MANUFACTURING SUCH CARRIER.
JPS63123445A (en) Manufacture of hydrogenating treating catalyst prepared from hydrogel and manufactured catalyst
JPH0116772B2 (en)
JPH0929097A (en) Steam reforming catalyst of hydrocarbon
JP2567260B2 (en) Method for producing hydrotreating catalyst from hydrogel
JP3730792B2 (en) Hydrocarbon isomerization process
JPS58151327A (en) Manufacture of solid acid composition
JPS63123444A (en) Manufacture of hydrogenating treating catalyst prepared from hydrogel and manufactured catalyst
RU2329100C2 (en) Method of obtaining oxide catalysts on a substrate